LT6020IDD#TRPBF [Linear]

暂无描述;
LT6020IDD#TRPBF
型号: LT6020IDD#TRPBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总20页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6020/LT6020-1  
Dual Micropower, 5V/µs  
Precision Rail-to-Rail  
Output Amplifier  
FeaTures  
DescripTion  
n
Excellent Slew Rate to Power Ratio  
TheLT®6020isalowpower,enhanced slewrate,precision  
operational amplifier. The proprietary circuit topology of  
this amplifier gives excellent slew rate at low quiescent  
power dissipation without compromising precision or  
settling time. In addition, unique input stage circuitry  
allows the input impedance to remain high during input  
voltage steps as large as 5V. The combination of preci-  
sion specs along with fast settling makes this part ideal  
for MUX applications.  
n
Slew Rate: 5V/μs  
n
Maximum Supply Current: 100μA/Amplifier  
n
Maximum Offset Voltage: 30μV  
n
Maximum Offset Voltage Drift: 0.5μV/°C  
n
High Dynamic Input Impedance  
n
Fast Recovery from Shutdown  
n
Maximum Input Bias Current: 3nA  
n
No Output Phase Inversion  
n
Gain Bandwidth Product: 400kHz  
The low quiescent current of the LT6020 along with its  
ability to operate on supplies as low as 3V make it useful  
in portable systems. The LT6020-1 features a shutdown  
mode which reduces the typical supply current to 1.4μA.  
n
Wide Specified Supply Range: 3V to 30V  
n
Operating Temperature Range: –40°C to 125°C  
n
DFN and MS8 Packages  
Rail-to-Rail Outputs  
n
The LT6020 is available in the small 8-lead DFN and 8-lead  
MSOP packages. The LT6020-1 is available in a 10-lead  
DFN package.  
applicaTions  
n
Precision Signal Processing  
L, LT, LTC, LTM, Linear Technology, SmartMesh and the Linear logo are registered trademarks  
and SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Patent Pending.  
n
18-Bit DAC Amplifier  
n
Multiplexed ADC Applications  
Low Power Portable Systems  
Low Power Wireless Sensor Networks  
n
n
Typical applicaTion  
16-Bit DAC with 10V Output Swing  
LT1019-2.5  
20V Output Step Response  
CS  
5V/DIV  
5V/DIV  
3.8V TO 5.5V  
IN  
OUT  
DC DC  
1µF  
0.1µF  
GND  
0.1µF  
V
OUT  
10pF  
V
LTC2642  
REF  
DD  
R
FB  
15V  
INV  
60201 TA01b  
20µs/DIV  
V
1/2 LT6020  
OUT  
V
OUT  
+
POWER-ON  
RESET  
16-BIT DAC  
–15V  
+
CS  
16-BIT DATA LATCH  
SCLK  
DIN  
1/2 LT6020  
CONTROL  
LOGIC  
LT5400-1  
10kΩ MATCHED  
CLR  
16-BIT SHIFT REGISTER  
RESISTOR NETWORK  
GND  
60201 TA01a  
60201fa  
1
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
absoluTe MaxiMuM raTings  
(Note 1)  
+
Total Supply Voltage (V to V ).................................36V  
Differential Input Voltage (within Supplies)...............36V  
Operating and Specified Temperature Range  
I-Grade.................................................–40°C to 85°C  
H-Grade ............................................ .–40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
Input Voltage (DGND, EN) (Relative to V )................36V  
Input Current (+IN, –IN, DGND, EN) ..................... 10mA  
Output Short-Circuit Duration.......................... Indefinite  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
OUT A  
–IN A  
+IN A  
1
2
3
4
5
10  
9
V
+
OUT A  
–IN A  
+IN A  
1
2
3
4
8
7
6
5
V
TOP VIEW  
OUT B  
–IN B  
+IN B  
EN  
+
OUT B  
–IN B  
+IN B  
A
OUTA 1  
–INA 2  
8 V  
A
11  
9
8
7 OUTB  
6 –INB  
5 +INB  
B
A
V
7
+INA  
3
4
B
B
V
V
DGND  
6
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
θ
= 163°C/W, θ = 40°C/W  
JC  
JA  
θ
= 43°C/W, θ = 5.5°C/W  
θ
= 43°C/W, θ = 5.5°C/W  
JA  
JC  
JA JC  
EXPOSED PAD (PIN 11) IS CONNECTED TO V (PIN 4)  
(PCB CONNECTION OPTIONAL)  
EXPOSED PAD (PIN 9) IS CONNECTED TO V (PIN 4)  
(PCB CONNECTION OPTIONAL)  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LGMC  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT6020IDD#PBF  
LT6020IDD#TRPBF  
LT6020HDD#TRPBF  
LT6020IDD-1#TRPBF  
LT6020HDD-1#TRPBF  
LT6020IMS8#TRPBF  
LT6020HMS8#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
LT6020HDD#PBF  
LT6020IDD-1#PBF  
LT6020HDD-1#PBF  
LT6020IMS8#PBF  
LT6020HMS8#PBF  
LGMC  
LGKF  
LGKF  
LTGJG  
LTGJG  
8-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
60201fa  
2
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 15V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 5V. DGND  
and EN specifications only apply to the LT6020-1.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
DD Packages  
A
T = –40° to 125°C  
A
20  
70  
110  
120  
µV  
µV  
µV  
OS  
l
l
T = –40° to 85°C  
MS8 Package  
A
T = –40° to 125°C  
A
5
30  
70  
80  
µV  
µV  
µV  
l
l
T = –40° to 85°C  
l
l
l
∆V  
Input Offset Voltage Drift (Note 2)  
DD Packages  
MS8 Package  
–0.8  
–0.5  
0.3  
0.2  
0.2  
0.8  
0.5  
µV/°C  
µV/°C  
µV/Mo  
OSI  
∆Temp  
∆V  
Long Term Input Offset Voltage Stability  
Input Bias Current  
OSI  
∆Time  
I
–3  
–3  
–10  
0.1  
0.1  
1.1  
3
3
10  
nA  
nA  
nA  
B
T = –40° to 85°C  
l
l
A
T = –40° to 125°C  
A
I
Input Offset Current  
–1  
–1  
–2  
1
1
2
nA  
nA  
nA  
OS  
T = –40° to 85°C  
l
l
A
T = –40° to 125°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
µV  
P-P  
e
n
Input Noise Voltage Density  
f = 10Hz  
f = 1kHz  
50  
46  
nV/√Hz  
nV/√Hz  
in  
Input Noise Current Density  
Input Capacitance  
f = 1kHz  
37  
fA/√Hz  
C
Common Mode  
Differential Mode  
1.5  
2.5  
pF  
pF  
IN  
R
Input Resistance  
Common Mode  
Differential Mode  
17  
20  
GΩ  
MΩ  
IN  
+
l
l
l
l
l
V
Common Mode Input Range  
V + 1.2  
V – 1.4  
V
ICM  
CMRR  
Common Mode Rejection Ratio  
V
= –13.8V to 13.6V  
120  
120  
132  
140  
116  
138  
130  
dB  
dB  
CM  
PSRR  
Supply Rejection Ratio  
V = 3V to 30V  
120  
118  
dB  
dB  
S
A
Large-Signal Voltage Gain  
R = 6.98kΩ, V  
= 14V  
110  
108  
dB  
dB  
VOL  
L
OUT  
R = 100kΩ, V  
= 14.5V  
126  
126  
dB  
dB  
L
OUT  
V
V
Output Swing Low (V  
– V )  
R = 10kΩ  
200  
250  
300  
mV  
mV  
mV  
OL  
OH  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
+
Output Swing High (V – V  
Short-Circuit Current  
)
R = 10kΩ  
100  
8
140  
165  
190  
mV  
mV  
mV  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
I
V
= 0V, Sourcing  
OUT  
mA  
mA  
mA  
SC  
l
l
T = –40° to 85°C  
5.5  
5
A
T = –40° to 125°C  
A
V
A
= 0V, Sinking  
11  
mA  
mA  
mA  
OUT  
l
l
T = –40° to 85°C  
5.5  
5.5  
T = –40° to 125°C  
A
60201fa  
3
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 15V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 5V. DGND  
and EN specifications only apply to the LT6020-1.  
SYMBOL PARAMETER  
CONDITIONS  
= 1, 10V Step  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
A
3
2.4  
2.4  
5
V/μs  
V/μs  
V/μs  
VCL  
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
A
A
= 1, 5V Step  
1.4  
1.1  
1
2.4  
V/μs  
V/μs  
V/μs  
VCL  
l
l
T = –40° to 85°C  
T = –40° to 125°C  
A
l
l
GBW  
Gain-Bandwidth Product  
Minimum Supply Voltage  
Supply Current per Amplifier  
f = 10kHz  
290  
3
400  
90  
kHz  
V
O
Guaranteed by PSRR  
I
100  
125  
140  
μA  
μA  
μA  
S
T = –40° to 85°C  
l
l
A
T = –40° to 125°C  
A
Supply Current in Shutdown  
V
A
= 0.8V  
1.4  
3
3.2  
3.6  
μA  
μA  
μA  
EN  
T = –40° to 85°C  
l
l
T = –40° to 125°C  
A
t
t
Settling Time (A = 1)  
0.1% 5V Output Step  
6
μs  
μs  
μs  
μs  
s
V
0.01% 5V Output Step  
0.0015% 5V Output Step  
0.0015% 10V Output Step  
7.8  
13.8  
12.4  
Enable Time  
A = 1  
V
100  
µs  
V
ON  
+
l
l
l
l
l
V
DGND Pin Voltage Range  
DGND Pin Current  
V
V – 3  
DGND  
DGND  
EN  
I
I
–200  
–100  
–400  
–200  
0.8  
nA  
nA  
V
EN Pin Current  
V
V
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
Relative to DGND  
Relative to DGND  
ENL  
ENH  
1.7  
V
60201fa  
4
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 3V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 3V. DGND and  
EN pin specifications only apply to the LT6020-1.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
DD Packages  
A
T = –40° to 125°C  
A
20  
100  
140  
150  
µV  
µV  
µV  
OS  
l
l
T = –40° to 85°C  
MS8 Package  
A
T = –40° to 125°C  
A
5
45  
85  
95  
µV  
µV  
µV  
l
l
T = –40° to 85°C  
l
l
l
∆V  
Input Offset Voltage Drift (Note 2)  
DD Packages  
MS8 Package  
–0.8  
–0.5  
0.3  
0.2  
0.2  
0.8  
0.5  
µV/°C  
µV/°C  
µV/Mo  
OSI  
∆Temp  
∆V  
OSI  
Long Term Input Offset Voltage Stability  
∆Time  
I
I
Input Bias Current  
1
0.1  
1.1  
nA  
nA  
B
Input Offset Current  
Input Noise Voltage  
Input Noise Voltage Density  
OS  
0.1Hz to 10Hz  
µV  
P-P  
e
f = 10Hz  
f = 1kHz  
50  
46  
nV/√Hz  
nV/√Hz  
n
in  
Input Noise Current Density  
Input Capacitance  
f = 1kHz  
37  
fA/√Hz  
C
Common Mode  
Differential Mode  
1.5  
2.5  
pF  
pF  
IN  
R
Input Resistance  
Common Mode  
Differential Mode  
17  
20  
GΩ  
MΩ  
IN  
+
l
V
Common Mode Input Range  
Common Mode Rejection Ratio  
Supply Rejection Ratio  
V + 1.2  
V – 1.4  
V
ICM  
CMRR  
PSRR  
V
= 1.2V to 1.6V  
125  
140  
dB  
CM  
V = 3V to 30V  
120  
118  
dB  
dB  
S
l
l
A
Large-Signal Voltage Gain  
R = 6.98kΩ, V  
= 0.5V to 2.5V  
= 0.5V to 2.5V  
98  
98  
108  
dB  
dB  
VOL  
L
OUT  
R = 100kΩ, V  
136  
45  
dB  
L
OUT  
V
V
Output Swing Low (V  
– V )  
R = 10kΩ  
100  
130  
150  
mV  
mV  
mV  
OL  
OH  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
+
Output Swing High (V – V  
Short-Circuit Current  
)
R = 10kΩ  
55  
6
80  
90  
mV  
mV  
mV  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
100  
A
I
V
= 1.5V, Sourcing  
OUT  
mA  
mA  
mA  
SC  
l
l
T = –40° to 85°C  
3.5  
3.5  
A
T = –40° to 125°C  
A
V
A
= 1.5V, Sinking  
8
mA  
mA  
mA  
OUT  
l
l
T = –40° to 85°C  
5.5  
5.5  
T = –40° to 125°C  
A
SR  
Slew Rate (Note 3)  
A
= –1, 2V Step  
0.2  
V/μs  
kHz  
V
VCL  
GBW  
Gain-Bandwidth Product  
Minimum Supply Voltage  
f = 10kHz  
O
400  
l
Guaranteed by PSRR  
3
60201fa  
5
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 3V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 3V. DGND and  
EN pin specifications only apply to the LT6020-1.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Supply Current per Amplifier  
85  
95  
120  
135  
μA  
μA  
μA  
S
T = –40° to 85°C  
A
l
l
A
T = –40° to 125°C  
Supply Current in Shutdown  
V
A
= 0.8V  
0.9  
1.1  
1.5  
3
μA  
μA  
μA  
EN  
T = –40° to 85°C  
l
l
T = –40° to 125°C  
A
t
t
Settling Time (A = –1)  
0.1% 2.4V Output Step  
0.01% 2.4V Output Step  
0.0015% 2.4V Output Step  
12.4  
21.2  
39.2  
μs  
μs  
μs  
s
V
Enable Time  
A = 1  
V
120  
µs  
V
ON  
+
l
V
DGND Pin Voltage Range  
DGND Pin Current  
V
V – 3  
DGND  
DGND  
EN  
I
I
–200  
–100  
nA  
nA  
V
EN Pin Current  
l
l
V
V
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
Relative to DGND  
Relative to DGND  
0.8  
ENL  
ENH  
1.7  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The slew rate of the LT6020 increases with the size of the  
input step. At lower supplies, the input step size is limited by the input  
common mode range. This trend can be seen in the Typical Performance  
Characteristics.  
Note 2: Guaranteed by design.  
60201fa  
6
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
Typical perForMance characTerisTics  
TA = 25°C, VS = 15V, RL = 100kΩ, unless  
otherwise specified.  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Input  
Offset Voltage Drift  
1400  
1200  
1000  
800  
600  
400  
200  
0
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
40  
2932 PARTS  
MS8 PACKAGE  
14930 PARTS  
DD8 AND DD10 PACKAGES  
144 UNITS  
DD8 AND DD10  
35  
PACKAGES  
30  
25  
20  
15  
10  
5
0
0
–30 –20 –10  
0
10  
20  
30  
–70 –50 –30 –10 0 10  
30  
50  
70  
–0.80 –0.60 –0.40 –0.20  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
60201 G33  
0
0.20 0.40  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
60201 G31  
60201 G32  
Typical Distribution of Input  
Offset Voltage  
Voltage Offset Shift vs Lead Free  
IR Reflow  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
350 UNITS  
MS8 PACKAGE  
40 PARTS  
MS8 PACKAGE  
12  
10  
8
6
4
2
0
–0.50 –0.40 –0.30 –0.20 –0.10  
0
0.10  
–2  
0
2
4
6
8
10  
12  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
INPUT VOLTAGE OFFSET SHIFT (µV)  
60201 G34  
60201 G35  
Offset Voltage vs Input Common  
Mode Voltage  
Warm-Up Drift  
Offset Voltage vs Supply Voltage  
5
4
30  
20  
40  
30  
3
20  
2
10  
10  
1
0
0
0
–1  
–2  
–10  
–20  
–30  
–40  
10  
–3  
–4  
–5  
–20  
–30  
1
2
3
4
5
6
7
0
4
8
12 16 20 24 28 32 36  
–15  
–10  
INPUT COMMON MODE VOLTAGE (V)  
60201 G03  
–5  
0
5
10  
15  
TIME (ms)  
TOTAL SUPPLY VOLTAGE (V)  
60201 G01  
60201 G02  
60201fa  
7
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
Typical perForMance characTerisTics  
TA = 25°C, VS = 15V, RL = 100kΩ, unless  
otherwise specified.  
Input Bias Current vs  
Temperature  
Input Bias Current vs Differential  
Input Voltage  
0.1Hz to 10Hz Voltage Noise  
4
1.00  
0.75  
0.50  
3
2
IB–  
IB+  
0.25  
0
500nV/DIV  
1
0
–0.25  
–0.50  
–0.75  
–1.00  
–1  
1s/DIV  
–50 –25  
0
25  
50  
75 100 125  
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (V)  
60201 G06  
60201 G04  
60201 G05  
Voltage Noise Density vs  
Frequency  
Maximum Undistorted Output  
Amplitude vs Frequency  
Large-Signal Transient Response  
(5V Step)  
1000  
100  
10  
35  
30  
25  
20  
15  
10  
5
THD < 40dBc  
A
= 1  
V
1V/DIV  
0
60201 G09  
10µs/DIV  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
60201 G07  
60201 G08  
Large-Signal Transient Response  
(10V Step)  
Slew Rate vs Temperature  
(5V Step)  
Slew Rate vs Temperature  
(10V Step)  
5
7
6
5
4
3
2
1
0
A
= 1  
V
RISING EDGE  
4
3
2
1
0
RISING EDGE  
FALLING EDGE  
FALLING EDGE  
2V/DIV  
60201 G10  
10µs/DIV  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
60201 G11  
60201 G12  
60201fa  
8
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
Typical perForMance characTerisTics TA = 25°C, VS = 15V, RL = 100kΩ unless  
otherwise specified.  
Slew Rate vs Input Step  
Small-Signal Transient Response  
Overshoot vs Capacitive Load  
8
7
6
5
4
3
2
1
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
300pF  
A = 1  
V
A
= 1  
A
= 1  
V
V
FALLING EDGE  
100pF  
V
=
1ꢀ5V  
S
0pF  
5mV/DIV  
RISING EDGE  
V
= 15V  
S
60201 G14  
2µs/DIV  
0
0
5
10  
15  
20  
25  
30  
0
100 200 300 400 500 600 700 800 900 1000  
INPUT STEP SIZE (V  
)
CAPACITIVE LOAD (pF)  
P-P  
60201 G13  
60201 G15  
Open-Loop Gain and Phase  
vs Frequency  
PSRR vs Frequency  
CMRR vs Frequency  
160  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
–45  
V
= 30V  
S
–90  
–PSRR  
–135  
–180  
–225  
60  
+PSRR  
60  
V
= 3V  
S
40  
60  
40  
40  
20  
0
20  
20  
0
0
–20  
0.01 0.1  
1
10 100 1k 10k 100k 1M  
0.1  
1
10  
100  
1k 10k 100k 1M  
1
10 100  
1k  
10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
60201 G16  
60201 G17  
60201 G18  
Gain vs Frequency  
Open Loop Gain vs Load  
Output Impedance vs Frequency  
3
0
150  
140  
130  
120  
110  
100  
90  
1000  
100  
10  
C
A
= 330pF  
= 1  
V
= 14.5V  
L
V
OUT  
–3  
C
A
= 100pF  
= 1  
L
V
1
–6  
–9  
80  
0.1  
C
A
= 100pF  
= –1  
L
V
70  
–12  
60  
0.01  
10k  
100k  
FREQUENCY (Hz)  
1M  
0.1  
1
10  
100  
1000  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
60201 G19  
60201 G20  
60201 G21  
60201fa  
9
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
Typical perForMance characTerisTics TA = 25°C, VS = 15V, RL = 100kΩ unless  
otherwise specified.  
Shutdown Supply Current vs  
Temperature  
Supply Current vs Supply Voltage  
Start-Up Response  
160  
140  
120  
100  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
125°C  
85°C  
V
EN  
5V/DIV  
0V  
25°C  
V
= 30V  
S
80  
60  
40  
–40°C  
+
I(V )  
200µA/DIV  
V
= 3V  
S
20  
0
0µA  
20µs/DIV  
0
5
10  
15  
20  
25  
30  
–50 –25  
0
25  
50  
75 100 125  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
60201 G24  
60201 G22  
60201 G23  
Output Saturation Voltage vs  
Sink Current (Output Low)  
Output Saturation Voltage vs  
Source Current (Output High)  
Enable/Disable Response  
1
1
A
V
= 1  
IN  
V
T
= 125°C  
T
= 125°C  
A
A
= 5V AT 50kHz  
P-P  
V
EN  
T
= 85°C  
T
= 85°C  
A
A
5V/DIV  
0V  
0V  
0.1  
0.1  
T
= –40°C  
A
T
= –40°C  
A
T
= 25°C  
A
V
OUT  
T
= 25°C  
A
5V/DIV  
0.01  
0.01  
100µs/DIV  
0.1  
1
10  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
60201 G24  
60201 G26  
60201 G27  
Positive Output Overdrive  
Recovery  
Negative Output Overdrive  
Recovery  
Crosstalk vs Frequency  
–40  
–60  
A
= –100  
A
= –100  
V
V
= 0V  
DGND  
V
V
= 5V  
EN  
INPUT  
200mV/DIV  
OUTPUT  
5V/DIV  
0V  
–80  
0V  
–100  
–120  
–140  
INPUT  
200mV/DIV  
OUTPUT  
5V/DIV  
100µs/DIV  
100µs/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
60201 G30  
60201 G29  
60201 G28  
60201fa  
10  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
pin FuncTions  
OUT: Amplifier Output.  
EN (LT6020-1 Only): Enable Input. This pin must be  
+
connected high, normally to V , for the amplifiers to be  
–IN: Inverting Input of the Amplifier.  
+IN: Noninverting Input of the Amplifier.  
functional. EN is active high with the threshold approxi-  
mately two diodes above DGND. EN cannot be floated.  
The shutdown threshold voltage is specified with respect  
to the voltage on the DGND pin.  
V : Negative Power Supply. A bypass capacitor should be  
used between supply pins and ground. Additional bypass  
capacitance may be used between the power supply pins.  
+
V : Positive Power Supply. A bypass capacitor should be  
used between supply pins and ground. Additional bypass  
capacitance may be used between the power supply pins.  
DGND(LT6020-1Only):ReferenceforENPin.Itisnormally  
+
tied to ground. DGND must be in the range from V to V  
+
–3V. If grounded, V must be ≥ 3V. The EN pin threshold  
is specified with respect to the DGND pin. DGND cannot  
be floated.  
siMpliFieD scheMaTic  
+
LT6020-1 ONLY  
V
LOAD  
5k  
200k  
CLASS AB  
DRIVE  
+IN  
EN  
OUT  
5k  
–IN  
200k  
DGND  
V
60201 BD  
applicaTions inForMaTion  
Preserving Low Power Operation  
The choice of feedback resistor values impacts several  
op-amp parameters as noted in the feedback compo-  
nents section. It should also be noted that the output of  
the amplifier must drive this network. For example, in a  
gain of two with a total feedback resistance of 10kΩ and  
an output voltage of 14V, the amplifier’s output will need  
to supply 1.4mA of current. This current will ultimately  
come from a supply.  
The proprietary circuitry used in the LT6020 provides an  
excellent combination of low power, low offset and en-  
hancedslewrate.Normallyanamplifierwithhighersupply  
current would be required to achieve this combination of  
slew rate and precision. Special care must be taken to  
ensure that the low power operation is preserved.  
60201fa  
11  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
applicaTions inForMaTion  
smaller inputs the LT6020 slew rate approaches the slew  
rate more common in traditional micropower amplifiers.  
The supply current of the LT6020 increases with large  
differential input voltages. Normally, this does not impact  
the low power nature of the LT6020 because the ampli-  
fier is forcing the two inputs to be at the same potential.  
Conditionswhichcausedifferentialinputvoltagetoappear  
should be avoided in order to preserve the low power dis-  
sipation of the LT6020. This includes but is not limited  
to: operation as a comparator, excessive loading on the  
output and overdriving the input.  
Input Bias Current  
The design of the input stage of the LT6020 is more so-  
phisticated than that shown in the Simplified Schematic.  
It uses both NPN and PNP input differential amplifiers to  
sense the input differential voltage. As a result the speci-  
fied input bias current can flow in or out of the input pins.  
Enhanced Slew Rate  
Multiplexer Applications/High Dynamic Input  
Impedance  
The LT6020 uses a proprietary input stage which provides  
an enhanced slew rate without sacrificing input precision  
specssuchasinputoffsetvoltage,commonmoderejection  
andnoise.TheuniqueinputstageoftheLT6020allowsthe  
output to quickly slew to its final value when large signal  
input steps are applied. This enhanced slew characteristic  
allows the LT6020 to quickly settle the output to 0.0015%  
independent of input step size as shown in Figure 1. Typi-  
calmicropoweramplifierscannotprocesslargeamplitude  
signals with this speed. As shown in the Typical Perfor-  
mance curves, when the LT6020 is configured in unity  
gain and a 10V step is applied to the input the output will  
slew at 5V/µs. In this same configuration, a 5V input step  
will slew the output at 2.4V/µs. Furthermore, a 0.7V input  
step will lower the slew rate to 0.2V/µs. Note that for these  
The LT6020 has features which make it desirable for  
multiplexer applications, such as the application featured  
on the back page of this data sheet. When the channels of  
the multiplexer are cycled, the output of the multiplexer  
can produce large voltage transitions. Normally, bipolar  
amplifiers have back-to-back diodes between the inputs,  
whichwillturnonwhentheinputtransientvoltageexceeds  
0.7V, causing a large transient current to be conducted  
from the amplifier output stage back into the input driving  
circuitry. The driving circuitry then needs to absorb this  
current and settle before the amplifier can settle. The  
LT6020 uses 5.5V Zener diodes to protect its inputs which  
dramaticallyincreasesitsinputimpedancewithinputsteps  
as large as 5V.  
30  
Achieving Rail-to-Rail Operation without  
Rail-to-Rail Inputs  
A
= 1  
V
25  
20  
15  
10  
5
The LT6020 output is able to swing close to each power  
supply rail, but the input stage is limited to operating  
+
between V + 1.2V and V – 1.4V. For many inverting  
applications and noninverting gain applications, this is  
largely inconsequential. Figure 2 shows the basic op amp  
configurations, what happens to the op amp inputs and  
whether or not the op amp must have rail-to-rail inputs.  
0.0015%  
0.01%  
20  
0
5
10  
15  
25  
The circuit of Figure 3 shows an extreme example of the  
inverting case. The input voltage at the 100k resistor can  
swing 13.5V and the LT6020 will output an inverted,  
OUTPUT STEP (V  
)
P-P  
60201 F01  
Figure 1. Settling Time Is Essentially Flat  
60201fa  
12  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
applicaTions inForMaTion  
V
+
V
+
V
IN  
+
REF  
IN  
R
G
V
IN  
R
F
R
F
60201 F02  
R
G
V
REF  
INVERTING: A = –R /R  
NONINVERTING: A = 1 + R /R  
G
NONINVERTING: A = 1  
V
V
F
G
V
F
OP AMP INPUTS DO NOT MOVE,  
BUT ARE FIXED AT DC BIAS  
INPUTS MOVE BY AS MUCH AS  
INPUTS MOVE BY AS MUCH AS  
OUTPUT  
V
, BUT THE OUTPUT MOVES  
IN  
POINT V  
MORE  
REF  
INPUT MUST BE RAIL-TO-RAIL  
FOR OVERALL CIRCUIT  
RAIL-TO-RAIL PERFORMANCE  
INPUT DOES NOT HAVE TO BE  
RAIL-TO-RAIL  
INPUT MAY NOT HAVE TO BE  
RAIL-TO-RAIL  
Figure 2. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs  
1.5V  
1.ꢀ5V  
OUTPUT  
SWING  
the specified input voltage range as shown in Figure 4.  
Howevertheopenloopgainissignificantlyreduced.While  
the output roughly tracks the input, the reduction in open  
loop gain degrades the accuracy of the LT6020 in this  
region. Exceeding the input common mode range also  
causesasignificantincreaseininputbiascurrentasshown  
in Figure 5. The output of the LT6020 is guaranteed over  
thespecifiedtemperaturerangenottophaseinvertaslong  
as the input voltage does not exceed the supply voltage.  
1ꢀ.5V SWINGS  
WELL OUTSIDE  
SUPPLY RAILS  
+
LT6020  
V
IN  
100k, 0.1%  
10k, 0.1%  
–1.5V  
1880 F0ꢀ  
Figure 3. Extreme Inverting Case: Circuit Operates Properly  
with Input Voltage Swing Well Outside Op Amp Supply Rails  
Preserving Input Precision  
Preserving the input accuracy of the LT6020 requires  
that the application circuit and PC board layout do not  
divided-by-ten version of the input voltage. The output  
accuracy is limited by the resistors to 0.2%. Output  
referred, this error becomes 2.7mV. The 30µV input offset  
voltage contribution, plus the additional error due to input  
bias current times the ~10k effective source impedance,  
contribute only negligibly to error.  
20V  
V
A
= 15V  
= 1  
S
V
INPUT  
+V LIMIT  
CM  
10V  
5V/DIV 0V  
–10V  
OUTPUT  
Phase Inversion  
TheLT6020inputstageislimitedtooperatingbetweenV +  
+
1.2VandV –1.4V.Exceedingthiscommonmoderangewill  
–V LIMIT  
CM  
causetheopenloopgaintodropsignificantly.Foraunitygain  
amplifier, the output roughly tracks the input well beyond  
–20V  
200µs/DIV  
60201 F04  
Figure 4. No Phase Inversion  
60201fa  
13  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
applicaTions inForMaTion  
70  
10pF  
100k  
60  
50  
40  
30  
20  
100k  
LT6020  
C
PAR  
10  
V
OUT  
+
0
V
IN  
60201 F06  
–10  
–20  
–30  
Figure 6. Stability with Parasitic Input Capacitance  
–15  
–10  
–5  
0
5
10  
15  
Capacitive Loads  
INPUT COMMON MODE VOLTAGE (V)  
60201 F05  
The LT6020 can drive capacitive loads up to 100pF in  
unity gain. The capacitive load driving capability increases  
as the amplifier is used in higher gain configurations. A  
small series resistance between the output and the load  
will further increase the amount of capacitance that the  
amplifier can drive.  
Figure 5. Increased Ib Beyond VICM  
introduce errors comparable to or greater than the offset  
of the amplifiers. Temperature differentials across the  
input connections can generate thermocouple voltages of  
tens of microvolts so the connections of the input leads  
should be short, close together and away from heat dis-  
sipating components. Air currents across the board can  
also generate temperature differentials.  
Shutdown Operation (LT6020-1)  
The LT6020-1 shutdown function has been designed  
to be easily controlled from single supply logic or  
As is the case with all amplifiers, a change in load  
current changes the finite open loop gain. Increased load  
current reduces the open loop gain as seen in the Typical  
Performance Characteristics section. This results in a  
changeininputoffsetvoltage.Underlargesignalconditions  
with load currents of 2mA the effective change in input  
error is just tens of microvolts. In precision applications it  
is important to consider amplifier loading when selecting  
feedbackresistorvaluesaswellas theloadsonthedevice.  
microcontollers.ToenabletheLT6020-1whenV  
=0V  
DGND  
the enable pin must be driven above 1.7V. Conversely, to  
enter the low power shutdown mode the enable pin must  
be driven below 0.8V. In a 15V dual supply application  
where V  
= –15V, the enable pin must be driven above  
DGND  
~ –13.3V to enable the LT6020-1. If the enable pin is  
driven below –14.2V the LT6020-1 enters the low power  
shutdown mode. Note that to enable the LT6020-1 the  
enable pin voltage can range from –13.3V to 15V whereas  
to disable the LT6020-1 the enable pin can range from  
–15V to –14.2V. Figure 7 shows examples of enable pin  
control. While in shutdown, the outputs of the LT6020-1  
are high impedance.  
Feedback Components  
Care must be taken to ensure that the pole formed by the  
feedback resistors and the parasitic capacitance at the  
inverting input does not degrade stability. For example, in  
a gain of +2 configuration, with 100k feedback resistors  
and a poorly designed circuit board layout with parasitic  
capacitance of 10pF (amplifier + PC board) at the ampli-  
fier’s inverting input will cause the amplifier to have poor  
phasemarginduetoapoleformedat320kHz.Anadditional  
capacitor of 10pF across the feedback resistor as shown  
in Figure 6 will eliminate any ringing or oscillation.  
The LT6020-1 is typically capable of coming out of  
shutdown within 100µs. This is useful in power sensitive  
applications where duty cycled operation is employed  
such as wireless mesh networks. In these applications the  
system is in low power mode the majority of the time, but  
then needs to wake up quickly and settle for an acquisition  
before being powered back down to save power.  
60201fa  
14  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
applicaTions inForMaTion  
≥ –13.3V  
ON  
≥ 1.7V  
ON  
≥ 1.7V  
ON  
≥ 1.7V  
ON  
≥ 0.2V  
ON  
≤ –14.2V  
OFF  
≤ 0.8V  
OFF  
≤ 0.8V  
OFF  
≤ 0.8V  
OFF  
≤ –0.7V  
OFF  
+15  
+15  
+30  
+3V  
+1.5  
+
+
+
+
+
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
EN  
EN  
EN  
EN  
EN  
+
+
+
+
+
LT6020-1  
LT6020-1  
LT6020-1  
LT6020-1  
LT6020-1  
DGND  
DGND  
DGND  
DGND  
DGND  
–15  
–15  
–1.5  
HIGH VOLTAGE  
SPLIT SUPPLIES  
HIGH VOLTAGE  
SPLIT SUPPLIES  
HIGH VOLTAGE  
SINGLE SUPPLY  
LOW VOLTAGE  
SINGLE SUPPLY  
LOW VOLTAGE  
SPLIT SUPPLIES  
60201 F07  
Figure 7. LT6020-1 Enable Pin Control Examples  
Typical applicaTions  
High Open-Loop Gain Composite Amplifier  
4.7pF  
10k  
270pF  
10k  
V
IN  
+
1/2 LT6020  
+
V
1/2 LT6020  
OUT  
60201 F02a  
Parallel Amplifiers Achieves 32nV/√Hz Noise, Doubles Output Drive and Lowers Offset  
+
V
IN  
1/2 LT6020  
100Ω  
V
OUT  
+
100Ω  
1/2 LT6020  
60201 F02b  
60201fa  
15  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
60201fa  
16  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ±0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
60201fa  
17  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ0 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
60201fa  
18  
For more information www.linear.com/LT6020  
LT6020/LT6020-1  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/14 Added MS8 package version.  
All  
60201fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT6020/LT6020-1  
Typical applicaTion  
Gain of 11 Instrumentation Amplifier  
Improved Load Drive Capability  
+
V
R4, 100k  
R3, 10k  
R2, 10k  
R1, 100k  
2N3904  
+
1k  
V
IN  
V
OUT  
1/2 LT6020  
+
1/2 LT6020  
+
V
LT6020  
OUT  
V
INM  
–3dB BW = 30kHz  
2N3906  
V
INP  
V
R1 TO R4: FOR HIGH DC CMRR USE LT5400-3  
60201 F03a  
60201 F03b  
13.6V Input Range MUX Buffer  
MUX Buffer Response, 12V Step  
1/2 LTC203  
15V  
IN1  
IN2  
S1  
5
+
V
0
15V  
V
IN1  
D1  
D2  
+
–6V  
1/2 LT6020  
V
IN2  
6V  
S2  
GND  
V
15V  
60201 TA03c  
–15V  
relaTeD parTs  
PART NUMBER  
LTC6256  
LT1352  
DESCRIPTION  
COMMENTS  
6.5MHz, 65µA RRIO Op Amp  
3MHz. 200V/µs Op Amp  
5MHz, 3V/µs Op Amp  
V
OS  
V
OS  
V
OS  
: 350µV, GBW: 6.5MHz, SR: 1.8V/µs, e : 20nV/√Hz, I : 65µA  
n S  
: 600µV, GBW: 3MHz, SR: 200V/µs, e : 14nV/√Hz, I : 330µA  
n
S
LT1492  
: 180µV, GBW: 5MHz, SR: 3V/µs, e : 16.5nV/√Hz, I : 550µA  
n S  
LTC5800  
LT5400  
SmartMesh® Wireless Sensor Network I  
Wireless Mesh Networks  
0.01% Matching  
C
Quad Matched Resistor Network  
60201fa  
LT0414 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6020  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LT6020IDD-1#PBF

LT6020/LT6020-1 - Dual Micropower, 5V/&#181;s Precision Rail-to-Rail Output Amplifier; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6020IMS8#PBF

LT6020/LT6020-1 - Dual Micropower, 5V/&#181;s Precision Rail-to-Rail Output Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6020IMS8#TRPBF

LT6020/LT6020-1 - Dual Micropower, 5V/&#181;s Precision Rail-to-Rail Output Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT6020_15

Dual Micropower, 5V/s Precision Rail-to-Rail Output Amplifier
Linear

LT6023

Dual Micropower, 1.4V/μs Precision Rail-to-Rail Output Amplifier
Linear

LT6023-1

Dual Micropower, 1.4V/μs Precision Rail-to-Rail Output Amplifier
Linear

LT6023-1_15

Dual Micropower, 1.4V/s Precision Rail-to-Rail Output Amplifier
Linear

LT6023_15

Dual Micropower, 1.4V/s Precision Rail-to-Rail Output Amplifier
Linear

LT60400-1

Class T Fuse Blocks - 300 and 600 Volt
LITTELFUSE

LT60600-1

Class T Fuse Blocks - 300 and 600 Volt
LITTELFUSE

LT6081CMS8#PBF

IC,OP-AMP,DUAL,CMOS,TSSOP,8PIN,PLASTIC
Linear

LT6082IGN#PBF

IC,OP-AMP,QUAD,CMOS,SSOP,16PIN,PLASTIC
Linear