LT6023-1_15 [Linear]

Dual Micropower, 1.4V/s Precision Rail-to-Rail Output Amplifier;
LT6023-1_15
型号: LT6023-1_15
厂家: Linear    Linear
描述:

Dual Micropower, 1.4V/s Precision Rail-to-Rail Output Amplifier

文件: 总22页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6023/LT6023-1  
Dual Micropower, 1.4V/µs  
Precision Rail-to-Rail  
Output Amplifier  
FEATURES  
DESCRIPTION  
n
Excellent Slew Rate to Power Ratio  
TheLT®6023isalowpower,enhanced slewrate,precision  
operational amplifier. The proprietary circuit topology of  
this amplifier gives excellent slew rate at low quiescent  
power dissipation without compromising precision or  
settling time. In addition, proprietary input stage circuitry  
allows the input impedance to remain high during input  
voltage steps as large as 5V. The combination of preci-  
sion specs along with fast settling makes this part ideal  
for MUX applications.  
n
Slew Rate: ±34V/μs  
n
Maximum Supply Current: 20μA/Amplifier  
n
Maximum Offset Voltage: 10μV  
n
High Dynamic Input Impedance  
n
Fast Recovery from Shutdown  
n
Maximum Input Bias Current: 3nA  
n
No Output Phase Inversion  
n
Gain Bandwidth Product: 40kHz  
n
Wide Specified Supply Range: 3V to 30V  
The low quiescent current of the LT6023 along with its  
ability to operate on supplies as low as 3V make it useful  
in portable systems. The LT6023-1 features a shutdown  
mode which reduces the typical supply current to 800nA.  
n
Operating Temperature Range: –40°C to 125°C  
n
Rail-to-Rail Outputs  
DFN and MS8 Packages  
n
The LT6023 is available in the small 8-lead DFN and 8-lead  
MSOP packages. The LT6023-1 is available in a 10-lead  
DFN package.  
APPLICATIONS  
n
Precision Signal Processing  
L, LT, LTC, LTM, Linear Technology, SmartMesh and the Linear logo are registered trademarks  
and SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Patent Pending.  
n
DAC Amplifier  
n
Multiplexed ADC Applications  
n
Low Power Portable Systems  
n
Low Power Wireless Sensor Networks  
TYPICAL APPLICATION  
±±13.V Input Range MUX Buffer  
MUX Buffer Response, ±2V Step  
1/2 LTC203  
15V  
IN1  
IN2  
S1  
5
+
V
0
15V  
V
IN1  
D1  
D2  
+
–6V  
1/2 LT6023  
V
IN2  
6V  
S2  
2V/DIV  
20µs/DIV  
60231 TA01b  
GND  
V
–15V  
60231 TA01a  
–15V  
60231fa  
1
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
ABSOLUTE MAXIMUM RATINGS  
(Note ±)  
+
Total Supply Voltage (V to V ).................................36V  
Differential Input Voltage (within Supplies)...............36V  
Input Voltage (DGND, EN, +IN, –IN)  
Operating and Specified Temperature Range  
I-Grade.................................................–40°C to 85°C  
H-Grade ............................................ .–40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
(Relative to V ) .....................................................36V  
Input Current (+IN, –IN, DGND, EN) ..................... 10mA  
Output Short-Circuit Duration.......................... Indefinite  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
OUTA  
–INA  
+INA  
1
2
3
4
5
10  
9
V
+
OUTA  
–INA  
+INA  
1
2
3
4
8
7
6
5
V
TOP VIEW  
OUTB  
–INB  
+INB  
EN  
+
OUTB  
–INB  
+INB  
A
OUTA 1  
–INA 2  
8 V  
A
11  
9
8
7 OUTB  
6 –INB  
5 +INB  
B
A
V
7
+INA  
3
4
B
B
V
V
DGND  
6
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
θ
= 163°C/W, θ = 40°C/W  
JC  
JA  
θ
= 43°C/W, θ = 5.5°C/W  
θ
= 43°C/W, θ = 5.5°C/W  
JA  
JC  
JA JC  
EXPOSED PAD (PIN 9) IS CONNECTED TO V (PIN 4)  
(PCB CONNECTION OPTIONAL)  
EXPOSED PAD (PIN 11) IS CONNECTED TO V (PIN 4)  
(PCB CONNECTION OPTIONAL)  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LGRS  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT6023IDD#PBF  
LT6023IDD#TRPBF  
LT6023HDD#TRPBF  
LT6023IDD-1#TRPBF  
LT6023HDD-1#TRPBF  
LT6023IMS8#TRPBF  
LT6023HMS8#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
LT6023HDD#PBF  
LT6023IDD-1#PBF  
LT6023HDD-1#PBF  
LT6023IMS8#PBF  
LT6023HMS8#PBF  
LGRS  
LGRV  
LGRV  
LTGRT  
LTGRT  
8-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
60231fa  
2
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = ±±5V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 5V3 DGND and  
EN specifications only apply to the LT.021-±3  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
DD Packages  
20  
70  
160  
µV  
µV  
OS  
l
MS8 Package  
5
30  
µV  
µV  
l
l
l
160  
∆V  
Input Offset Voltage Drift (Note 2)  
DD Packages  
MS8 Package  
–3.5  
–2.9  
0.9  
0.5  
0.2  
3.5  
2.9  
µV/°C  
µV/°C  
µV/Mo  
OSI  
∆Temp  
∆V  
Long Term Input Offset Voltage Stability  
Input Bias Current  
OSI  
∆Time  
I
–3  
–3  
0.1  
0.1  
3
3
3
nA  
nA  
nA  
B
T = –40° to 85°C  
A
l
l
A
T = –40° to 125°C  
–10  
10  
I
Input Offset Current  
–1  
–1  
–2  
1
1
2
nA  
nA  
nA  
OS  
T = –40° to 85°C  
l
l
A
T = –40° to 125°C  
A
Input Noise Voltage  
0.1Hz to 10Hz  
µV  
P-P  
e
n
Input Noise Voltage Density  
f = 1Hz  
f = 1kHz  
132  
132  
nV/√Hz  
nV/√Hz  
i
Input Noise Current Density  
Input Capacitance  
f = 1kHz  
12.1  
fA/√Hz  
n
C
Common Mode  
Differential Mode  
1.5  
2.5  
pF  
pF  
IN  
R
Input Resistance  
Common Mode  
Differential Mode  
140  
330  
GΩ  
MΩ  
IN  
+
l
l
l
l
l
V
Common Mode Input Range  
V + 1.2  
V – 1.4  
V
ICM  
CMRR  
Common Mode Rejection Ratio  
V
= –13.8V to 13.6V  
120  
116  
136  
140  
114  
134  
180  
dB  
dB  
CM  
PSRR  
Supply Rejection Ratio  
V = 3V to 30V  
S
120  
110  
dB  
dB  
A
Large-Signal Voltage Gain  
R = 10kΩ, V = 14V  
OUT  
110  
100  
dB  
dB  
VOL  
L
R = 100kΩ, V  
= 14.5V  
126  
116  
dB  
dB  
L
OUT  
V
V
Output Swing Low (V  
– V )  
R = 10kΩ  
300  
380  
430  
mV  
mV  
mV  
OL  
OH  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
+
Output Swing High (V – V  
Short-Circuit Current  
)
R = 10kΩ  
115  
5.25  
15  
140  
165  
190  
mV  
mV  
mV  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
I
V
A
= 0V, Sourcing  
OUT  
3
2.5  
2
mA  
mA  
mA  
SC  
l
l
T = –40° to 85°C  
T = –40° to 125°C  
A
V
= 0V, Sinking  
6.5  
4.5  
4
mA  
mA  
mA  
OUT  
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
60231fa  
3
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = ±±5V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 5V3 DGND and  
EN specifications only apply to the LT.021-±3  
SYMBOL PARAMETER  
CONDITIONS  
= 1, 10V Step  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
A
0.85  
0.7  
0.6  
1.4  
V/μs  
V/μs  
V/μs  
VCL  
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
A
A
= 1, 5V Step  
0.3  
0.25  
0.2  
0.65  
V/μs  
V/μs  
V/μs  
VCL  
l
l
T = –40° to 85°C  
T = –40° to 125°C  
A
l
l
GBW  
Gain-Bandwidth Product  
Minimum Supply Voltage  
Supply Current per Amplifier  
f = 1kHz  
29  
3
40  
18  
kHz  
V
Guaranteed by PSRR  
I
20  
28  
40  
μA  
μA  
μA  
S
T = –40° to 85°C  
l
l
A
T = –40° to 125°C  
A
Supply Current in Shutdown  
V
A
= 0.8V  
0.8  
3
3.2  
3.6  
μA  
μA  
μA  
EN  
T = –40° to 85°C  
l
l
T = –40° to 125°C  
A
t
t
Settling Time (A = 1)  
0.1% 5V Output Step  
40  
60  
μs  
μs  
μs  
μs  
s
V
0.01% 5V Output Step  
0.0015% 5V Output Step  
0.0015% 10V Output Step  
124  
132  
Enable Time  
A = 1  
V
480  
µs  
V
ON  
+
l
l
l
l
l
V
DGND Pin Voltage Range  
DGND Pin Current  
V
V – 3  
DGND  
DGND  
EN  
I
I
–200  
–200  
0.8  
nA  
nA  
V
EN Pin Current  
V
V
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
Relative to DGND  
Relative to DGND  
ENL  
ENH  
1.7  
V
60231fa  
4
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 1V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 1V3 DGND and EN  
pin specifications only apply to the LT.021-±3  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
DD Packages  
20  
100  
190  
µV  
µV  
OS  
l
MS8 Package  
5
45  
µV  
µV  
l
l
l
175  
∆V  
Input Offset Voltage Drift (Note 2)  
DD Packages  
MS8 Package  
–3.5  
–2.9  
0.9  
0.5  
0.2  
3.5  
2.9  
µV/°C  
µV/°C  
µV/Mo  
OSI  
∆Temp  
∆V  
Long Term Input Offset Voltage Stability  
OSI  
∆Time  
I
I
Input Bias Current  
1
0.1  
3
nA  
nA  
B
Input Offset Current  
Input Noise Voltage  
Input Noise Voltage Density  
OS  
0.1Hz to 10Hz  
µV  
P-P  
e
f = 1Hz  
f = 1kHz  
132  
132  
nV/√Hz  
nV/√Hz  
n
i
Input Noise Current Density  
Input Capacitance  
f = 1kHz  
12.1  
fA/√Hz  
n
C
Common Mode  
Differential Mode  
1.5  
2.5  
pF  
pF  
IN  
R
Input Resistance  
Common Mode  
Differential Mode  
140  
400  
GΩ  
MΩ  
IN  
+
l
V
Common Mode Input Range  
Common Mode Rejection Ratio  
Supply Rejection Ratio  
V + 1.2  
V – 1.4  
V
ICM  
CMRR  
PSRR  
V
= 1.2V to 1.6V  
125  
140  
dB  
CM  
V = 3V to 30V  
120  
110  
dB  
dB  
S
l
l
A
Large-Signal Voltage Gain  
R = 10kΩ, V = 0.5V to 2.5V  
OUT  
98  
95  
108  
dB  
dB  
VOL  
L
R = 100kΩ, V  
= 0.5V to 2.5V  
136  
60  
dB  
L
OUT  
V
V
Output Swing Low (V  
– V )  
R = 10kΩ  
100  
150  
170  
mV  
mV  
mV  
OL  
OH  
OUT  
L
l
l
T = –40° to 85°C  
A
T = –40° to 125°C  
A
+
Output Swing High (V – V  
Short-Circuit Current  
)
R = 10kΩ  
A
T = –40° to 125°C  
A
60  
3.5  
5
80  
90  
100  
mV  
mV  
mV  
OUT  
L
l
l
T = –40° to 85°C  
I
V
A
= 1.5V, Sourcing  
OUT  
2.5  
2.25  
2
mA  
mA  
mA  
SC  
l
l
T = –40° to 85°C  
T = –40° to 125°C  
A
V
A
= 1.5V, Sinking  
3.5  
2
2
mA  
mA  
mA  
OUT  
l
l
T = –40° to 85°C  
T = –40° to 125°C  
A
SR  
Slew Rate (Note 3)  
A
= –1, 2V Step  
0.05  
40  
V/μs  
kHz  
V
VCL  
GBW  
Gain-Bandwidth Product  
Minimum Supply Voltage  
f = 1kHz  
l
Guaranteed by PSRR  
3
60231fa  
5
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C, VS = 1V, VCM = VOUT = Mid-Supply, VDGND = 0V, VEN = 1V3 DGND and EN  
pin specifications only apply to the LT.021-±3  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Supply Current per Amplifier  
15  
20  
25  
35  
μA  
μA  
μA  
S
T = –40° to 85°C  
A
l
l
A
T = –40° to 125°C  
Supply Current in Shutdown  
V
A
= 0.8V  
0.2  
1.1  
1.5  
3
μA  
μA  
μA  
EN  
T = –40° to 85°C  
l
l
T = –40° to 125°C  
A
t
t
Settling Time (A = –1)  
0.1% 2.4V Output Step  
0.01% 2.4V Output Step  
0.0015% 2.4V Output Step  
85  
μs  
μs  
μs  
s
V
100  
250  
Enable Time  
A = 1  
V
580  
µs  
V
ON  
+
l
V
DGND Pin Voltage Range  
DGND Pin Current  
V
V – 3  
DGND  
DGND  
EN  
I
I
–75  
–75  
nA  
nA  
V
EN Pin Current  
l
l
V
V
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
Relative to DGND  
Relative to DGND  
0.8  
ENL  
ENH  
1.7  
V
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 1: The slew rate of the LT6023 increases with the size of the  
input step. At lower supplies, the input step size is limited by the input  
common mode range. This trend can be seen in the Typical Performance  
Characteristics.  
Note 2: Guaranteed by design.  
60231fa  
6
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, RL = 100kΩ, unless  
otherwise specified.  
Typical Distribution of Input  
Typical Distribution of Input  
Typical Distribution of Input  
Offset Voltage  
Offset Voltage  
Offset Voltage Drift  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
160  
2870 AMPLIFIERS  
DD8 AND DD10 PACKAGES  
215 AMPLIFIERS  
MS8 PACKAGE  
1386 AMPLIFIERS  
MS8 PACKAGE  
140  
120  
100  
80  
60  
40  
20  
0
–30  
–20  
–10  
0
10  
20  
30  
–80 –60 –40 –20  
0
20 40 60 80  
–5 –4 –3 –1  
0
1
3
4
5
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
6023 G01  
6023 G02  
6023 G03  
Typical Distribution of Input  
Offset Voltage Drift  
Offset Voltage Shift vs Lead Free  
IR Reflow  
Typical Input Offset Voltage  
vs Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
160  
120  
80  
210 AMPLIFIERS  
80 AMPLIFIERS  
MS8 PACKAGE  
10 TYPICAL UNITS  
DD PACKAGES  
40  
0
–40  
–80  
–120  
–160  
0
–5 –4 –3 –1  
0
1
3
4
5
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–50 –25  
0
25  
50  
75 100 125  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
INPUT OFFSET VOLTAGE SHIFT (µV)  
TEMPERATURE (°C)  
6023 G04  
6023 G05  
6023 G06  
Offset Voltage vs Input Common  
Mode Voltage  
Offset Voltage vs Supply Voltage  
50  
40  
40  
20  
3 TYPICAL UNITS  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–20  
–40  
0
4
8
12 16 20 24 28 32 36  
–15  
–10  
–5  
0
5
10  
15  
TOTAL SUPPLY VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6023 G07  
6023 G08  
60231fa  
7
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, RL = 100kΩ, unless  
0.1Hz to 10Hz Voltage Noise  
otherwise specified.  
Input Bias Current vs  
Temperature  
Input Bias Current vs Differential  
Input Voltage  
1
0.75  
0.5  
4
3
+
0.25  
0
IB  
IB  
1µV/DIV  
2
1
–0.25  
–0.5  
–0.75  
–1  
0
–1  
1s/DIV  
6
4
2
0
–2  
–4  
–6  
–50 –25  
0
25  
50  
75 100 125  
DIFFERENTIAL INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
6023 G11  
6023 G10  
6023 G09  
Voltage Noise Density vs  
Frequency  
Maximum Undistorted Output  
Amplitude vs Frequency  
Large-Signal Transient Response  
(5V Step)  
1000  
100  
10  
35  
30  
25  
20  
15  
10  
5
A
= 1  
V
V
= ±±V  
10V STEP  
THD < 40dBc  
S
A
= 1  
V
5V STEP  
2V/DIV  
0
50µs/DIV  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.1  
1
10  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
6023 G14  
6023 G12  
6023 G13  
Slew Rate vs Temperature  
(5V Step)  
Slew Rate vs Temperature  
(10V Step)  
Slew Rate vs Input Step  
1
0.75  
0.5  
2
3.5  
3
RISING EDGE  
RISING EDGE  
1.5  
1
FALLING EDGE  
RISING EDGE  
2.5  
2
FALLING EDGE  
FALLING EDGE  
1.5  
1
0.25  
0.5  
0.5  
0
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
0
5
10  
15  
20  
25  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT STEP SIZE (V  
)
P–P  
6023 G15  
6023 G16  
6023 G17  
60231fa  
8
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VS = ±15V, RL = 100kΩ unless  
otherwise specified.  
Small-Signal Transient Response  
Overshoot vs Capacitive Load  
35  
30  
25  
20  
15  
10  
5
A
= 1  
V
330pF  
V
S
= 1ꢀ5V  
2mV/DIV  
100pF  
V
=
15V  
800  
S
0
50µs/DIV  
0
200  
400  
600  
1000  
CAPACITIVE LOAD (pF)  
6023 G18  
6023 G19  
Open-Loop Gain and Phase  
vs Frequency  
PSRR vs Frequency  
CMRR vs Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
–45  
V
= 15V  
S
–90  
–PSRR  
60  
–135  
–180  
–225  
+PSRR  
60  
60  
40  
40  
40  
20  
20  
20  
0
0
0
–20  
10m 100m  
1
10 100 1k 10k 100k  
100m  
1
10  
100  
1k  
10k 100k  
100m  
1
10  
100  
1k  
10k 100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6023 G20  
6023 G21  
6023 G22  
Gain vs Frequency  
Open Loop Gain vs Load  
Output Impedance vs Frequency  
3
0
160  
10k  
1k  
V =±±15  
S
V
OUT  
=
14.5V  
A = 1  
V
150  
140  
130  
120  
100  
10  
–3  
–6  
–9  
–12  
110  
100  
1
90  
80  
C =100p, A =1  
L
V
C =330p, A =1  
L
V
0.1  
C =330p, A =–1  
70  
60  
L
V
0.01  
10  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
6023 G23  
6023 G24  
6023 G25  
60231fa  
9
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VS = ±15V, RL = 100kΩ unless  
otherwise specified.  
Shutdown Supply Current vs  
Temperature  
Supply Current vs Supply Voltage  
Start-Up Response  
40  
35  
30  
25  
20  
15  
10  
5
2
1.5  
1
V
S
20V/DIV  
0V  
+
I
5mA/DIV  
0mA  
V
V
=
=
15V  
S
S
0V  
V
OUT  
2V/DIV  
0.5  
125°C  
85°C  
V
A
V
= ±±0V  
= ±  
IN  
1.5V  
0
S
V
25°C  
= ±V  
–40°C  
0
0
0
5
10  
15  
20  
25  
30  
–50 –25  
25  
50  
75 100 125  
200µs/DIV  
TOTAL SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6023 G26  
6023 G27  
6023 G28  
Output Saturation Voltage vs  
Sink Current (Output Low)  
Output Saturation Voltage vs  
Source Current (Output High)  
Enable/Disable Response  
1
1
V
EN  
5V/DIV  
0V  
+
I
40µA/DIV  
0.1  
0.1  
0µA  
V
OUT  
5V/DIV  
0V  
T
T
T
T
= 125°C  
T
T
T
T
= 125°C  
= 85°C  
= 25°C  
= –40°C  
A
A
A
A
A
A
A
A
= 85°C  
= 25°C  
= –40°C  
0.01  
0.01  
500µs/DIV  
0.1  
1
10  
0.1  
1
10  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
6023 G29  
6023 G30  
6023 G31  
Positive Output Overdrive  
Recovery  
Negative Output Overdrive  
Recovery  
Crosstalk vs Frequency  
0
–20  
INPUT  
–40  
OUTPUT  
5V/DIV  
200mV/DIV  
0V  
–60  
–80  
0V  
OUTPUT  
5V/DIV  
INPUT  
200mV/DIV  
–100  
–120  
–140  
A
= 100  
A = 100  
V
V
10  
100  
1k  
10k  
100k  
1M  
2ms/DIV  
2ms/DIV  
FREQUENCY (Hz)  
6023 G32  
6023 G33  
6023 G34  
60231fa  
10  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
PIN FUNCTIONS  
OUT: Amplifier Output.  
EN (LT6023 -1 Only): Enable Input. This pin must be  
+
connected high, normally to V , for the amplifiers to be  
–IN: Inverting Input of the Amplifier.  
+IN: Noninverting Input of the Amplifier.  
functional. EN is active high with the threshold approxi-  
mately two diodes above DGND. EN cannot be floated.  
The shutdown threshold voltage is specified with respect  
to the voltage on the DGND pin.  
V : Negative Power Supply. A bypass capacitor should be  
used between supply pins and ground. Additional bypass  
capacitance may be used between the power supply pins.  
+
V : Positive Power Supply. A bypass capacitor should be  
used between supply pins and ground. Additional bypass  
capacitance may be used between the power supply pins.  
DGND(LT6023 -1Only):ReferenceforENPin.Itisnormally  
+
tied to ground. DGND must be in the range from V to V  
+
–3V. If grounded, V must be ≥ 3V. The EN pin threshold  
is specified with respect to the DGND pin. DGND cannot  
be floated.  
SIMPLIFIED SCHEMATIC  
+
LT6023-1 ONLY  
V
LOAD  
6k  
2M  
CLASS AB  
DRIVE  
+IN  
EN  
OUT  
6k  
–IN  
2M  
DGND  
V
60231 SS  
60231fa  
11  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
APPLICATIONS INFORMATION  
Preserving Low Power Operation  
200  
150  
100  
50  
A
= 1  
V
The proprietary circuitry used in the LT6023 provides an  
excellent combination of low power, low offset and en-  
hancedslewrate.Normallyanamplifierwithhighersupply  
current would be required to achieve this combination of  
slew rate and precision. Special care must be taken to  
ensure that the low power operation is preserved.  
0.0015%  
0.01%  
The choice of feedback resistor values impacts several  
op-amp parameters as noted in the feedback compo-  
nents section. It should also be noted that the output of  
the amplifier must drive this network. For example, in a  
gain of two with a total feedback resistance of 10kΩ and  
an output voltage of 14V, the amplifier’s output will need  
to supply 1.4mA of current. This current will ultimately  
come from a supply.  
0
5
10  
15  
20  
25  
OUTPUT STEP (V  
)
P-P  
60231 F01  
Figure 1. Settling Time Is Essentially Flat  
will lower the slew rate to 0.02V/µs. Note that for these  
smaller inputs the LT6023 slew rate approaches the slew  
rate more common in traditional micropower amplifiers.  
The supply current of the LT6023 increases with large  
differential input voltages. Normally, this does not impact  
the low power nature of the LT6023 because the ampli-  
fier is forcing the two inputs to be at the same potential.  
Conditionswhichcausedifferentialinputvoltagetoappear  
should be avoided in order to preserve the low power dis-  
sipation of the LT6023. This includes but is not limited  
to: operation as a comparator, excessive loading on the  
output and overdriving the input.  
Input Bias Current  
The design of the input stage of the LT6023 is more so-  
phisticated than that shown in the Simplified Schematic.  
It uses both NPN and PNP input differential amplifiers to  
sense the input differential voltage. As a result the speci-  
fied input bias current may flow in or out of the input pins.  
Multiplexer Applications/High Dynamic Input  
Impedance  
Enhanced Slew Rate  
The LT6023 uses a proprietary input stage which provides  
an enhanced slew rate without sacrificing input precision  
specssuchasinputoffsetvoltage,commonmoderejection  
andnoise.TheuniqueinputstageoftheLT6023allowsthe  
output to quickly slew to its final value when large signal  
input steps are applied. This enhanced slew characteristic  
allows the LT6023 to quickly settle the output to 0.0015%  
independentofinputstepsizeasshowninFigure1.Typical  
micropoweramplifierscannotprocesslargeamplitudesig-  
nals with this speed. As shown in the Typical Performance  
curves, when the LT6023 is configured in unity gain and  
a 10V step is applied to the input the output will slew at  
1.4V/µs. In this same configuration, a 5V input step will  
slewtheoutputat0.65V/µs.Furthermore,a0.7Vinputstep  
The LT6023 has features which make it desirable for  
multiplexer applications, such as the application featured  
on the front page of this data sheet. When the channels of  
the multiplexer are cycled, the output of the multiplexer  
can produce large voltage transitions. Normally, bipolar  
amplifiers have back-to-back diodes between the inputs,  
whichwillturnonwhentheinputtransientvoltageexceeds  
0.7V, causing a large transient current to be conducted  
from the amplifier output stage back into the input driving  
circuitry. The driving circuitry then needs to absorb this  
current and settle before the amplifier can settle. The  
LT6023 uses5.5V Zener diodes to protect its inputs which  
dramaticallyincreasesitsinputimpedancewithinputsteps  
as large as 5V.  
60231fa  
12  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
APPLICATIONS INFORMATION  
V
+
V
+
V
IN  
+
REF  
IN  
R
G
V
IN  
R
F
R
F
60231 F02  
R
G
V
REF  
INVERTING: A = –R /R  
NONINVERTING: A = 1 + R /R  
G
NONINVERTING: A = 1  
V
V
F
G
V
F
OP AMP INPUTS DO NOT MOVE,  
BUT ARE FIXED AT DC BIAS  
INPUTS MOVE BY AS MUCH AS  
INPUTS MOVE BY AS MUCH AS  
OUTPUT  
V
, BUT THE OUTPUT MOVES  
IN  
POINT V  
MORE  
REF  
INPUT MUST BE RAIL-TO-RAIL  
FOR OVERALL CIRCUIT  
RAIL-TO-RAIL PERFORMANCE  
INPUT DOES NOT HAVE TO BE  
RAIL-TO-RAIL  
INPUT MAY NOT HAVE TO BE  
RAIL-TO-RAIL  
Figure 2. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs  
Achieving Rail-to-Rail Operation without  
accuracyislimitedbytheresistorsshownto0.2%. Output  
referred, this error becomes 2.7mV. The 30µV input offset  
voltage contribution, plus the additional error due to input  
bias current times the ~10k effective source impedance,  
contribute only negligibly to error.  
Rail-to-Rail Inputs  
The LT6023 output is able to swing close to each power  
supply rail, but the input stage is limited to operating  
+
between V + 1.2V and V – 1.4V. For many inverting  
applications and noninverting gain applications, this is  
largely inconsequential. Figure 2 shows the basic op amp  
configurations, what happens to the op amp inputs and  
whether or not the op amp must have rail-to-rail inputs.  
Phase Inversion  
TheLT6023inputstageislimitedtooperatingbetweenV +  
+
1.2VandV –1.4V.Exceedingthiscommonmoderangewill  
causetheopenloopgaintodropsignificantly.Foraunitygain  
amplifier, the output roughly tracks the input well beyond  
the specified input voltage range as shown in Figure 4.  
The circuit of Figure 3 shows an extreme example of the  
inverting case. The input voltage at the 100k resistor can  
swing 13.5V and the LT6023 will output an inverted,  
divided-by-ten version of the input voltage. The output  
20V  
V
A
=
= 1  
15V  
S
V
INPUT  
1.5V  
1.ꢀ5V  
OUTPUT  
SWING  
+V LIMIT  
CM  
1ꢀ.5V SWINGS  
WELL OUTSIDE  
SUPPLY RAILS  
10V  
5V/DIV 0V  
–10V  
OUTPUT  
+
LT602ꢀ  
V
IN  
100k, 0.1%  
–V LIMIT  
CM  
10k, 0.1%  
–1.5V  
–20V  
602ꢀ1 F0ꢀ  
2ms/DIV  
60231 F04  
Figure 3 . Extreme Inverting Case: Circuit Operates Properly  
with Input Voltage Swing Well Outside Op Amp Supply Rails  
Figure 4. No Phase Inversion  
60231fa  
13  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
APPLICATIONS INFORMATION  
7
changeininputoffsetvoltage.Underlargesignalconditions  
with load currents of 1mA the effective change in input  
error is just tens of microvolts. In precision applications it  
is important to consider amplifier loading when selecting  
feedbackresistorvaluesaswellas theloadsonthedevice.  
6
5
4
3
2
1
Feedback Components  
0
Care must be taken to ensure that the phase shift formed  
by the feedback resistors and the parasitic capacitance at  
theinvertinginputdoesnotdegradestability.Forexample,  
in a gain of +2 configuration, with 1M feedback resistors  
and a poorly designed circuit board layout with parasitic  
capacitance of 10pF (amplifier + PC board) at the ampli-  
fier’s inverting input will cause the amplifier to have poor  
phase margin due to a pole formed at 32kHz. An additional  
capacitor of 10pF across the feedback resistor as shown  
in Figure 6 will eliminate any ringing or oscillation.  
–1  
–2  
–3  
–15  
–10  
–5  
0
5
10  
15  
INPUT COMMON MODE VOLTAGE (V)  
60231 F05  
Figure 5. Increased Ib Beyond VICM  
Howevertheopenloopgainissignificantlyreduced.While  
the output roughly tracks the input, the reduction in open  
loop gain degrades the accuracy of the LT6023 in this  
region. Exceeding the input common mode range also  
causesasignificantincreaseininputbiascurrentasshown  
in Figure 5. The output of the LT6023 is guaranteed over  
thespecifiedtemperaturerangenottophaseinvertaslong  
as the input voltage does not exceed the supply voltage.  
10pF  
1M  
Preserving Input Precision  
1M  
LT6023  
C
PAR  
V
OUT  
Preserving the input accuracy of the LT6023 requires  
that the application circuit and PC board layout do not  
introduce errors comparable to or greater than the offset  
of the amplifiers. Temperature differentials across the  
input connections can generate thermocouple voltages of  
tens of microvolts so the connections of the input leads  
should be short, close together and away from heat dis-  
sipating components. Air currents across the board can  
also generate temperature differentials.  
+
V
IN  
60231 F06  
Figure 6. Stability with Parasitic Input Capacitance  
Capacitive Loads  
The LT6023 can drive capacitive loads up to 100pF in  
unity gain. The capacitive load driving capability increases  
as the amplifier is used in higher gain configurations. A  
small series resistance between the output and the load  
will further increase the amount of capacitance that the  
amplifier can drive.  
As is the case with all amplifiers, a change in load  
current changes the finite open loop gain. Increased load  
current reduces the open loop gain as seen in the Typical  
Performance Characteristics section. This results in a  
60231fa  
14  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
APPLICATIONS INFORMATION  
Shutdown Operation (LT6023 -1)  
to disable the LT6023-1 the enable pin can range from  
–15V to –14.2V. Figure 7 shows examples of enable pin  
control. While in shutdown, the outputs of the LT6023-1  
are high impedance.  
The LT6023-1 shutdown function has been designed  
to be easily controlled from single supply logic or  
microcontollers.ToenabletheLT6023-1whenV  
=0V  
DGND  
the enable pin must be driven above 1.7V. Conversely, to  
enter the low power shutdown mode the enable pin must  
be driven below 0.8V. In a 15V dual supply application  
The LT6023-1 is typically capable of coming out of  
shutdown within 480µs. This is useful in power sensitive  
applications where duty cycled operation is employed  
such as wireless mesh networks. In these applications the  
system is in low power mode the majority of the time, but  
then needs to wake up quickly and settle for an acquisition  
before being powered back down to save power.  
where V  
= –15V, the enable pin must be driven above  
DGND  
~ –13.3V to enable the LT6023-1. If the enable pin is  
driven below –14.2V the LT6023-1 enters the low power  
shutdown mode. Note that to enable the LT6023-1 the  
enable pin voltage can range from –13.3V to 15V whereas  
≥ –13.3V  
ON  
≥ 1.7V  
ON  
≥ 1.7V  
ON  
≥ 1.7V  
ON  
≥ 0.2V  
ON  
≤ –14.2V  
OFF  
≤ 0.8V  
OFF  
≤ 0.8V  
OFF  
≤ 0.8V  
OFF  
≤ –0.7V  
OFF  
+15  
+15  
+30  
+3V  
+1.5  
+
+
+
+
+
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
TO V OR  
EN LOGIC  
EN  
EN  
EN  
EN  
EN  
+
+
+
+
+
LT6023-1  
LT6023-1  
LT6023-1  
LT6023-1  
LT6023-1  
DGND  
DGND  
DGND  
DGND  
DGND  
–15  
–15  
–1.5  
HIGH VOLTAGE  
SPLIT SUPPLIES  
HIGH VOLTAGE  
SPLIT SUPPLIES  
HIGH VOLTAGE  
SINGLE SUPPLY  
LOW VOLTAGE  
SINGLE SUPPLY  
LOW VOLTAGE  
SPLIT SUPPLIES  
60231 F07  
Figure 7. LT6023 -1 Enable Pin Control Examples  
60231fa  
15  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL APPLICATIONS  
High Open-Loop Gain Composite Amplifier  
4.7pF  
10k  
680pF  
10k  
V
IN  
+
1/2 LT6023  
+
V
1/2 LT6023  
OUT  
60231 F02a  
Parallel Amplifiers Achieves 93 nV/√Hz Noise, Doubles Output Drive and Lowers Offset  
+
V
IN  
1/2 LT6023  
100Ω  
V
OUT  
+
100Ω  
1/2 LT6023  
60231 F02b  
60231fa  
16  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
TYPICAL APPLICATIONS  
Micropower Reference Divider/Buffer  
12V  
+
R5  
49.9Ω  
4.096V  
C6  
10µF  
1/2 LT6023  
C5  
0.1µF  
R6  
49.9k  
LT6656-4.096  
IN OUT  
R2*  
100k  
C1  
0.1µF  
C2  
1µF  
GND  
+
R7  
49.9Ω  
R1*  
100k  
2.048V  
C4  
10µF  
1/2 LT6023  
C3  
0.1µF  
R3*  
100k  
*LT5400-2  
R4*  
100k  
60231 F02c  
60231fa  
17  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
60231fa  
18  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ±0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
60231fa  
19  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ0 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
60231fa  
20  
For more information www.linear.com/LT6023  
LT6023/LT6023-1  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/15 Updated typical slew rate to be consistent throughout the data sheet  
Corrected negative supply voltage on front page circuit  
1, 4  
1
Corrected Input Bias Current vs. Differential Input Voltage graph  
8
60231fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
21  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LT6023/LT6023-1  
TYPICAL APPLICATION  
Gain of 11 Instrumentation Amplifier  
Improved Load Drive Capability  
+
V
R4, 100k  
R3, 10k  
R2, 10k  
R1, 100k  
2N3904  
+
1k  
V
IN  
V
OUT  
1/2 LT6023  
+
1/2 LT6023  
+
V
LT6023  
OUT  
V
INM  
–3dB BW = 6kHz  
2N3906  
V
INP  
V
R1 TO R4: FOR HIGH DC CMRR USE LT5400-3  
60231 TA03a  
60231 TA03b  
16-Bit DAC with ±1ꢀV Output Swing  
2ꢀV Output Step Response  
LTC6652-2.5  
3.8V TO 5.5V  
DC  
DC  
IN  
OUT  
1µF  
0.1µF  
GND  
0.1µF  
V
OUT  
5V/DIV  
V
LTC2642  
REF  
DD  
R
FB  
15V  
INV  
60231 TA03d  
200µs/DIV  
V
1/2 LT6023  
OUT  
V
OUT  
+
POWER-ON  
RESET  
16-BIT DAC  
–15V  
+
CS  
16-BIT DATA LATCH  
SCLK  
DIN  
1/2 LT6023  
CONTROL  
LOGIC  
LT5400-2  
100kΩ MATCHED  
CLR  
16-BIT SHIFT REGISTER  
RESISTOR NETWORK  
GND  
60231 TA03c  
RELATED PARTS  
PART NUMBER  
LT6004  
DESCRIPTION  
COMMENTS  
2kHz, 1µA RRIO Op Amp  
V
OS  
V
OS  
V
OS  
V
OS  
V
OS  
V
OS  
V
OS  
V
OS  
: 500µV, GBW: 2kHz, SR: 0.8V/ms, e : 325nV/√Hz, I : 1µA  
n s  
LT1490A  
LTC6256  
LT6020  
200kHz, 50µA RRIO Op Amp  
6.5MHz, 65µA RRIO Op Amp  
400kHz, 100µA, 5V/µs Op Amp  
500kHz, 150µA Zero-Drift Op Amp  
: 500µV, GBW: 200kHz, SR: 0.06V/µs, e : 50nV/√Hz, I : 50µA  
n s  
: 350µV, GBW: 6.5MHz, SR: 1.8V/µs, e : 20nV/√Hz, I : 65µA  
n
s
: 30µV, GBW: 400kHz, SR: 5V/µs, e : 46nV/√Hz, I : 100µA  
n
s
LTC2055  
LT1783  
: 3µV, GBW: 500kHz, SR: 0.5V/µs, I : 150µA  
s
1.2MHz, 230µA Over-The-Top RRIO Op Amp  
3MHz. 200V/µs Op Amp  
: 600µV, GBW: 1.2MHz, SR: 0.4V/µs, e : 20nV/√Hz, I : 230µA  
n s  
LT1352  
: 600µV, GBW: 3MHz, SR: 200V/µs, e : 14nV/√Hz, I : 330µA  
n s  
LT1492  
5MHz, 3V/µs Op Amp  
: 180µV, GBW: 5MHz, SR: 3V/µs, e : 16.5nV/√Hz, I : 550µA  
n s  
LTC5800  
LT5400  
SmartMesh® Wireless Sensor Network I  
Wireless Mesh Networks  
0.01% Matching  
C
Quad Matched Resistor Network  
60231fa  
LT 0415 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LT6023  
LINEAR TECHNOLOGY CORPORATION 2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY