LTC2053CMS8#PBF [Linear]

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LTC2053CMS8#PBF
型号: LTC2053CMS8#PBF
厂家: Linear    Linear
描述:

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总18页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2053/LTC2053-SYNC  
Precision, Rail-to-Rail,  
Zero-Drift, Resistor-Programmable  
Instrumentation Amplifier  
DescripTion  
FeaTures  
n
116dB CMRR Independent of Gain  
The LTC®2053 is a high precision instrumentation ampli-  
fier. The CMRR is typically 116dB with a single or dual  
5V supply and is independent of gain. The input offset  
voltage is guaranteed below 10µV with a temperature  
drift of less than 50nV/°C. The LTC2053 is easy to use;  
the gain is adjustable with two external resistors, like a  
traditional op amp.  
n
Maximum Offset Voltage: 10µV  
n
Maximum Offset Voltage Drift: 50nV/°C  
n
Rail-to-Rail Input  
Rail-to-Rail Output  
2-Resistor Programmable Gain  
Supply Operation: 2.7V to 5.5V  
n
n
n
n
Typical Noise: 2.5µV (0.01Hz to 10Hz)  
P-P  
The LTC2053 uses charge balanced sampled data tech-  
niques to convert a differential input voltage into a single  
ended signal that is in turn amplified by a zero-drift op-  
erational amplifier.  
n
n
Typical Supply Current: 750µA  
LTC2053-SYNC Allows Synchronization to  
External Clock  
n
Available in MS8 and 3mm × 3mm × 0.8mm  
DFN Packages  
The differential inputs operate from rail-to-rail and the  
single-endedoutputswingsfromrail-to-rail.TheLTC2053  
can be used in single-supply applications, as low as 2.7V.  
It can also be used with dual 5.5V supplies. The LTC2053  
requires no external clock, while the LTC2053-SYNC has  
a CLK pin to synchronize to an external clock.  
applicaTions  
n
Thermocouple Amplifiers  
n
Electronic Scales  
n
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
The LTC2053 is available in an MS8 surface mount pack-  
age. For space limited applications, the LTC2053 is avail-  
able in a 3mm × 3mm × 0.8mm dual fine pitch leadless  
package (DFN).  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
Typical Input Referred Offset vs Input  
Common Mode Voltage (VS = 3V)  
Differential Bridge Amplifier  
15  
3V  
V
V
T
= 3V  
REF  
= 25°C  
S
= 0V  
0.1µF  
10  
5
A
R < 10k  
8
2
7
OUT  
LTC2053  
0
3
G = 1000  
G = 10  
6
+
G = 100  
G = 1  
R2 10k  
5
–5  
–10  
–15  
1, 4  
R2  
R1  
GAIN = 1+  
0.1µF  
R1  
10Ω  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
2053 TA01  
INPUT COMMON MODE VOLTAGE (V)  
2053 TA01b  
2053syncfd  
1
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
(Note 1)  
absoluTe MaxiMuM raTings  
+
Total Supply Voltage (V to V )................................. 11V  
Input Current........................................................ 10mA  
Storage Temperature Range  
MS8 Package..................................... –65°C to 150°C  
DD Package ....................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
|V – V | ...........................................................5.5V  
IN  
REF  
|V – V |............................................................5.5V  
+
IN  
REF  
Output Short-Circuit Duration.......................... Indefinite  
Operating Temperature Range  
LTC2053C, LTC2053C-SYNC ................... 0°C to 70°C  
LTC2053I, LTC2053I-SYNC..................–40°C to 85°C  
LTC2053H.......................................... –40°C to 125°C  
pin conFiguraTion  
TOP VIEW  
+
TOP VIEW  
+
EN  
–IN  
+IN  
1
2
3
4
8
7
6
5
V
EN/CLK†  
–IN  
1
2
3
4
8 V  
OUT  
RG  
REF  
9
7 OUT  
6 RG  
5 REF  
+IN  
V
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
T
= 150°C, θ = 200°C/W  
8-LEAD (3mm × 3mm) PLASTIC DFN  
JMAX  
JA  
†PIN 1 IS EN ON LTC2053, CLK ON LTC2053-SYNC  
T
JMAX  
= 125°C, θ = 160°C/W  
JA  
, UNDERSIDE METAL INTERNALLY CONNECTED TO V  
(PCB CONNECTION OPTIONAL)  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2053CDD#PBF  
LTC2053IDD#PBF  
LTC2053HDD#PBF  
LTC2053CMS8#PBF  
LTC2053IMS8#PBF  
LTC2053HMS8#PBF  
TAPE AND REEL  
PART MARKING*  
LAEQ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2053CDD#TRPBF  
LTC2053IDD#TRPBF  
LTC2053HDD#TRPBF  
LTC2053CMS8#TRPBF  
LTC2053IMS8#TRPBF  
LTC2053HMS8#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
LAEQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LAEQ  
LTVT  
LTJY  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTAFB  
8-Lead Plastic MSOP  
LTC2053CMS8-SYNC#PBF LTC2053CMS8-SYNC#TRPBF LTBNP  
LTC2053IMS8-SYNC#PBF LTC2053IMS8-SYNC#TRPBF LTBNP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
2053syncfd  
2
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
Gain Error  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
A
= 1  
0.001  
0.01  
%
V
l
l
Gain Nonlinearity  
A
A
= 1, LTC2053  
= 1, LTC2053-SYNC  
3
3
12  
15  
ppm  
ppm  
V
V
Input Offset Voltage (Note 2)  
V
= 200mV  
–5  
10  
µV  
CM  
l
l
Average Input Offset Drift (Note 2)  
T = –40°C to 85°C  
A
50  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
–1  
4
–2.5  
l
l
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
Input Noise Voltage  
V
CM  
V
CM  
= 1.2V  
= 1.2V  
10  
3
nA  
nA  
1
DC to 10Hz  
2.5  
µV  
P-P  
l
l
l
l
l
Common Mode Rejection Ratio  
(Notes 4, 5)  
A
A
A
A
A
= 1, V = 0V to 3V, LTC2053C, LTC2053C-SYNC  
100  
100  
95  
100  
85  
113  
113  
113  
dB  
dB  
dB  
dB  
dB  
V
V
V
V
V
CM  
= 1, V = 0.1V to 2.9V, LTC2053I, LTC2053I-SYNC  
CM  
= 1, V = 0V to 3V, LTC2053I, LTC2053I-SYNC  
CM  
= 1, V = 0.1V to 2.9V, LTC2053H  
CM  
= 1, V = 0V to 3V, LTC2053H  
CM  
l
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V = 2.7V to 6V  
110  
116  
dB  
S
l
l
R = 2k to V  
L
2.85  
2.95  
2.94  
2.98  
V
V
L
R = 10k to V  
l
l
Output Voltage Swing Low  
Supply Current  
20  
1
mV  
mA  
µA  
No Load  
0.75  
Supply Current, Shutdown  
V
EN  
≥ 2.5V, LTC2053 Only  
10  
0.5  
EN/CLK Pin Input Low Voltage, V  
V
IL  
EN/CLK Pin Input High Voltage, V  
EN/CLK Pin Input Current  
Internal Op Amp Gain Bandwidth  
Slew Rate  
2.5  
V
IH  
V
= V  
–0.5  
200  
0.2  
3
–10  
µA  
EN/CLK  
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
V+ = 5V, V= 0V, REF = 200mV. Output voltage swing is referenced to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.001  
3
MAX  
0.01  
10  
UNITS  
%
l
l
Gain Error  
A
A
V
= 1  
= 1  
V
V
Gain Nonlinearity  
ppm  
µV  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
= 200mV  
–5  
10  
CM  
l
l
T = –40°C to 85°C  
50  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
–1  
4
A
l
l
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
V
CM  
V
CM  
= 1.2V  
= 1.2V  
10  
3
nA  
nA  
1
l
l
l
l
l
l
l
Common Mode Rejection Ratio  
(Notes 4, 5)  
A
A
A
A
A
A
A
= 1, V = 0V to 5V, LTC2053C  
105  
100  
105  
100  
95  
100  
85  
116  
116  
116  
116  
116  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
V
V
V
V
V
V
V
CM  
= 1, V = 0V to 5V, LTC2053C-SYNC  
CM  
= 1, V = 0.1V to 4.9V, LTC2053I  
CM  
= 1, V = 0.1V to 4.9V, LTC2053I-SYNC  
CM  
= 1, V = 0V to 5V, LTC2053I, LTC2053I-SYNC  
CM  
= 1, V = 0.1V to 4.9V, LTC2053H  
CM  
= 1, V = 0V to 5V, LTC2053H  
CM  
l
Power Supply Rejection Ratio (Note 6)  
V = 2.7V to 6V  
S
110  
116  
dB  
2053syncfd  
3
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, REF = 200mV. Output voltage swing is referenced to  
V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Output Voltage Swing High  
R = 2k to V  
L
4.85  
4.95  
4.94  
4.98  
V
V
L
R = 10k to V  
l
l
Output Voltage Swing Low  
Supply Current  
20  
1.1  
10  
mV  
mA  
µA  
No Load  
0.85  
Supply Current, Shutdown  
EN/CLK Pin Input Low Voltage, V  
V
EN  
≥ 4.5V, LTC2053 Only  
0.5  
V
IL  
EN/CLK Pin Input High Voltage, V  
EN/CLK Pin Input Current  
Internal Op Amp Gain Bandwidth  
Slew Rate  
4.5  
V
IH  
V
= V  
–1  
200  
0.2  
3
–10  
µA  
EN/CLK  
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
V+ = 5V, V= –5V, REF = 0V.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.001  
3
MAX  
0.01  
10  
UNITS  
%
l
l
Gain Error  
A
A
V
= 1  
= 1  
V
V
Gain Nonlinearity  
ppm  
µV  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
= 0V  
10  
20  
CM  
l
l
T = –40°C to 85°C  
50  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
–1  
4
A
l
l
Average Input Bias Current (Note 3)  
Average Input Offset Current (Note 3)  
V
CM  
V
CM  
= 1V  
= 1V  
10  
3
nA  
nA  
1
l
l
l
l
l
l
l
Common Mode Rejection Ratio  
(Notes 4, 5)  
A
A
A
A
A
A
A
= 1, V = –5V to 5V, LTC2053C  
105  
100  
105  
100  
95  
100  
90  
118  
118  
118  
118  
118  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
V
V
V
V
V
V
V
CM  
= 1, V = –5V to 5V, LTC2053C-SYNC  
CM  
= 1, V = –4.9V to 4.9V, LTC2053I  
CM  
= 1, V = –4.9V to 4.9V, LTC2053I-SYNC  
CM  
= 1, V = –5V to 5V, LTC2053I, LTC2053I-SYNC  
CM  
= 1, V = –4.9V to 4.9V, LTC2053H  
CM  
= 1, V = –5V to 5V, LTC2053H  
CM  
l
Power Supply Rejection Ratio (Note 6)  
Maximum Output Voltage Swing  
V = 2.7V to 11V  
110  
116  
dB  
S
l
l
l
R = 2k to GND, C- and I-Grades  
4.5  
4.6  
4.4  
4.8  
4.9  
4.8  
V
V
V
L
R = 10k to GND, All Grades  
L
R = 2k to GND, LTC2053H Only  
L
l
Supply Current  
No Load  
0.95  
1.3  
20  
mA  
µA  
V
Supply Current, Shutdown  
V
EN  
≥ 4.5V, LTC2053 Only  
EN Pin Input Low Voltage, V  
–4.5  
0.5  
IL  
CLK Pin Input Low Voltage, V  
V
IL  
EN/CLK Pin Input High Voltage, V  
EN/CLK Pin Input Current  
Internal Op Amp Gain Bandwidth  
Slew Rate  
4.5  
V
IH  
V
= V  
–3  
200  
0.2  
3
–20  
µA  
kHz  
V/µs  
kHz  
EN/CLK  
Internal Sampling Frequency  
2053syncfd  
4
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The CMRR with a voltage gain, A , larger than 10 is 120dB (typ).  
V
Note 5: At temperatures above 70°C, the common mode rejection ratio  
lowers when the common mode input voltage is within 100mV of the  
supply rails.  
Note 2: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic  
Note 6: The power supply rejection ratio (PSRR) measurement accuracy  
depends on the proximity of the power supply bypass capacitor to the  
device under test. Because of this, the PSRR is 100% tested to relaxed  
limits at final test. However, their values are guaranteed by design to meet  
the data sheet limits.  
test systems. V is measured to a limit determined by test equipment  
OS  
capability.  
Note 3: If the total source resistance is less than 10k, no DC errors result  
from the input bias currents or the mismatch of the input bias currents or  
the mismatch of the resistances connected to –IN and +IN.  
Typical perForMance characTerisTics  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
20  
15  
15  
10  
5
15  
10  
5
V
V
T
=
REF  
= 25°C  
5V  
V
V
T
= 3V  
REF  
= 25°C  
V
V
T
= 5V  
S
S
S
= 0V  
= 0V  
= 0V  
REF  
= 25°C  
A
A
A
10  
G = 1000  
G = 10  
G = 1000  
5
G = 1  
0
0
0
G = 1000  
G = 10  
G = 100  
G = 100  
G = 1  
–5  
G = 100  
G = 1  
–5  
–10  
–15  
–5  
–10  
–15  
–10  
–15  
–20  
G = 10  
–5  
–1  
1
3
5
–3  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
3
4
5
0.5  
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G02  
2053 G03  
2053 G01  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
20  
15  
20  
15  
20  
15  
V
V
= 3V  
REF  
V
V
= 5V  
S
= 0V  
REF  
V
V
=
REF  
5V  
= 0V  
S
S
= 0V  
G = 10  
G = 10  
G = 10  
10  
10  
10  
T
= 25°C  
A
T
= 85°C  
= 25°C  
5
5
A
5
T
= 70°C  
T
= 85°C  
A
A
0
0
0
T
= 85°C  
T
= 70°C  
A
A
–5  
–5  
–5  
T
T
= 25°C  
1.0  
A
A
–10  
–15  
–20  
–10  
–15  
–20  
–10  
–15  
–20  
T
= –55°C  
3
T
= 70°C  
2.5  
A
A
T
= –55°C  
4
A
T
= –55°C  
A
0
1.5  
2.0  
3.0  
0
1
2
3
5
0.5  
–5  
–1  
1
5
–3  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G04  
2053 G05  
2053 G06  
2053syncfd  
5
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical perForMance characTerisTics  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
Input Offset Voltage vs Input  
Common Mode Voltage  
60  
40  
100  
80  
60  
40  
H-GRADE PARTS  
H-GRADE PARTS  
H-GRADE PARTS  
V
V
= 5V  
REF  
G = 10  
V
V
= 3V  
REF  
G = 10  
S
V
V
=
5V  
S
S
= 0V  
= 0V  
= 0V  
REF  
G = 10  
60  
40  
20  
20  
20  
T
= 85°C  
A
0
0
0
T
= 85°C  
T
= 25°C  
A
T
= 85°C  
A
A
–20  
–40  
–60  
–80  
–100  
T
= 25°C  
A
T
= 25°C  
A
–20  
–40  
–60  
–20  
–40  
–60  
T
= 125°C  
A
T
= 125°C  
2
A
T
= 125°C  
1
A
0
3
4
5
1
–5  
–1  
3
5
–3  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G08  
2053 G07  
2053 G09  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
Error Due to Input RS vs Input  
Common Mode (CIN < 100pF)  
30  
20  
60  
40  
25  
20  
V
REF  
= 5V  
S
V
V
R
C
=
REF  
5V  
V
V
R
C
= 3V  
S
S
R
= 20k  
V
= 0V  
= 0V  
= 0V  
S
REF  
+
+
+
R
S
= 20k  
R
C
= R = R  
= R = R  
= R = R  
S
S
S
15  
< 100pF  
IN  
< 100pF  
< 100pF  
IN  
IN  
G = 10  
T = 25°C  
A
G = 10  
= 25°C  
G = 10  
= 25°C  
10  
R
S
= 15k  
= 10k  
R
= 15k  
10  
20  
S
T
T
R
S
= 5k  
A
A
5
R
S
= 10k  
R
S
= 0k  
0
0
0
R
S
= 5k  
R
S
R
S
= 10k  
–5  
–10  
–20  
–30  
–20  
–40  
–60  
R
= 15k  
–10  
–15  
–20  
–25  
R
S
S
+
R
S
= 20k  
SMALL C  
IN  
R
S
–5  
–1  
1
3
5
0
2
3
4
5
–3  
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G11  
2053 G12  
2053 G10  
Error Due to Input RS Mismatch vs  
Input Common Mode (CIN < 100pF)  
Error Due to Input RS Mismatch vs  
Input Common Mode (CIN < 100pF)  
Error Due to Input RS Mismatch vs  
Input Common Mode (CIN < 100pF)  
40  
30  
40  
30  
50  
40  
+
V
V
C
=
REF  
5V  
V
V
C
= 5V  
REF  
V
V
C
= 3V  
S
R
= 0k, R = 20k  
IN  
S
S
IN  
+
= 0V  
= 0V  
= 0V  
R
= 0k, R = 20k  
REF  
+
R
= 0k, R = 15k  
< 100pF  
< 100pF  
< 100pF  
IN  
IN  
IN  
30  
G = 10  
+
G = 10  
G = 10  
= 25°C  
20  
R
IN  
= 0k, R = 15k  
IN  
20  
T
= 25°C  
T
= 25°C  
T
A
A
A
20  
+
+
R
= 0k, R = 10k  
R
= 0k, R = 15k  
+
10  
10  
R
IN  
= 0k, R = 10k  
IN  
+
10  
R
+
= 0k, R = 5k  
0
0
0
+
–10  
–20  
–30  
–40  
–50  
R
IN  
= 10k, R = 0k  
+
R
+
= 5k, R = 0k  
= 10k, R = 0k  
IN  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
R
= 15k, R = 0k  
+
R
R
+
R
IN  
= 15k, R = 0k  
IN  
+
+
R
= 20k, R = 0k  
SMALL C  
IN  
+
R
IN  
= 20k, R = 0k  
IN  
+
R
R
= 15k, R = 0k  
2.0 2.5  
–5  
–1  
1
3
5
–3  
0
2
3
4
5
0
1.0  
1.5  
3.0  
1
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G15  
2053 G14  
2053 G13  
2053syncfd  
6
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical perForMance characTerisTics  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
Error Due to Input RS vs Input  
Common Mode (CIN > 1µF)  
40  
30  
80  
60  
70  
50  
V
V
R
C
= 3V  
V
V
R
C
= 5V  
V
V
=
REF  
= R = R  
> 1µF  
5V  
S
S
S
R
S
= 10k  
R
S
= 10k  
= 0V  
= 0V  
= 0V  
REF  
REF  
+
+
+
R
= 15k  
= R = R  
= R = R  
S
R
C
S
S
S
> 1µF  
> 1µF  
IN  
IN  
IN  
20  
40  
R
S
= 5k  
R
S
= 5k  
G = 10  
G = 10  
G = 10  
30  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
R
= 10k  
10  
20  
S
R
S
= 1k  
R
S
= 1k  
10  
S
0
0
R
= 5k  
S
R
S
= 500Ω  
R
= 500Ω  
–10  
–30  
–50  
–70  
–10  
–20  
–30  
–40  
–20  
–40  
–60  
–80  
R
S
+
BIG C  
IN  
R
S
0
1.0  
1.5  
2.0  
2.5  
3.0  
–5  
–1  
1
3
5
0.5  
–3  
0
2
3
4
5
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G16  
2053 G18  
2053 G17  
Error Due to Input RS Mismatch  
vs Input Common Mode (CIN >1µF)  
Error Due to Input RS Mismatch  
vs Input Common Mode (CIN >1µF)  
Error Due to Input RS Mismatch  
vs Input Common Mode (CIN >1µF)  
200  
150  
100  
50  
200  
150  
100  
50  
150  
100  
50  
V
V
T
= 3V  
REF  
= 25°C  
V
V
T
= 5V  
REF  
= 25°C  
S
V
V
T
=
REF  
= 25°C  
A
5V  
S
S
= 0V  
+
= 0V  
= 0V  
R
= 0k, R = 1k  
+
+
A
R
= 0k, R = 1k  
A
R
= 0k, R = 1k  
+
+
+
R
= 0k, R = 500Ω  
R
= 0k, R = 500Ω  
R
= 0k, R = 500Ω  
+
+
R
= 0k, R = 100Ω  
+
R
= 0k, R = 100Ω  
R
= 0k, R = 100Ω  
0
0
0
+
R
= 100Ω, R = 0k  
+
+
–50  
–100  
–150  
–200  
R = 100Ω, R = 0k  
50  
R
= 100Ω, R = 0k  
+
+
R
= 500Ω, R = 0k  
–50  
–100  
–150  
R
+
R
= 500Ω, R = 0k  
+
R
= 500Ω, R = 0k  
+
–100  
–150  
–200  
BIG C  
+
IN  
+
+
R
= 1k, R = 0k  
R
= 1k, R = 0k  
R
= 1k, R = 0k  
R
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
0
2
3
4
5
–5  
–3  
–1  
1
3
5
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
2053 G20  
2053 G21  
2053 G19  
Offset Voltage vs Temperature  
V
OS vs REF (Pin 5)  
VOS vs REF (Pin 5)  
80  
60  
60  
40  
30  
20  
+
= V = REF  
IN  
+
= V = REF  
IN  
V
V
IN  
IN  
G = 10  
= 25°C  
G = 10  
= 25°C  
T
A
T
A
40  
V
= 5V  
20  
10  
S
20  
V
=
5V  
S
0
0
0
V
= 5V  
V
= 3V  
V
= 10V  
S
S
S
V
= 3V  
–20  
–40  
–60  
–80  
S
–20  
–40  
–60  
–10  
–20  
–30  
–25  
0
25  
50  
75  
125  
0
2
3
4
0
1
2
3
5
7
8
9
–50  
100  
4
6
1
V
(V)  
V
(V)  
TEMPERATURE (°C)  
REF  
REF  
2053 G24  
2053 G23  
2053 G22  
2053syncfd  
7
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical perForMance characTerisTics  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
CMRR vs Frequency  
10  
8
10  
8
130  
120  
110  
100  
90  
V
V
=
2.5V  
= 0V  
V
V
= 3V, 5V, 5V  
V
V
=
2.5V  
= 0V  
S
S
S
= 1V  
REF  
G = 1  
= 10k  
= 25°C  
IN  
P-P  
REF  
G = 10  
= 10k  
= 25°C  
6
6
+
R
= R = 1k  
R
T
R
T
L
L
4
4
A
A
2
2
+
R
= R = 10k  
0
0
+
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
R
= 10k, R = 0k  
+
R
+
80  
+
R
= 0k, R = 10k  
R
70  
–2.4  
–0.4  
0.6 1.1  
–2.4  
–0.4  
0.6  
–1.9 –1.4 –0.9  
0.1  
1.6  
–1.4  
1.6  
2.6  
1
10  
100  
1000  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
2053 G26  
2053 G25  
2053 G27  
Input Voltage Noise Density  
vs Frequency  
Input Referred Noise in  
10Hz Bandwidth  
Input Referred Noise in  
10Hz Bandwidth  
300  
250  
200  
150  
100  
50  
3
2
3
2
G = 10  
V
= 3V  
= 25°C  
V
= 5V  
= 25°C  
S
A
S
A
T
= 25°C  
A
T
T
V
= 5V  
S
1
1
V
= 5V  
= 3V  
S
0
0
V
S
–1  
–2  
–3  
–1  
–2  
–3  
0
1
10  
100  
FREQUENCY (Hz)  
1000  
10000  
0
2
4
6
8
10  
0
2
4
6
8
10  
TIME (s)  
TIME (s)  
2053 G28  
2053 G29  
2053 G30  
Output Voltage Swing  
vs Output Current  
Output Voltage Swing  
vs Output Current  
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V
=
5V  
V
= 5V, SOURCING  
A
SOURCING  
S
A
S
T
= 25°C  
V
= 3V, SOURCING  
S
–1  
–2  
–3  
–4  
–5  
V
= 3V, SINKING  
S
V
= 5V, SINKING  
S
SINKING  
0.01  
1
10  
0.01  
1
10  
0.1  
0.1  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
2053 G32  
2053 G31  
2053syncfd  
8
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical perForMance characTerisTics  
Low Gain Settling Time  
vs Settling Accuracy  
Supply Current vs Supply Voltage  
8
7
6
5
4
3
2
1
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
V
= 5V  
OUT  
S
dV  
= 1V  
G < 100  
= 25°C  
T
= 125°C  
A
T
A
T
= 85°C  
A
T
= 0°C  
A
T
= –55°C  
A
0
0.01  
SETTLING ACCURACY (%)  
0.0001  
0.001  
0.1  
6.5  
SUPPLY VOLTAGE (V)  
2.5  
4.5  
8.5  
10.5  
2053 G34  
2053 G33  
Internal Clock Frequency  
vs Supply Voltage  
Settling Time vs Gain  
35  
30  
25  
20  
15  
10  
5
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
V
= 5V  
OUT  
S
dV  
= 1V  
0.1% ACCURACY  
= 25°C  
T
A
T
= 125°C  
A
T
= 85°C  
A
T
= –55°C  
T
= 25°C  
4.5  
A
A
0
6.5  
SUPPLY VOLTAGE (V)  
2.5  
8.5  
10.5  
1
10  
100  
1000  
10000  
GAIN (V/V)  
2053 G35  
2053 G36  
pin FuncTions  
EN (Pin 1, LTC2053 Only): Active Low Enable Pin.  
REF(Pin5):VoltageReference(V )forAmplifierOutput.  
REF  
CLK (Pin 1, LTC2053-SYNC Only): Clock input for Syn-  
chronizing to External System Clock.  
RG (Pin 6): Inverting Input of Internal Op Amp. See  
Figure 1.  
–IN (Pin 2): Inverting Input.  
OUT (Pin 7): Amplifier Output. See Figure 1.  
+
+IN (Pin 3): Noninverting Input.  
V (Pin 8): Positive Supply.  
V (Pin 4): Negative Supply.  
2053syncfd  
9
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
block DiagraM  
8
+
V
ZERO-DRIFT  
OP AMP  
+IN  
3
+
OUT  
C
C
7
S
H
–IN  
2
REF  
RG  
V
EN/CLK*  
5
6
4
1
2053 BD  
*NOTE: PIN 1 IS EN ON THE LTC2053 AND CLK ON THE LTC2053-SYNC  
applicaTions inForMaTion  
Theory of Operation  
5 Volt Operation  
The LTC2053 uses an internal capacitor (C ) to sample  
When using the LTC2053 with supplies over 5.5V, care  
must be taken to limit the maximum difference between  
any of the input pins (+IN or –IN) and the REF pin to 5.5V;  
ifnot,thedevicewillbedamaged.Forexample,ifrail-to-rail  
input operation is desired when the supplies are at 5V,  
the REF pin should be 0V, 0.5V. As a second example,  
S
a differential input signal riding on a DC common mode  
voltage(seetheBlockDiagram).Thiscapacitor’schargeis  
transferred to a second internal hold capacitor (C ) trans-  
H
lating the common mode of the input differential signal to  
that of the REF pin. The resulting signal is amplified by a  
zero-drift op amp in the noninverting configuration. The  
RG pin is the negative input of this op amp and allows  
external programmability of the DC gain. Simple filtering  
can be realized by using an external capacitor across the  
feedback resistor.  
+
if V is 10V and V and REF are at 0V, the inputs should  
not exceed 5.5V.  
Settling Time  
The sampling rate is 3kHz and the input sampling period  
during which C is charged to the input differential voltage  
S
Input Voltage Range  
V
is approximately 150µs. First assume that on each  
IN  
The input common mode voltage range of the LTC2053  
is rail-to-rail. However, the following equation limits the  
size of the differential input voltage:  
input sampling period, C is charged fully to V . Since  
S IN  
C = C (= 1000pF), a change in the input will settle to  
S
H
N bits of accuracy at the op amp noninverting input after  
N clock cycles or 333µs(N). The settling time at the OUT  
pin is also affected by the settling of the internal op amp.  
Sincethegainbandwidthoftheinternalopampistypically  
200kHz, the settling time is dominated by the switched  
capacitor front end for gains below 100 (see the Typical  
Performance Characteristics section).  
+
V ≤ (V – V ) + V ≤ V – 1.3  
+
IN  
IN  
REF  
Where V and V are the voltages of the +IN and –IN  
+
IN  
IN  
pins, respectively, V  
is the voltage at the REF pin and  
REF  
+
V is the positive supply voltage.  
For example, with a 3V single supply and a 0V to 100mV  
differential input voltage, V  
1.6V.  
must be between 0V and  
REF  
2053syncfd  
10  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
applicaTions inForMaTion  
SINGLE SUPPLY, UNITY GAIN  
SINGLE SUPPLY, UNITY GAIN  
DUAL SUPPLY, NONUNITY GAIN  
5V  
DUAL SUPPLY, NONUNITY GAIN  
5V  
8
5V  
8
5V  
8
8
3
3
3
2
3
V
V
+
V
V
+
V
V
+
V
V
+
+IN  
+IN  
+IN  
+IN  
+
+
+
+
7
7
7
7
V
V
V
V
OUT  
V
V
V
V
IN  
OUT  
OUT  
OUT  
IN  
IN  
IN  
6
6
6
6
2
2
2
R2  
R2  
5
5
5
5
–IN  
–IN  
–IN  
–IN  
4
4
4
4
R1  
R1  
–5V  
–5V  
V
V
REF  
REF  
V
REF  
0V < V < 5V  
0V < V < 5V AND V – V < 5.5V  
–5V < V < 5V AND V – V < 5.5V –5V < V < 5V AND V – V < 5.5V  
–IN –IN REF –IN –IN REF  
+IN  
–IN  
–IN  
REF  
0V < V < 5V  
0V < V < 5V AND V – V < 5.5V  
–5V < V < 5V AND V – V < 5.5V –5V < V < 5V AND V – V < 5.5V  
–IN  
+IN  
+IN  
REF  
+IN +IN REF +IN +IN REF  
0V < V < 3.7V  
0V < V + V  
< 3.7V  
–5V < V + V  
< 3.7V  
–5V < V + V  
< 3.7V  
REF  
IN  
IN  
REF  
IN  
REF  
IN  
V
= V  
OUT  
IN  
R2  
R1  
R2  
R1  
V
= V + V  
IN  
V
= 1 +  
V
+ V  
V
= 1 +  
(V + V  
IN  
)
REF  
OUT  
REF  
OUT  
IN  
REF  
OUT  
(
)
(
)
2053 F01  
Figure 1  
Input Current  
Whenever the differential input V changes, C must be  
Power Supply Bypassing  
TheLTC2053usesasampleddatatechniqueand,therefore,  
contains some clocked digital circuitry. It is, therefore,  
sensitive to supply bypassing. For single or dual supply  
operation, a 0.1µF ceramic capacitor must be connected  
IN  
H
charged up to the new input voltage via C . This results  
S
in an input charging current during each input sampling  
period. Eventually, C and C will reach V and, ideally,  
H
S
IN  
+
between Pin 8 (V ) and Pin 4 (V ) with leads as short as  
possible.  
the input current would go to zero for DC inputs.  
In reality, there are additional parasitic capacitors which  
disturb the charge on C every cycle even if V is a DC  
voltage. For example, the parasitic bottom plate capacitor  
S
IN  
Synchronizing to an External Clock  
(LTC2053-SYNC Only)  
on C must be charged from the voltage on the REF pin  
S
TheLTC2053hasaninternallygeneratedsampleclockthat  
istypically3kHz.ThereisnoneedtoprovidetheLTC2053  
with a clock. However, in some applications, it may be  
desirable for the user to control the sampling frequency  
more precisely to avoid undesirable aliasing. This can be  
done with the LTC2053-SYNC. This device uses Pin 1 as a  
clock input whereas the LTC2053 uses Pin 1 as an enable  
pin. If CLK (Pin 1) is left floating on the LTC2053-SYNC,  
the device will run on its internal oscillator, similar to the  
LTC2053. However, if not externally synchronizing to a  
system clock, it is recommended that the LTC2053 be  
usedinsteadoftheLTC2053-SYNCbecausetheLTC2053-  
SYNC is sensitive to parasitic capacitance on the CLK pin  
whenleftfloating.ClockingtheLTC2053-SYNCisaccom-  
plished by driving the CLK pin at 8 times the desired  
sample clock frequency. This completely disables the  
internal clock. For example, to achieve the nominal  
LTC2053 sample clock rate of 3kHz, a 24kHz exter-  
to the voltage on the –IN pin every cycle. The resulting  
input charging current decays exponentially during each  
input sampling period with a time constant equal to R C .  
S S  
If the voltage disturbance due to these currents settles  
before the end of the sampling period, there will be no  
errors due to source resistance or the source resistance  
mismatch between –IN and +IN. With R less than 10k,  
S
no DC errors occur due to this input current.  
In the Typical Performance Characteristics section of this  
data sheet, there are curves showing the additional error  
from non-zero source resistance in the inputs. If there  
are no large capacitors across the inputs, the amplifier is  
less sensitive to source resistance and source resistance  
mismatch. When large capacitors are placed across the  
inputs, the input charging currents previously described  
result in larger DC errors, especially with source resistor  
mismatches.  
nal clock should be applied to the CLK pin of the  
2053syncfd  
11  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
applicaTions inForMaTion  
LTC2053-SYNC. If a square wave is used to drive the CLK  
pin, a 5µs RC time constant should be placed in front of  
the CLK pin to maintain low offset voltage performance  
(see Figure 2). This avoids internal and external coupling  
of the high frequency components of the external clock at  
the instant the LTC2053-SYNC holds the sampled input.  
The LTC2053-SYNC is tested with a sample clock of 3kHz  
CLK  
(f = 24kHz) to the same specifications as the LTC2053.  
In addition, the LTC2053-SYNC is tested at one-half and  
2x this frequency to verify proper operation. The curves  
in the Typical Performance Characteristics section of this  
data sheet apply to the LTC2053-SYNC when driving it  
with a 24kHz clock at Pin 1 (f  
= 24kHz, 3kHz sample  
CLK  
1k  
clock rate). Below are three curves that show the behavior  
of the LTC2053-SYNC as the clock frequency is varied.  
The offset is essentially unaffected over a 2:1 increase or  
decrease of the typical LTC2053 sample clock speed. The  
bias current is directly proportional to the clock speed.  
The noise is roughly proportional to the square root of  
the clock frequency. For optimum noise and bias current  
performance, drive the LTC2053-SYNC with a nominal  
24kHz external clock (3kHz sample clock).  
EXTERNAL  
CLOCK  
5V  
8
4.7nF  
0V  
3
2
5V  
1
V
V
+
+IN  
–IN  
+
7
CLK  
V
V
OUT  
D
6
R2  
5
4
LTC2053-SYNC  
R1  
2053 F02  
Figure 2. Driving the CLK Input of the LTC2053-SYNC  
14  
20  
15  
12  
V
V
V
= 5V  
S
V
= 5V  
S
A
= 0  
REF  
CM  
T
= 25°C  
12  
10  
8
= 1V  
10  
8
NOISE IN 10Hz BANDWIDTH  
V
= 5V  
S
10  
5
TYP LTC2053  
SAMPLE FREQUENCY  
0
6
V
= 5V  
= 3V  
S
S
6
–5  
V
4
4
–10  
–15  
–20  
TYP LTC2053  
TYP LTC2053  
SAMPLE FREQUENCY  
SAMPLE FREQUENCY  
2
2
0
0
0
4000  
6000  
8000 10000  
0
4000  
6000  
8000 10000  
2000  
0
4000  
6000  
8000 10000  
2000  
2000  
SAMPLE FREQUENCY (Hz) (= F /8)  
SAMPLE FREQUENCY (Hz) (= F /8)  
CLK  
SAMPLE FREQUENCY (F /8)  
CLK  
CLK  
2053 F03  
2053 F05  
2053 F04  
Figure 3. LTC2053-SYNC Input  
Offset vs Sample Frequency  
Figure 4. LTC2053-SYNC Average Input  
Bias Current vs Sample Frequency  
Figure 5. LTC2053-SYNC Input Referred  
Noise vs Sample Frequency  
2053syncfd  
12  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical applicaTions  
Precision ÷2  
(Low Noise 2.5V Reference)  
Precision Current Source  
0.1µF  
8V  
5V  
8
2
8
1
3
2
4
8
5
LT1027–5  
2
+
7
LTC2053  
7
R
RG  
2.5V  
(110nV/Hz)  
LTC2053  
REF  
+
3
6
1µF  
0.1µF  
V
6
OUT  
i
5
EN  
4
4
1
1
2.7k  
1k  
LOAD  
V
R
C
i = — , i ≤ 5mA  
0.1µF  
10k  
2053 TA03  
0 < V  
< (5V – V )  
V
OUT C  
C
0.1µF  
2053 TA02  
Precision Doubler  
(General Purpose)  
Precision Inversion  
(General Purpose)  
5V  
5V  
0.1µF  
0.1µF  
3
3
8
8
V
IN  
+
+
7
7
LTC2053  
V
LTC2053  
V
OUT  
OUT  
2
6
2
6
5
V
5
IN  
1
4
4
1
V
= 2V  
OUT  
IN  
0.1µF  
V
= –V  
OUT IN  
0.1µF  
0.1µF  
–5V  
2053 TA04  
2053 TA05  
–5V  
2053syncfd  
13  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
Typical applicaTions  
Differential Thermocouple Amplifier  
5V  
0.1µF  
10M  
10M  
1M 1M  
8
+
10k  
10k  
0°C 500°C  
TYPE K  
THERMOCOUPLE  
(40.6µV/°C)  
3
2
1
YELLOW  
ORANGE  
+
7
LTC2053  
10mV/°C  
RG  
REF  
5
6
249k  
1%  
0.001µF  
0.001µF  
5V  
EN  
0.1µF  
4
100Ω  
THERMAL  
COUPLING  
1k  
1%  
0.1µF  
5V  
2
4
6
SCALE FACTOR  
TRIM  
1
LTC2050  
LT1025  
3
3
V
+
O
2
R
200k  
4
5
2053 TA06  
High Side Power Supply Current Sense  
I
0.0015  
LOAD  
V
REG  
0.1µF  
LOAD  
2
3
8
OUT  
7
100mV/A  
OF LOAD  
CURRENT  
LTC2053  
10k  
6
+
5
0.1µF  
1, 4  
150Ω  
2053 TA07  
2053syncfd  
14  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2053#packaging for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
2053syncfd  
15  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2053#packaging for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2053syncfd  
16  
For more information www.linear.com/LTC2053  
LTC2053/LTC2053-SYNC  
revision hisTory (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
7/10  
Corrected text in the Absolute Maximum Ratings section  
Updated Pin 6 and Pin 7 text in the Pin Functions section  
Replaced Figure 1  
2
9
11  
12  
D
12/15 Corrected title for Figure 2  
2053syncfd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC2053/LTC2053-SYNC  
Typical applicaTion  
Linearized Platinum RTD Amplifier  
5V  
0.1µF  
*CONFORMING TO IEC751 OR DIN43760  
–3  
–7 2  
R
= R (1 + 3.908 • 10 T – 5.775 • 10 T ꢀ, R = 100Ω  
O O  
T
2
8
(e.g., 100Ω AT 0°C, 175.9Ω AT 200°C, 247.1Ω AT 400°Cꢀ  
+
7
1.21k  
3
LTC2053  
6
0.1µF  
5
4
1
5V  
2.7k  
16.9k  
10k  
i ≈ 1mA  
5V  
8
0.1µF  
LT1634-1.25  
249k  
2
49.9Ω  
10mV/°C  
0°C – 400°C  
( 0.1°Cꢀ  
7
6
LTC2053  
3
1M  
11k  
+
16.2k  
5
0.1µF  
10k  
4
1
PT100*  
3-WIRE RTD  
CW  
LINEARITY  
100Ω  
953Ω  
ZERO  
39.2k  
CW  
0.1µF  
24.9k  
GAIN  
CW  
5k  
2053 TA08  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1167  
Single Resistor Gain-Programmable, Precision  
Instrumentation Amplifier  
Single-Gain Set Resistor: G = 1 to 10,000, Low Noise: 7.5nV√Hz  
LTC2050/LTC2051 Zero-Drift Single/Dual Operation Amplifier  
LTC2054/LTC2055 Zero-Drift µPower Operational Amplifier  
SOT-23 and MS8 Packages  
SOT-23 and MS8 Packages, 150µA/Op Amp  
LTC6800  
Single-Supply, Zero-Drift, Rail-to-Rail Input and Output  
Instrumentation Amplifier  
MS8 Package, 100µV Max V , 250nV/°C Max Drift  
OS  
2053syncfd  
LT 1215 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
LINEAR TECHNOLOGY CORPORATION 2010  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2053  

相关型号:

LTC2053CMS8#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2053CMS8-SYNC

Precision, Rail-to-Rail,Zero-Drift, Resistor-Programmable Instrumentation Amplifier
Linear

LTC2053CMS8-SYNC#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2053CMS8-SYNC#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2053HDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2053HMS8

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053HMS8#PBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2053IDD

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear

LTC2053IDD#TR

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IDD#TRPBF

LTC2053 - Precision, Rail-to-Rail, Zero-Drift, Resistor-Programmable Instrumentation Amplifier; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2053IMS8

Precision, Rail-to-Rail Input and Output, Zero-Drift Instrumentation Amplifier with Resistor-Programmable Gain
Linear