LTC2053CMS8-SYNC#TRPBF [Linear]

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LTC2053CMS8-SYNC#TRPBF
型号: LTC2053CMS8-SYNC#TRPBF
厂家: Linear    Linear
描述:

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

仪表放大器
文件: 总12页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2053  
Precision, Rail-to-Rail  
Input and Output, Zero-Drift Instrumentation  
Amplifier with Resistor-Programmable Gain  
U
FEATURES  
DESCRIPTIO  
The LTC®2053 is a high precision instrumentation ampli-  
fier. The CMRR is typically 116dB with a single or dual 5V  
supply and is independent of gain. The input offset voltage  
is guaranteed below 10µV with a temperature drift of less  
than 50nV/°C. The LTC2053 is easy to use; the gain is  
adjustable with two external resistors, like a traditional  
op amp.  
116dB CMRR Independent of Gain  
Maximum Offset Voltage: 10µV  
Maximum Offset Voltage Drift: 50nV/°C  
Rail-to-Rail Input  
Rail-to-Rail Output  
2-Resistor Programmable Gain  
Supply Operation: 2.7V to ±5.5V  
Typical Noise: 2.5µVP-P (0.01Hz to 10Hz)  
Typical Supply Current: 750µA  
Available in an MS8 and 3mm × 3mm × 0.8mm  
DFN Packages  
The LTC2053 uses charge balanced sampled data tech-  
niques to convert a differential input voltage into a single  
ended signal that is in turn amplified by a zero-drift  
operational amplifier.  
U
The differential inputs operate from rail-to-rail and the  
singleendedoutputswingsfromrail-to-rail. TheLTC2053  
can be used in single supply applications, as low as 2.7V.  
Itcanalsobeusedwithdual±5.5Vsupplies. TheLTC2053  
is available in an MS8 surface mount package. For space  
limited applications, the LTC2053 is available in a  
3mm × 3mm × 0.8mm dual fine pitch leadless package  
(DFN).  
APPLICATIO S  
Thermocouple Amplifiers  
Electronic Scales  
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Typical Input Referred Offset vs Input  
Common Mode Voltage (VS = 3V)  
Differential Bridge Amplifier  
15  
3V  
V
V
T
= 3V  
REF  
= 25°C  
S
= 0V  
0.1µF  
10  
5
A
R < 10k  
8
2
7
OUT  
LTC2053  
0
3
6
G = 1000  
G = 10  
+
R2 10k  
5
G = 100  
G = 1  
1, 4  
–5  
–10  
–15  
R2  
R1  
GAIN = 1+  
0.1µF  
R1  
10Ω  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
2053 TA01  
INPUT COMMON MODE VOLTAGE (V)  
2053 G01  
2053fa  
1
LTC2053  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) ............................... 11V  
Input Current ...................................................... ±10mA  
VIN+ – VREF ........................................................ 5.5V  
VIN– VREF ........................................................ 5.5V  
Output Short Circuit Duration .......................... Indefinite  
Operating Temperature Range  
LTC2053C ............................................... 0°C to 70°C  
LTC2053I............................................ 40°C to 85°C  
LTC2053H ........................................ 40°C to 125°C  
Storage Temperature Range  
MS8 Package ................................... 65°C to 150°C  
DD Package ...................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER  
ORDER PART NUMBER*  
TOP VIEW  
LTC2053CMS8  
LTC2053IMS8  
LTC2053HMS8  
LTC2053CDD  
LTC2053IDD  
LTC2053HDD  
+
EN  
–IN  
+IN  
1
2
3
4
8
7
6
5
V
TOP VIEW  
OUT  
RG  
REF  
+
EN  
–IN  
+IN  
1
2
3
4
8 V  
7 OUT  
6 RG  
5 REF  
V
V
MS8 PART MARKING  
DD PART MARKING  
LAEQ  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
LTVT  
LTJY  
LTAFB  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 150°C, θJA = 200°C/W  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL INTERNALLY  
CONNECTED TO V–  
(PCB CONNECTION OPTIONAL)  
*The temperature grade (C, I, or H) of the LTC2053 in the DFN package is indicated on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
A = 1  
MIN  
TYP  
0.001  
3
MAX  
0.01  
12  
UNITS  
%
Gain Error  
V
Gain Nonlinearity  
A = 1  
V
ppm  
µV  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
= 200mV  
–5  
±10  
CM  
T = 40°C to 85°C  
±50  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
A
–1  
4
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
Input Noise Voltage  
V
V
= 1.2V  
= 1.2V  
10  
3
nA  
nA  
CM  
CM  
1
DC to 10Hz  
A = 1, V = 0V to 3V, LTC2053C  
2.5  
µV  
P-P  
Common Mode Rejection Ratio  
(Notes 4, 5)  
105  
105  
95  
100  
90  
113  
113  
113  
dB  
dB  
dB  
dB  
dB  
V
CM  
A = 1, V = 0.1V to 2.9V, LTC2053I  
V
CM  
A = 1, V = 0V to 3V, LTC2053I  
V
CM  
A = 1, V = 0.1V to 2.9V, LTC2053H  
V
CM  
A = 1, V = 0V to 3V, LTC2053H  
V
CM  
2053fa  
2
LTC2053  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V = 2.7V to 6V  
110  
116  
dB  
S
R = 2k to V  
L
2.85  
2.95  
2.94  
2.98  
V
V
R = 10k to V  
L
Output Voltage Swing Low  
Supply Current  
20  
1
mV  
mA  
µA  
V
V
0.5V, No Load  
2.5V  
0.75  
EN  
EN  
Supply Current, Shutdown  
10  
0.5  
EN Pin Input Low Voltage, V  
V
IL  
EN Pin Input High Voltage, V  
EN Pin Input Current  
2.5  
V
IH  
V
= V  
0.5  
200  
0.2  
3
–10  
µA  
EN  
Internal Op Amp Gain Bandwidth  
Slew Rate  
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 5V,  
V= 0V, REF = 200mV. Output voltage swing is referenced to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
A = 1  
MIN  
TYP  
0.001  
3
MAX  
0.01  
10  
UNITS  
%
Gain Error  
V
Gain Nonlinearity  
A = 1  
V
ppm  
µV  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
= 200mV  
–5  
±10  
CM  
T = 40°C to 85°C  
±50  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
A
–1  
4
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
V
V
= 1.2V  
= 1.2V  
10  
3
nA  
nA  
CM  
CM  
1
Common Mode Rejection Ratio  
(Notes 4, 5)  
A = 1, V = 0V to 5V, LTC2053C  
105  
105  
95  
100  
90  
116  
116  
116  
dB  
dB  
dB  
dB  
dB  
V
CM  
A = 1, V = 0.1V to 4.9V, LTC2053I  
V
CM  
A = 1, V = 0V to 5V, LTC2053I  
V
CM  
A = 1, V = 0.1V to 4.9V, LTC2053H  
V
CM  
A = 1, V = 0V to 5V, LTC2053H  
V
CM  
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V = 2.7V to 6V  
110  
116  
dB  
S
R = 2k to V  
L
4.85  
4.95  
4.94  
4.98  
V
V
R = 10k to V  
L
Output Voltage Swing Low  
Supply Current  
20  
1.1  
10  
mV  
mA  
µA  
V
V
0.5V, No Load  
4.5V  
0.85  
EN  
EN  
Supply Current, Shutdown  
EN Pin Input Low Voltage, V  
0.5  
V
IL  
EN Pin Input High Voltage, V  
EN Pin Input Current  
4.5  
V
IH  
V
= V  
–1  
200  
0.2  
3
–10  
µA  
EN  
Internal Op Amp Gain Bandwidth  
Slew Rate  
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
2053fa  
3
LTC2053  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 5V, REF = 0V.  
PARAMETER  
CONDITIONS  
A = 1  
MIN  
TYP  
0.001  
3
MAX  
0.01  
10  
UNITS  
%
Gain Error  
V
Gain Nonlinearity  
A = 1  
V
ppm  
µV  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
= 0V  
10  
±20  
CM  
T = 40°C to 85°C  
±50  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
A
–1  
4
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
V
V
= 1V  
= 1V  
10  
3
nA  
nA  
CM  
CM  
1
Common Mode Rejection Ratio  
(Notes 4, 5)  
A = 1, V = 5V to 5V, LTC2053C  
105  
105  
95  
100  
90  
118  
118  
118  
dB  
dB  
dB  
dB  
dB  
V
CM  
A = 1, V = 4.9V to 4.9V, LTC2053I  
V
CM  
A = 1, V = 5V to 5V, LTC2053I  
V
CM  
A = 1, V = –4.9V to 4.9V, LTC2053H  
V
CM  
A = 1, V = –5V to 5V, LTC2053H  
V
CM  
Power Supply Rejection Ratio (Note 6)  
Maximum Output Voltage Swing  
V = 2.7V to 11V  
110  
116  
dB  
S
R = 2k to GND, LTC2053C, LTC2053I  
±4.5  
±4.6  
±4.4  
±4.8  
±4.9  
±4.8  
V
V
V
L
R = 10k to GND, LTC2053C, LTC2053I, LTC2053H  
L
R = 2k to GND, LTC2053H  
L
Supply Current  
V
V
4.5V, No Load  
4.5V  
0.95  
1.3  
20  
mA  
µA  
EN  
EN  
Supply Current, Shutdown  
EN Pin Input Low Voltage, V  
4.5  
V
IL  
EN Pin Input High Voltage, V  
EN Pin Input Current  
4.5  
V
IH  
V
= V  
–3  
200  
0.2  
3
20  
µA  
EN  
Internal Op Amp Gain Bandwidth  
Slew Rate  
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: The CMRR with a voltage gain, A , larger than 10 is 120dB (typ).  
V
of a device may be impaired.  
Note 2: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic test  
Note 5: At temperatures above 70°C, the common mode rejection ratio  
lowers when the common mode input voltage is within 100mV of the  
supply rails.  
systems. V is measured to a limit determined by test equipment  
capability.  
Note 3: If the total source resistance is less than 10k, no DC errors result  
from the input bias currents or the mismatch of the input bias currents or  
the mismatch of the resistances connected to –IN and +IN.  
OS  
Note 6: The power supply rejection ratio (PSRR) measurement accuracy  
depends on the proximity of the power supply bypass capacitor to the  
device under test. Because of this, the PSRR is 100% tested to relaxed  
limits at final test. However, their values are guaranteed by design to meet  
the data sheet limits.  
2053fa  
4
LTC2053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
15  
10  
5
20  
15  
15  
10  
5
V
V
T
= 5V  
REF  
= 25°C  
V
V
T
= ±5V  
REF  
= 25°C  
V
V
T
= 3V  
REF  
= 25°C  
S
S
S
= 0V  
= 0V  
= 0V  
A
A
A
10  
G=1000  
G=10  
G = 1000  
5
G=1  
0
0
0
G = 1000  
G = 10  
G=100  
G = 100  
G = 1  
–5  
–10  
–15  
–20  
G = 100  
G = 1  
–5  
–10  
–15  
–5  
–10  
–15  
G = 10  
0
2
3
4
5
1
–5  
–1  
1
3
5
0
1.0  
1.5  
2.0  
2.5  
3.0  
–3  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G02  
2053 G03  
2053 G01  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
20  
15  
20  
15  
20  
15  
V
V
= ±5V  
REF  
V
V
= 3V  
REF  
V
V
= 5V  
REF  
S
S
S
= 0V  
= 0V  
= 0V  
G = 10  
G = 10  
G = 10  
10  
10  
10  
T
= 25°C  
A
T
= 85°C  
= 25°C  
5
5
5
A
T
= 85°C  
T
= 70°C  
A
A
0
0
0
T
= 70°C  
T
= 85°C  
A
A
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
–5  
–10  
–15  
–20  
T
T
= 25°C  
A
A
T
= –55°C  
A
T
= 70°C  
A
T
A
= –55°C  
T
= –55°C  
A
–5  
–1  
1
3
5
–3  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
0
2
3
4
5
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G06  
2053 G04  
2053 G05  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
60  
40  
60  
40  
100  
80  
H-GRADE PARTS  
H-GRADE PARTS  
H-GRADE PARTS  
V
V
= 3V  
REF  
G = 10  
V
V
= 5V  
REF  
G = 10  
S
S
V
V
= ±5V  
REF  
G = 10  
S
= 0V  
= 0V  
= 0V  
60  
40  
20  
20  
20  
T
= 85°C  
A
0
0
0
T
= 85°C  
T
= 25°C  
A
T
= 85°C  
A
A
–20  
–40  
–60  
–80  
–100  
T
= 25°C  
A
T
= 25°C  
A
–20  
–40  
–60  
–20  
–40  
–60  
T
= 125°C  
A
T
= 125°C  
A
T
= 125°C  
A
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
0
2
3
4
5
1
–5  
–1  
1
3
5
–3  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G07  
2053 G08  
2053 G09  
2053fa  
5
LTC2053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
30  
20  
60  
40  
25  
20  
V
V
= 3V  
V
V
= 5V  
V
= ±5V  
S
S
S
R
= 20k  
= 0V  
= 0V  
V
= 0V  
REF  
S
REF  
REF  
+
+
+
R
S
= 20k  
R
= R = R  
R
= R = R  
R = R = R  
S
S
S
15  
C
< 100pF  
C
IN  
< 100pF  
C
IN  
< 100pF  
IN  
G = 10  
= 25°C  
G = 10  
= 25°C  
G = 10  
T = 25°C  
A
10  
R
S
= 15k  
= 10k  
R
= 15k  
10  
20  
S
T
A
T
R
= 5k  
A
S
5
R
= 10k  
S
R
= 0k  
S
0
0
0
R
S
= 5k  
R
S
R
= 10k  
–5  
S
–10  
–20  
–30  
–20  
–40  
–60  
R
= 15k  
–10  
–15  
–20  
–25  
R
S
S
+
R
S
= 20k  
SMALL C  
IN  
R
S
0
2
3
4
5
–5  
–3  
–1  
1
3
5
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G11  
2053 G12  
2053 G10  
Error Due to Input RS Mismatch  
vs Input Common Mode  
(CIN < 100pF)  
Error Due to Input RS Mismatch  
vs Input Common Mode  
(CIN < 100pF)  
Error Due to Input RS Mismatch  
vs Input Common Mode  
(CIN < 100pF)  
40  
30  
40  
30  
50  
40  
+
V
V
C
= 5V  
REF  
V
V
C
= ±5V  
S
V
V
C
= 3V  
R
= 0k, R = 20k  
IN  
S
S
IN  
+
= 0V  
= 0V  
REF  
= 0V  
REF  
< 100pF  
R
= 0k, R = 20k  
+
R
= 0k, R = 15k  
< 100pF  
< 100pF  
IN  
G = 10  
IN  
IN  
30  
+
G = 10  
G = 10  
= 25°C  
R
= 0k, R = 15k  
IN  
20  
20  
IN  
T
A
= 25°C  
T = 25°C  
A
T
A
20  
+
+
R
= 0k, R = 10k  
R
= 0k, R = 15k  
+
10  
10  
R
= 0k, R = 10k  
IN  
+
IN  
10  
R
+
= 0k, R = 5k  
0
0
0
+
–10  
–20  
–30  
–40  
–50  
R
=10k, R = 0k  
R
+
= 5k, R = 0k  
= 10k, R = 0k  
IN  
IN  
+
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
R
=15k, R = 0k  
+
R
R
+
R
=15k, R = 0k  
IN  
IN  
+
+
R
=20k, R = 0k  
SMALL C  
IN  
+
R
=20k, R = 0k  
IN  
+
IN  
R
R
=15k, R = 0k  
2.0 2.5 3.0  
0
2
3
4
5
–5  
–3  
–1  
1
3
5
1
0
1.0  
1.5  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G14  
2053 G15  
2053 G13  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
70  
50  
40  
30  
80  
60  
V
V
= 5V  
V
V
R
C
= 3V  
S
V
V
R
C
= ±5V  
S
S
R
S
= 10k  
R
= 10k  
= 0V  
= 0V  
S
REF  
= 0V  
REF  
REF  
+
+
+
R
= 15k  
R
C
= R = R  
= R = R  
S
S
= R = R  
S
S
> 1µF  
> 1µF  
IN  
> 1µF  
IN  
IN  
R
S
= 5k  
20  
40  
R
= 5k  
S
G = 10  
G = 10  
30  
G = 10  
T
= 25°C  
T
= 25°C  
A
T
= 25°C  
A
A
R
= 10k  
10  
20  
S
R
S
= 1k  
10  
R
S
= 1k  
S
0
0
R
= 5k  
R
= 500Ω  
S
S
R
= 500Ω  
–10  
–30  
–50  
–70  
–10  
–20  
–30  
–40  
–20  
–40  
–60  
–80  
R
S
+
BIG C  
IN  
R
S
0
2
3
4
5
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
–5  
–1  
1
3
5
0.5  
–3  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G17  
2053 G16  
2053 G18  
2053fa  
6
LTC2053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Due to Input RS Mismatch  
vs Input Commom Mode  
(CIN >1µF)  
Error Due to Input RS Mismatch  
vs Input Commom Mode  
(CIN >1µF)  
Error Due to Input RS Mismatch  
vs Input Commom Mode  
(CIN >1µF)  
200  
150  
100  
50  
200  
150  
100  
50  
150  
100  
50  
V
V
T
= 3V  
REF  
= 25°C  
V
V
T
= ±5V  
S
V
V
T
= 5V  
REF  
= 25°C  
S
S
+
= 0V  
= 0V  
REF  
= 0V  
R
= 0k, R = 1k  
+
+
= 25°C  
A
A
R = 0k, R = 1k  
R
= 0k, R = 1k  
A
+
+
+
R
= 0k, R = 500Ω  
R
= 0k, R = 500Ω  
R
= 0k, R = 500Ω  
+
+
+
R
= 0k, R = 100Ω  
R
= 0k, R = 100Ω  
R
= 0k, R = 100Ω  
0
0
0
+
+
R
= 100, R = 0k  
R
= 100, R = 0k  
+
50  
–50  
–100  
–150  
–200  
R
= 100, R = 0k  
+
+
–50  
–100  
–150  
R
= 500, R = 0k  
+
R
R
= 500, R = 0k  
+
R
= 500, R = 0k  
–100  
–150  
–200  
+
+
BIG C  
+
IN  
+
R
=1k, R = 0k  
R
=1k, R = 0k  
R
=1k, R = 0k  
R
0
1.0  
1.5  
2.0  
2.5  
3.0  
125  
1.6  
0
2
3
4
5
0.5  
1
–5  
–1  
1
3
5
–3  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G20  
2053 G19  
2053 G21  
VOS vs REF (Pin 5)  
Offset Voltage vs Temperature  
V
OS vs REF (Pin 5)  
80  
60  
60  
40  
30  
20  
+
+
V
= V = REF  
IN  
V
= V = REF  
IN  
IN  
G = 10  
= 25°C  
IN  
G = 10  
TA = 25°C  
T
A
40  
V
= 5V  
20  
10  
S
20  
V
= ±5V  
S
0
0
0
V
= 5V  
V
= 3V  
V
= 10V  
S
S
S
V
= 3V  
–20  
–40  
–60  
–80  
S
–20  
–40  
–60  
–10  
–20  
–30  
–25  
0
25  
50  
75  
–50  
100  
7
8
9
0
2
3
4
0
1
2
3
4
5
VREF (V)  
6
1
VREF (V)  
TEMPERATURE (°C)  
2053 G24  
2053 G22  
2053 G23  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
CMRR vs Frequency  
10  
8
10  
8
130  
120  
110  
100  
90  
V
V
= ±2.5V  
V
V
= 3V, 5V, ±5V  
V
V
= ±2.5V  
S
S
IN  
S
= 0V  
= 1V  
= 0V  
REF  
P-P  
REF  
G = 1  
G = 10  
6
6
+
+
R
T
= 10k  
= 25°C  
R
= R = 1k  
R
T
= 10k  
= 25°C  
L
L
A
4
A
4
2
2
R
= R = 10k  
0
0
+
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
R
= 10k, R = 0k  
+
R
+
80  
+
R
= 0k, R = 10k  
R
70  
–2.4  
–0.4  
0.6 1.1  
–1.9 –1.4 –0.9  
0.1  
–2.4  
–0.4  
0.6  
–1.4  
1.6  
2.6  
1
10  
100  
1000  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
2053 G25  
2053 G26  
2053 G27  
2053fa  
7
LTC2053  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Referred Noise in 10Hz  
Bandwidth  
Input Voltage Noise Density vs  
Frequency  
Input Referred Noise in 10Hz  
Bandwidth  
3
2
300  
250  
200  
150  
100  
50  
3
2
G = 10  
V
T
= 3V  
= 25°C  
V
S
T
= 5V  
= 25°C  
S
T
= 25°C  
A
A
A
V
S
= ±5V  
1
1
V
= 5V  
= 3V  
S
0
0
V
S
–1  
–2  
–3  
–1  
–2  
–3  
0
0
2
4
6
8
10  
1
10  
100  
FREQUENCY (Hz)  
1000  
10000  
0
2
4
6
8
10  
TIME (s)  
TIME (s)  
2053 G29  
2053 G27  
2053 G30  
Output Voltage Swing vs Output  
Current  
Output Voltage Swing vs Output  
Current  
Supply Current vs Supply Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
T
A
= 25°C  
V
= 5V, SOURCING  
V
= ±5V  
= 25°C  
S
SOURCING  
S
A
T
T
= 125°C  
A
3
2
V
= 3V, SOURCING  
S
1
T
= 85°C  
A
0
T
A
= 0°C  
–1  
–2  
–3  
–4  
–5  
T
= –55°C  
A
V
= 3V, SINKING  
S
V
= 5V, SINKING  
S
SINKING  
6.5  
SUPPLY VOLTAGE (V)  
0.01  
1
10  
2.5  
4.5  
8.5  
10.5  
0.1  
0.01  
1
10  
0.1  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
2053 G31  
2053 G33  
2053 G32  
Internal Clock Frequency vs  
Supply Voltage  
Low Gain Settling Time vs  
Settling Accuracy  
Settling Time vs Gain  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
35  
30  
25  
20  
15  
10  
5
8
7
6
5
4
3
2
1
V
= 5V  
OUT  
V
= 5V  
S
S
dV  
= 1V  
dV  
= 1V  
OUT  
0.1% ACCURACY  
= 25°C  
G < 100  
= 25°C  
T
T
A
A
T
= 125°C  
A
T
= 85°C  
A
T
A
= –55°C  
T
= 25°C  
A
0
0
6.5  
SUPPLY VOLTAGE (V)  
2.5  
4.5  
8.5  
10.5  
0.01  
0.001  
SETTLING ACCURACY (%)  
0.0001  
0.1  
1
10  
100  
1000  
10000  
GAIN (V/V)  
2053 G36  
2053 G34  
2053 G35  
2053fa  
8
LTC2053  
U
U
U
PI FU CTIO S  
EN (Pin 1): Active Low Enable Pin.  
RG (Pin 6): Inverting Input of Internal Op Amp. With a  
resistor, R2, connected between the OUT pin and the RG  
pinandaresistor, R1, betweentheRGpinandtheREFpin,  
the DC gain is given by 1 + R2 / R1.  
–IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
V(Pin 4): Negative Supply.  
OUT (Pin 7): Amplifier Output.  
REF (Pin 5): VoltageReference(VREF)forAmplifierOutput.  
V
OUT = GAIN (V+IN – V–IN) + VREF  
V+ (Pin 8): Positive Supply.  
W
BLOCK DIAGRA  
8
+
V
ZERO-DRIFT  
OP AMP  
+IN  
3
+
OUT  
7
C
S
C
H
–IN  
2
REF  
RG  
V
EN  
5
6
4
1
2053 BD  
U
W U U  
APPLICATIO S I FOR ATIO  
Theory of Operation  
Where V+IN and V–IN are the voltages of the +IN and –IN  
pins respectively, VREF is the voltage at the REF pin and V+  
is the positive supply voltage.  
The LTC2053 uses an internal capacitor (CS) to sample a  
differential input signal riding on a DC common mode  
voltage (see Block Diagram). This capacitor’s charge is  
transferred to a second internal hold capacitor (CH) trans-  
lating the common mode of the input differential signal to  
that of the REF pin. The resulting signal is amplified by a  
zero-drift op amp in the noninverting configuration. The  
RG pin is the negative input of this op amp and allows  
external programmability of the DC gain. Simple filtering  
can be realized by using an external capacitor across the  
feedback resistor.  
For example, with a 3V single supply and a 0V to 100mV  
differential input voltage, VREF must be between 0V and  
1.6V.  
±5 Volt Operation  
When using the LTC2053 with supplies over 5.5V, care  
must be taken to limit the maximum difference between  
any of the input pins (+IN or –IN) and the REF pin to 5.5V;  
if not, the device will be damaged. For example, if rail-to-  
rail input operation is desired when the supplies are at  
±5V, the REF pin should be 0V, ±0.5V. As a second  
example, if V+ is 10V and Vand REF are at 0V, the inputs  
should not exceed 5.5V.  
Input Voltage Range  
The input common mode voltage range of the LTC2053 is  
rail-to-rail. However, the following equation limits the size  
of the differential input voltage:  
V(V+IN – V–IN) + VREF V+ – 1.3  
2053fa  
9
LTC2053  
U
W U U  
APPLICATIO S I FOR ATIO  
Settling Time  
charging current decays exponentially during each input  
sampling period with a time constant equal to RSCS. If the  
voltage disturbance due to these currents settles before  
the end of the sampling period, there will be no errors  
due to source resistance or the source resistance mis-  
match between –IN and +IN. With RS less than 10k, no  
DC errors occur due to this input current.  
The sampling rate is 3kHz and the input sampling period  
during which CS is charged to the input differential voltage  
VIN is approximately 150µs. First assume that on each  
input sampling period, CS is charged fully to VIN. Since CS  
= CH (= 1000pF), a change in the input will settle to N bits  
of accuracy at the op amp noninverting input after N clock  
cyclesor333µs(N). ThesettlingtimeattheOUTpinisalso  
affected by the settling of the internal op amp. Since the  
gain bandwidth of the internal op amp is typically 200kHz,  
the settling time is dominated by the switched capacitor  
front end for gains below 100 (see Typical Performance  
Characteristics).  
In the Typical Performance Characteristics section of this  
data sheet, there are curves showing the additional error  
from non-zero source resistance in the inputs. If there are  
no large capacitors across the inputs, the amplifier is less  
sensitive to source resistance and source resistance mis-  
match. When large capacitors are placed across the in-  
puts,theinputchargingcurrentsdescribedaboveresultin  
larger DC errors, especially with source resistor mis-  
matches.  
Input Current  
Whenever the differential input VIN changes, CH must be  
charged up to the new input voltage via CS. This results in  
an input charging current during each input sampling  
period. Eventually, CH and CS will reach VIN and, ideally,  
the input current would go to zero for DC inputs.  
Power Supply Bypassing  
TheLTC2053usesasampleddatatechniqueandtherefore  
contains some clocked digital circuitry. It is therefore  
sensistive to supply bypassing. For single or dual supply  
operation, a 0.1µF ceramic capacitor must be connected  
between Pin 8 (V+) and Pin 4 (V) with leads as short as  
possible.  
In reality, there are additional parasitic capacitors which  
disturb the charge on CS every cycle even if VIN is a DC  
voltage. For example, the parasitic bottom plate capacitor  
on CS must be charged from the voltage on the REF pin to  
the voltage on the –IN pin every cycle. The resulting input  
SINGLE SUPPLY, UNITY GAIN  
5V  
DUAL SUPPLY  
5V  
8
8
3
3
V
+
V
V
+
+IN  
+IN  
+
+
7
7
V
V
OUT  
V
V
D
OUT  
D
6
6
2
2
R2  
V
5
5
–IN  
–IN  
4
4
R1  
–5V  
V
REF  
0V < V < 5V  
–5V < V < 5V AND  
V
V
– V  
– V  
< 5.5V  
< 5.5V  
+IN  
–IN  
–IN  
+IN  
REF  
REF  
0V < V < 5V  
–5V < V < 5V AND  
–IN  
+IN  
0V < V < 3.7V  
–5V < V + V  
< 3.7V  
D
D
REF  
R2  
V
OUT  
= V  
D
V
= 1 +  
V + V  
D REF  
OUT  
(
)
2053 F01  
R1  
Figure 1  
2053fa  
10  
LTC2053  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.53 ± 0.152  
(.021 ± .006)  
0.52  
(.0205)  
REF  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
8
7 6  
5
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0.18  
(.007)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
SEATING  
PLANE  
4.90 ± 0.152  
(.193 ± .006)  
5.23  
(.206)  
MIN  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
3.20 – 3.45  
(.126 – .136)  
0.65  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
1
2
3
4
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
(.0165 ± .0015)  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
MSOP (MS8) 0603  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
(DD8) DFN 0203  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
2053fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC2053  
U
TYPICAL APPLICATIO S  
Precision ÷2  
Precision Doubler  
(General Purpose)  
Precision Inversion  
(General Purpose)  
Precision Current Source  
(Low Noise 2.5V Reference)  
8V  
5V  
5V  
5V  
0.1µF  
0.1µF  
0.1µF  
8
1
3
2
4
3
LT1027  
–5  
2
3
8
8
+
8
V
IN  
8
+
+
7
7
7
7
LTC2053  
2.5V  
(110nV/Hz)  
LTC2053  
2
LTC2053  
V
OUT  
LTC2053  
V
OUT  
R
RG  
1µF  
REF  
+
6
2
6
2
6
3
6
0.1µF  
V
OUT  
5
5
V
5
5
EN  
IN  
4
1
4
4
i
1
4
1
1
1k  
2.7k  
V
V
= 2V  
IN  
OUT  
LOAD  
0.1µF  
0.1µF  
C
V
= –V  
OUT IN  
0.1µF  
i = — , i 5mA  
0.1µF  
–5V  
R
2053 TA05  
10k  
0 < V  
< (5V – V )  
2053 TA06  
V
C
OUT  
C
2053 TA07  
–5V  
0.1µF  
2053 TA08  
Differential Thermocouple Amplifier  
5V  
10M  
10M  
0.1µF  
1M 1M  
8
+
10k  
10k  
0°C 500°C  
3
2
1
YELLOW  
ORANGE  
+
TYPE K  
THERMOCOUPLE  
(40.6µV/°C)  
7
LTC2053  
10mV/°C  
RG  
REF  
5
6
249k  
1%  
0.001µF  
0.001µF  
EN  
Linearized Platinum RTD Amplifier  
4
0.1µF  
100Ω  
5V  
0.1µF  
5V  
THERMAL  
COUPLING  
*CONFORMING TO IEC751 OR DIN43760  
–3 –7  
0.1µF  
2
R
T
= R (1 + 3.908 • 10 T – 5.775 • 10 T ), R = 100Ω  
O O  
1k  
1%  
2
3
8
(e.g. 100AT 0°C, 175.9AT 200°C, 247.1AT 400°C)  
5V  
2
7
4
3
6
1.21k  
LTC2053  
SCALE FACTOR  
TRIM  
6
1
0.1µF  
+
5
LTC2050  
4
1
LT1025  
3
V
R
5
5V  
+
O
2
2.7k  
200k  
4
16.9k  
10k  
i 1mA  
2053 TA03  
5V  
0.1µF  
LT1634-1.25  
11k  
249k  
2
8
49.9Ω  
10mV/°C  
7
0°C – 400°C  
(±0.1°C)  
High Side Power Supply Current Sense  
LTC2053  
3
6
1M  
+
16.2k  
5
0.1µF  
I
0.0015  
LOAD  
4
1
PT100*  
3-WIRE RTD  
V
REG  
CW  
LINEARITY  
100Ω  
10k  
ZERO  
0.1µF  
39.2k  
CW  
LOAD  
0.1µF  
GAIN  
953Ω  
24.9k  
2
3
8
CW  
+
OUT  
5k  
2053 TA09  
7
100mV/A  
OF LOAD  
CURRENT  
LTC2053  
10k  
6
5
0.1µF  
1,4  
150Ω  
2053 TA04  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1167  
Single Resistor Gain Programmable, Precision Instrumentation Amplifier  
Single Gain Set Resistor: G = 1 to 10,000,  
Low Noise: 7.5nVHz  
LTC2050  
LTC2051  
LTC6800  
Zero-Drift Operation Amplifier  
SOT-23 Package  
MS8 Package  
Dual Zero-Drift Operational Amplifier  
Single Supply, Zero Drift, Rail-to-Rail Input and Output Instrumentation Amplifier MS8 Package, 100µV Max V , 250nV/°C Max Drift  
OS  
2053fa  
LT/TP 0903 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC2053HDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2053HMS8

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HMS8#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2053IDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053IDD#TR

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IMS8

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053IMS8#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IMS8#TR

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IMS8-SYNC

Precision, Rail-to-Rail,Zero-Drift, Resistor-Programmable Instrumentation Amplifier
Linear

LTC2053IMS8-SYNC#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear