LT3763 [Linear]

60V High Current Step-Down LED Driver Controller Accurately Control Input and Output Current; 60V高电流降压型LED驱动器控制器精确控制输入和输出电流
LT3763
型号: LT3763
厂家: Linear    Linear
描述:

60V High Current Step-Down LED Driver Controller Accurately Control Input and Output Current
60V高电流降压型LED驱动器控制器精确控制输入和输出电流

驱动器 控制器
文件: 总28页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3763  
60V High Current  
Step-Down LED Driver Controller  
FeaTures  
DescripTion  
TheLT®3763isafixedfrequency,synchronous,step-down  
DC/DC controller designed to accurately regulate output  
currents up to 20A. The average current mode control-  
ler will maintain inductor current regulation over a wide  
output voltage range from 0V to 55V. Output current is  
set by analog voltages on the CTRL pins and an external  
sense resistor. Voltage regulation and overvoltage protec-  
tion are set with a voltage divider from the output to the  
FB pin. The switching frequency is programmable from  
200kHz to 1MHz through an external resistor on the RT  
pin or with the SYNC pin and an external clock signal.  
Input and output current sensing provides input current  
limiting and an accurate measurement of these currents.  
The FBIN pin is provided for applications requiring a peak  
power tracking function.  
n
Accurately Control Input and Output Current  
n
3000:1 True Color PWM™ Dimming  
n
±1ꢀ.5 ꢁoltage Regulation Accuracy  
n
±±5 Current Regulation Accuracy  
n
6V to 60V Input Voltage Range  
n
Wide Output Range Up to 55V  
n
<2µA Shutdown Current  
n
Control Pin for Thermal Control of Load Current  
n
Input and Output Current Monitor and Limit  
n
Open, Short, and C/10 Fault Detection  
n
PWM Driver Output for LED Applications  
n
Thermally Enhanced 28-Lead FE Package  
applicaTions  
n
High Power Architectural Lighting  
n
Automotive Lighting  
Additional features include an accurate external reference  
voltage for use with the CTRL pins, an accurate UVLO/  
EN pin that allows for programmable UVLO hysteresis,  
n
Aviation and Marine Strobe Lights  
Solar-Powered Chargers, Laser Diodes  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and True  
Color PWM is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 7199560, 7321203 and  
others pending.  
a PWM driver for LED applications, output voltage fault  
detection, and thermal shutdown.  
Typical applicaTion  
20A, Pulse Width Modulated, Single LED Driver  
2.5mΩ  
V
IN  
10V TO 30V  
100µF  
84.5k  
15.4k  
1µF  
1k  
1k  
4.7µF  
PWM Dimming  
V
IVINP  
EN/UVLO  
IVINN  
IN  
TG  
220nF  
V
REF  
V
PWM  
OUT  
6V, 20A MAXIMUM  
2.2µF  
BOOST  
SW  
45.3k  
1.5µH  
2.5mΩ  
10Ω  
10V/DIV  
LT3763  
CTRL2  
CTRL1  
220µF  
×2  
V
SW  
50V/DIV  
INTV  
CC  
470k  
47.5kΩ  
22µF  
33nF  
10Ω  
I
L
BG  
50k  
5A/DIV  
GND  
FBIN  
+
SENSE  
50Ω  
50Ω  
3763 TA01b  
5µs/DIV  
IVINMON  
1nF  
1nF  
SENSE  
PWMOUT  
ISMON  
PWM  
47.5k  
FAULT  
SYNC  
RT  
FB  
SS  
V
C
12.1k  
82.5k  
10nF  
59k  
4.7nF  
3763 TA01  
3763f  
1
LT3763  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
V , EN/UVLO, IVINP, and IVINN...............................60V  
IN  
1
2
GND  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
BG  
INTV  
+
SENSE and SENSE .................................................60V  
CTRL1, CTRL2, FB, and FBIN ......................................3V  
SYNC and PWM..........................................................6V  
BOOST  
SW  
CC  
3
V
IN  
4
TG  
EN/UVLO  
INTV and FAULT.......................................................6V  
CC  
5
PWM_OUT  
GND  
V
REF  
V , RT, and SS ............................................................3V  
C
REF  
6
IVINN  
IVINP  
IVINMON  
FAULT  
FBIN  
V
, IVINMON, and ISMON........................................3V  
7
PWM  
SYNC  
RT  
29  
GND  
SW............................................................................60V  
BOOST ......................................................................66V  
BOOST-SW..................................................................6V  
Operating Junction Temperature (Notes 2, 3)  
LT3763E/LT3763I .............................. –40°C to 125°C  
LT3763H ............................................ –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
8
9
10  
11  
12  
13  
14  
ISMON  
V
C
FB  
+
SENSE  
GND  
SENSE  
CTRL2  
CTRL1  
SS  
FE PACKAGE  
28-LEAD PLASTIC TSSOP  
θ
= 30°C/W  
JA  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LT3763EFE#PBF  
LT3763IFE#PBF  
LT3763HFE#PBF  
TAPE AND REEL  
PART MARKING*  
LT3763FE  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3763EFE#TRPBF  
LT3763IFE#TRPBF  
LT3763HFE#TRPBF  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
LT3763FE  
LT3763FE  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 2.°Cꢀ ꢁIN = 12, EN/UꢁLO = .ꢁ unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
6
TYP  
MAX  
60  
UNITS  
Input Voltage Range  
Supply Undervoltage Lockout  
V
V
From Low to High  
3.75  
4.0  
4.25  
V
Pin Quiescent Current  
Non-Switching Operation  
Shutdown Mode  
IN  
V
V
= 1.4V, Not Switching  
= 0V  
1.7  
0.2  
3.5  
2
mA  
µA  
EN/UVLO  
EN/UVLO  
EN/UVLO Pin Threshold (Falling Edge)  
EN/UVLO Hysteresis  
1.47  
1.4  
1.52  
185  
5
1.57  
V
mV  
µA  
EN/UVLO Pin Current  
EN/UVLO = 1.4V, V = 6V  
IN  
SYNC Pin Threshold (Falling Edge)  
SYNC Pin Hysteresis  
1.5  
675  
1.6  
V
mV  
3763f  
2
LT3763  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 2.°Cꢀ ꢁIN = 12, EN/UꢁLO = .ꢁ unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.5  
675  
20  
MAX  
UNITS  
V
PWM Pin Threshold (Falling Edge)  
PWM Pin Hysteresis  
CTRL1 Pin Current  
CTRL2 Pin Current  
Reference  
1.4  
1.6  
mV  
nA  
V
V
= 1.5V  
CTRL1  
= 1.5V, V  
= 1.5V, V  
= 2V  
FBIN  
100  
nA  
CTRL1  
CTRL2  
l
l
Reference Voltage (V pin)  
1.94  
48  
2
2.06  
54  
V
REF  
Inductor Current Sensing  
+
Full Range SENSE to SENSE  
V
CTRL1  
V
SENSE  
V
SENSE  
= 2V, V  
> 2V, V = V  
= 2V, V = 1.2V  
51  
mV  
µA  
µA  
CTRL2  
SS  
FBIN  
C
+
+
SENSE Pin Current  
= V  
= V  
= 4V  
–20  
–40  
SENSE  
+
SENSE Pin Current  
= 4V, V  
= 1.5V  
CTRL1  
SENSE  
Internal ꢁ Regulator (INTꢁ Pin)  
CC  
CC  
l
Regulation Voltage  
I
= 10mA  
4.8  
5
5.2  
V
LOAD  
Current Limit  
V
= 0V  
60  
mA  
INTVCC  
NMOS FET Driver  
Non-Overlap Time TG to BG  
Non-Overlap Time BG to TG  
Minimum On-Time BG  
Minimum On-Time TG  
Minimum Off-Time BG  
42  
44  
ns  
ns  
ns  
ns  
ns  
(Note 4)  
(Note 4)  
(Note 4)  
50  
55  
140  
High Side Driver Switch On-Resistance  
Gate Pull-Up  
V
– V = 5V  
CBOOST  
SW  
2.2  
1.3  
Ω
Ω
Gate Pull-Down  
Low Side Driver Switch On-Resistance  
Gate Pull-Up  
V
= 5V  
INTVCC  
2.2  
1
Ω
Ω
Gate Pull-Down  
l
Switching Frequency  
R = 40.2kΩ  
T
930  
180  
1000  
200  
1070  
220  
kHz  
kHz  
T
R = 200kΩ  
Soft-Start  
Charging Current  
ꢁoltage Regulation Amplifier  
Input Bias Current  
11  
µA  
V
V
= 1.3V  
750  
850  
nA  
µA/V  
V
FB  
g
m
+
l
l
l
Feedback Regulation Voltage  
FAULT Comparator  
= V  
= V = 2V  
CTRL1  
1.188  
1.137  
0.24  
1.206  
1.224  
1.183  
0.26  
SENSE  
SENSE  
Upper FAULT Threshold (FB Rising)  
Upper FAULT Threshold Hysteresis  
Lower FAULT Threshold (FB Falling)  
Lower FAULT Threshold Hysteresis  
FAULT Pull-Down Current  
Input ꢁoltage Regulation  
FBIN Pin Current  
1.16  
40  
V
mV  
V
0.25  
40  
mV  
mA  
V
V
= 2V, V = 0V  
8
FAULT  
FB  
= 1.5V  
150  
nA  
FBIN  
Sense Voltage  
V
FBIN  
V
FBIN  
= 1.22V, V  
= 1.26V, V  
= 4V  
= 4V  
10  
45  
mV  
mV  
SENSE  
SENSE  
+
(V  
– V  
)
SENSE  
SENSE  
3763f  
3
LT3763  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 2.°Cꢀ ꢁIN = 12, EN/UꢁLO = .ꢁ unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Current Monitor  
Sense Voltage  
V
V
Regulated to 1V, V  
= 10V  
45  
5
50  
10  
55  
15  
mV  
mV  
ISMON  
ISMON  
SENSE  
+
(V  
– V  
)
Regulated to 200mV, V  
= 10V  
SENSE  
SENSE  
SENSE  
Input Current Monitor  
+
Sense Voltage  
V
V
Regulated to 1V, V  
= 12V  
46  
6
50  
10  
54  
14  
mV  
mV  
IVINMON  
IVINMON  
IVIN  
+
+
(V  
– V  
)
Regulated to 200mV, V  
= 12V  
IVIN  
IVIN  
IVIN  
l
Input Current Limit Sense Voltage  
45  
50  
55  
mV  
+
(V  
– V  
)
IVIN  
IVIN  
PWM Driver  
PWM_OUT Driver On-Resistance  
Gate Pull-Up  
V
V
= 5V  
INTVCC  
2.2  
0.9  
Ω
Ω
Gate Pull-Down  
PWM to PWM_OUT Propagation Delay  
= 5V  
INTVCC  
Rising  
Falling  
11  
38  
ns  
ns  
Current Control Loop g Amp  
m
l
Offset Voltage  
V
SENSE  
= 4V, V  
= 0V, V = 2V  
CTRL2  
–3  
0
3
mV  
CTRL1  
Input Common Mode Range  
V
V
(Note 5)  
V
0
1.4  
V
V
CM(LOW)  
CM(HIGH)  
+
Measured from V to V , V  
= V  
SENSE  
CM(HIGH)  
IN  
CM SENSE  
Output Impedance  
3.5  
475  
1.7  
MΩ  
µA/V  
V/mV  
l
g
375  
625  
m
Differential Gain  
Overvoltage  
FB Overvoltage Protection (V Maximum)  
1.515  
85  
V
FB  
Overcurrent  
Overcurrent Protection  
V
SENSE  
= 0V, R = 200kΩ, V = 1.2V  
mV  
T
VC  
+
(V  
– V  
Maximum)  
SENSE  
SENSE  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3763E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT3763I is guaranteed to meet performance specifications over the  
–40°C to 125°C operating junction temperature range. The LT3763H is  
Note 3: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. The maximum  
rated junction temperature will be exceeded when this protection is active.  
Continuous operation above the specified absolute maximum operating  
junction temperature may impair device reliability or permanently damage  
the device.  
Note 4: The minimum on- and off-times are guaranteed by design and are  
not tested.  
Note .: The minimum common mode voltage is guaranteed by design and  
is not tested.  
guaranteed over the –40°C to 150°C operating junction temperature range.  
High junction temperatures degrade operating lifetimes; operating lifetime  
is derated for junction temperatures greater than 125°C.  
3763f  
4
LT3763  
Typical perForMance characTerisTics  
EN/UꢁLO Threshold (Falling)  
EN/UꢁLO Current  
Quiescent Current (Shutdown)  
6.0  
5.5  
5.0  
4.5  
4.0  
10000  
1000  
100  
10  
1.70  
1.64  
1.58  
1.52  
1.46  
1.40  
6V  
12V  
60V  
IN  
IN  
IN  
1
0.1  
0.01  
0.001  
6
24  
42  
60  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
6
24  
42  
60  
V
(V)  
V
(V)  
IN  
IN  
3763 G02  
3763 G03  
3763 G01  
Quiescent Current (Non-Switching)  
REF ꢁoltage  
REF Current Limit  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
3.0  
2.5  
2.0  
1.5  
2.03  
2.02  
2.01  
2.00  
1.99  
6V  
12V  
60V  
IN  
IN  
IN  
T
T
T
= 150°C  
= 25°C  
= –50°C  
T
T
T
= 150°C  
= 25°C  
= –50°C  
A
A
A
A
A
A
6
24  
42  
60  
6
24  
42  
60  
–50 –25  
0
25 50 75 100 125 150  
V
IN  
(V)  
V
(V)  
TEMPERATURE (°C)  
IN  
3763 G04  
3763 G06  
3763 G05  
INTꢁCC Current Limit  
RT Current Limit  
SS Current  
16  
14  
12  
10  
8
70  
64  
58  
52  
46  
40  
6
5
4
3
2
1
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
(mA)  
INTVCC  
3763 G09  
3763 G07  
3763 G08  
3763f  
5
LT3763  
Typical perForMance characTerisTics  
IN UꢁLO  
BOOST – ꢁSW UꢁLO Thresholds  
INTꢁCC UꢁLO  
6.0  
5.0  
4.0  
3.0  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
4.5  
4.0  
3.5  
3.0  
2.5  
6V  
12V  
60V  
IN  
IN  
IN  
RISING  
FALLING  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3763 G11  
3763 G10  
3763 G12  
INTꢁCC Load Regulation  
Overvoltage Threshold  
Overvoltage Timeout  
14  
13  
12  
11  
10  
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
5.10  
5.05  
5.00  
4.95  
4.90  
–50 –25  
0
25 50 75 100 125 150  
0
10  
20  
30  
40  
50  
60  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
(mA)  
INTVCC  
3763 G14  
3763 G15  
3763 G13  
Overcurrent Threshold  
Regulated Current vs ꢁFB  
Maximum Output ꢁoltage  
100  
80  
60  
40  
20  
0
125  
100  
75  
50  
25  
0
150  
100  
50  
0
–50  
–50 –25  
0
25 50 75 100 125 150  
0
0.5  
1.0  
– V  
1.5  
(V)  
2.0  
2.5  
1.16  
1.17  
1.18  
V
1.19  
(V)  
1.20  
1.21  
TEMPERATURE (°C)  
V
FB  
IN  
OUT  
3763 G16  
3763 G17  
3763 G18  
3763f  
6
LT3763  
Typical perForMance characTerisTics  
TG Driver RDS(ON)  
BG Driver RDS(ON)  
Nonoverlap Time  
4
3
2
1
0
4
3
2
1
0
80  
60  
40  
20  
0
PULL-UP  
PULL-UP  
BG TO TG  
TG TO BG  
PULL-DOWN  
PULL-DOWN  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3763 G19  
3763 G20  
3763 G21  
Minimum On-Time  
Oscillator Frequency  
Minimum Off-Time  
200  
160  
120  
80  
80  
60  
40  
20  
0
1.2  
0.9  
0.6  
0.3  
0
1MHz  
HG  
LG  
LG  
HG  
500kHz  
200kHz  
40  
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3763 G22  
3763 G23  
3763 G24  
Current Regulation Accuracy  
Current Regulation Accuracy  
Regulated Sense ꢁoltage  
60  
50  
1.0  
0.5  
1.0  
0.5  
V
V
= 1.5V  
V
V
= 0.75V  
CTRL1  
IN  
CTRL1  
IN  
= 12V  
= 12V  
40  
30  
0
0
20  
10  
0
–0.5  
–1.0  
–0.5  
–1.0  
0
0.5  
1.0  
1.5  
2.0  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
V
(V)  
CTRL1  
OUT  
OUT  
3763 G25  
3763 G26  
3763 G27  
3763f  
7
LT3763  
Typical perForMance characTerisTics  
PWM Driver RDS(ON)  
PWM Driver Delay  
C/10 Threshold  
4
3
2
1
0
50  
40  
30  
20  
10  
0
20  
15  
10  
5
FALLING  
PULL-UP  
RISING  
FALLING  
RISING  
PULL-DOWN  
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3763 G28  
3763 G29  
3763 G30  
FAULT Threshold  
FAULT Hysteresis  
Output Current Sense  
1.6  
1.2  
0.8  
0.4  
0
75  
50  
25  
0
2.0  
1.5  
1.0  
0.5  
0
UPPER  
LOWER  
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
0
25 50 75 100 125 150  
0
25  
V
50  
– V  
75  
(mV)  
100  
+
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SENSE  
SENSE  
3763 G33  
3763 G31  
3763 G32  
Input Current Sense  
Input Current Limit  
Output ꢁoltage Load Regulation  
2.0  
1.5  
1.0  
0.5  
0
55  
53  
51  
49  
47  
45  
8
6
4
2
0
V
V
= 12V  
IN  
= 5V  
OUT  
LIMIT  
I
= 20A  
0
25  
50  
– V  
75  
100  
–50 –25  
0
25 50 75 100 125 150  
0
6
12  
18  
24  
V
(mV)  
I
(A)  
TEMPERATURE (°C)  
IVINP  
IVINN  
LOAD  
3763 G34  
3763 G36  
3763 G35  
3763f  
8
LT3763  
Typical perForMance characTerisTics  
Output ꢁoltage Load Regulation  
Efficiency vs Load Current  
Efficiency vs Load Current  
32  
24  
16  
8
100  
95  
90  
85  
80  
100  
95  
90  
85  
80  
V
V
LIMIT  
= 48V  
IN  
= 24V  
= 10A  
OUT  
I
V
V
= 48V  
OUT  
V
V
= 12V  
= 5V  
IN  
IN  
OUT  
= 24V  
0
0
3
6
9
12  
0
6
12  
18  
24  
0
3
6
9
12  
I
(A)  
I
(A)  
I
(A)  
LOAD  
LOAD  
LOAD  
3763 G38  
3763 G39  
3763 G37  
Shutdown and Recovery  
1.A Load Step  
V
OUT  
V
OUT  
5V/DIV  
20mV/DIV  
SS  
AC-COUPLED  
2V/DIV  
EN/UVLO  
5V/DIV  
I
L
10A/DIV  
I
L
5A/DIV  
3763 G40  
3763 G41  
1ms/DIV  
500µs/DIV  
Solar Powered SLA Battery  
Charging  
PWM Dimming  
FAULT  
10V/DIV  
I
L
V
IN  
500mA/DIV  
500mV/DIV  
AC-COUPLED  
V
SW  
50V/DIV  
I
L
2A/DIV  
PWM  
10V/DIV  
V
OUT  
50mV/DIV  
AC-COUPLED  
3763 G42  
3763 G43  
10µs/DIV  
50s/DIV  
3763f  
9
LT3763  
pin FuncTions  
BG (Pin 1): BG is the bottom FET gate drive signal that  
controls the state of the external low side power FET. The  
driver pull-up impedance is 2.2Ω, and pull-down imped-  
ance is 1Ω. Do not force any voltage on this pin.  
IꢁINP (Pin 7): IVINP is the noninverting input of the input  
current sense amplifier. This pin connects to the input  
supply V and the input current sense resistor.  
IN  
IꢁINMON (Pin 8): IVINMON is the buffered output of the  
input current sense amplifier. This pin enables monitoring  
of the averaged supply current with an output voltage of  
INTꢁ (Pin 2): The INTV pin provides a regulated 5V  
CC  
CC  
outputforchargingtheBOOSTcapacitor. INTV alsopro-  
CC  
vides the power for the digital and switching subcircuits.  
20 • (V  
– V  
). The capacitive loading to this pin  
IVINP  
IVINN  
Do not force any voltage on this pin. Bypass with at least  
should be less than 1nF.  
a 22µF capacitor to ground. INTV is current-limited to  
CC  
FAULT (Pin 9): Output Voltage Fault Detection Pin for  
Shorted or Open LEDs. Internal comparators pull down  
this pin when the FB pin voltage is lower than 0.25V or  
higher than 1.16V and when the inductor current is less  
than ten percent of the maximum value. This pin should  
50mA. Shutdown operation disables the output voltage  
drive.  
(Pin 3): Input Supply Pin. Must be locally bypassed  
IN  
with at least a 4.7µF low ESR capacitor to ground as close  
as possible to the exposed pad of the package.  
be pulled up to INTV with a resistance higher than 10k.  
CC  
EN/UꢁLO (Pin 4): Enable Pin. The EN/UVLO pin acts as  
an enable pin and turns on the internal current bias core  
and sub-regulators at 1.705V and turns off at 1.52V. The  
pin does not have any pull-up or pull-down, requiring a  
voltage bias for normal operation. Full shutdown occurs  
at approximately 0.5V. If unused, the Enable pin may be  
FBIN (Pin 10): The FBIN pin enables peak power tracking  
for solar powered chargers and other similar applications  
by controlling the output current of the system based on  
the input voltage. This pin should be tied to V  
feature is not used.  
if this  
REF  
FB (Pin 11): The feedback pin is used for voltage regula-  
tion and overvoltage protection. The feedback voltage is  
regulated to 1.206V. When the feedback voltage exceeds  
1.515V, the overvoltage lockout prevents switching.  
tied to V .  
IN  
(Pin .): Buffered 2V Reference Capable of 0.5mA  
REF  
Drive. Bypass with at least 1µF capacitor to ground.  
IꢁINN (Pin ±): IVINN is the inverting input of the input  
current sense amplifier. This pin connects to the drain of  
the high side N-channel power FET and the input current  
sense resistor.  
3763f  
10  
LT3763  
pin FuncTions  
GND (Pin 12, Pin 23, Pin 28, Exposed Pad Pin 29):  
Ground. The exposed pad must be soldered to the PCB.  
RT (Pin 20): A resistor from the RT pin to ground sets the  
switching frequency between 200kHz and 1MHz. When  
using the SYNC function, set the frequency to be at least  
20% lower than the SYNC pulse frequency. This pin is  
current-limited to 55µA. Do not leave this pin open.  
CTRL2 (Pin 13): Thermal Control Input to Reduce the  
Regulated Output Current.  
CTRL1 (Pin 14): The CTRL1 pin sets the regulated output  
current. Themaximumcontrolvoltageis1.5V. Above1.5V,  
there is no change in the regulated current.  
SYNC (Pin 21): Frequency Synchronization Pin. This pin  
allows the switching frequency to be synchronized to an  
external clock. The RT resistor should be chosen to oper-  
ate the internal clock at 20% slower than the SYNC pulse  
frequency. This pin should be grounded when not in use.  
SS(Pin1.):TheSoft-StartPin.Placeanexternalcapacitor  
to ground to limit the regulated current during start-up  
conditions. The soft-start pin has an 11µA charging cur-  
rent. When the voltage at this pin is lower than voltages at  
CTRL1andCTRL2,itoverridesbothsignalsanddetermines  
the regulated current.  
PWM (Pin 22): The input pin for PWM dimming of LEDs.  
When low, all switching is terminated and the PWM_OUT  
pin is low. This pin should be connected to INTV when  
CC  
not in use.  
SENSE (Pin 1±): SENSE is the noninverting input of the  
erroramplifierforthecurrentregulationloop.Thereference  
current, based on CTRL1, CTRL2, SS or FBIN determines  
PWM_OUT (Pin 24): This pin can drive an external FET  
for PWM dimming of LEDs. The pull-up and pull-down  
impedances of the driver are 2.2Ω and 0.9Ω, respectively.  
Do not force any voltage on this pin.  
+
the regulated voltage between SENSE and SENSE .  
+
+
SENSE (Pin 17): SENSE is the inverting input of the  
error amplifier for the current regulation loop. This pin  
is connected to an external current sense resistor. The  
TG (Pin 2.): TG is the top FET gate drive pin that controls  
the state of the external high side power FET. The driver  
pull-up impedance is 2.2Ω, and pull-down impedance is  
1.3Ω. Do not force any voltage on this pin.  
+
voltage drop between SENSE and SENSE is measured  
against the voltage drop across an internal resistor at the  
input to the current regulation loop.  
SW (Pin 2±): The SW pin is used internally as the lower  
railforthefloatingtopFETgatedriver. Externally, thisnode  
connects the two power FETs and the inductor.  
ꢁ (Pin 18): A resistor and capacitor connected in series  
C
to the V pin provide the necessary compensation for the  
C
stability of the average current loop. Typical values are 5k  
BOOST (Pin 27): The BOOST pin provides a floating 5V  
to 60k for the resistor and 2.2nF to 10nF for the capacitor.  
regulated supply for the top FET gate driver. An external  
schottky diode is required from the INTV pin to the  
CC  
ISMON (Pin 19): ISMON is the buffered output of the  
outputcurrentsenseamplifier.Thisvoltageoutputenables  
monitoring the averaged output current of the LED driver  
BOOST pin to charge the BOOST capacitor when the SW  
pin is near ground.  
+
with a voltage of 20 • (V  
– V  
). The capacitive  
SENSE  
SENSE  
loading to this pin should be less than 1nF.  
3763f  
11  
LT3763  
block DiagraM  
R
SENSE_IN  
2.5mΩ  
V
IN  
C
IN2  
47µF  
R
R
FILTA  
1k  
FILTB  
1k  
C
FILT  
1µF  
C
IN1  
4.7µF  
C
VCC  
22µF  
7
6
3
2
27  
BOOST  
C
BOOST  
200nF  
IVINP  
IVINN  
V
INTV  
CC  
IN  
HIGH SIDE  
DRIVER  
TG  
SW  
BG  
25  
26  
1
SYNCHRONOUS  
CONTROLLER  
R
Q
LOW SIDE  
DRIVER  
S
INTERNAL  
EN/UVLO  
4
REGULATOR  
AND UVLO  
INPUT  
CURRENT  
MONITORING  
+
SYNC  
RT  
21  
20  
V
REF  
g
= 400µA/V  
5
8
m
2V REFERENCE  
C
REF  
2.2µF  
OSCILLATOR  
1.5V  
R
T
IVINMON  
82.5k  
CURRENT  
MIRROR  
R
C
47.5k  
V
C
1.5V  
+
+
18  
24  
22  
CTRL1  
CONTROL  
BUFFER  
C
C
4.7nF  
L1  
1µH  
14  
PWM_OUT  
PWM  
+
+
90k  
0.1V  
1.5V  
ISMON  
19  
g
= 475µA/V  
= 3.5M  
CM(HIGH)  
g
m
AMP  
m
O
C/10  
COMPARATOR  
R
V
= V – 1.4V  
IN  
OUTPUT  
MONITORING  
+
SENSE  
17  
16  
3k  
R
S
2.5mΩ  
SENSE  
V
OUT  
C
OUT  
200µF  
50k  
11µA  
×2  
+
R
FB1  
47.5k  
SS  
15  
FB  
C
SS  
11  
10nF  
R
FB2  
12.1k  
1.206V  
VOLTAGE  
REGULATOR AMP  
= 850µA/V  
CTRL2  
FBIN  
13  
10  
g
m
1.16V  
0.25V  
+
INTV  
CC  
FAULT  
1.206V  
DETECTION  
COMPARATORS  
R
FAULT  
47.5k  
FAULT  
9
GND (12, 23, 28, 29)  
3763 BD  
Figure 1ꢀ Block Diagram  
3763f  
12  
LT3763  
operaTion  
TheLT3763utilizesfixedfrequency, averagecurrentmode  
control to accurately regulate the inductor current inde-  
pendentlyfromtheoutputvoltage. Thisisanidealsolution  
for applications requiring a regulated current source. The  
control loop will regulate the current in the inductor at  
an accuracy of 6%. If the output reaches the regulation  
voltage determined by the resistor divider from the output  
to the FB pin, the inductor current will be reduced by the  
voltage regulation loop. In voltage regulation, the output  
voltage has an accuracy of 1.5%. For additional opera-  
tion information, refer to the Block Diagram in Figure 1.  
TheLT3763preventsexcessiveinductorcurrentbytrigger-  
ing overcurrent limit when the inductor current produces  
+
a voltage greater than 85mV across the SENSE and  
SENSE pins. The current is limited on a cycle-by-cycle  
basis; switching shuts down as soon as the overcurrent  
level is reached. Overcurrent is not soft-started.  
The regulated output voltage is set with a resistor divider  
from the output to the FB pin. The reference for the FB  
pin is 1.206V. If the output voltage level is high enough  
to engage the voltage loop, the regulated inductor cur-  
rent will be reduced. If the voltage at the FB pin reaches  
1.515V, an internal overvoltage flag is set, shutting down  
switching for 12μs.  
The current control loop has two main inputs, determined  
by the voltages at the analog control pins, CTRL1 and  
CTRL2. The lower voltage between CTRL1 and CTRL2  
determines the regulated output current. The voltages at  
CTRL1 and CTRL2 are buffered to produce a reference  
current set by the voltage across an internal 90k resistor.  
This reference current produces a reference voltage that  
the average current mode control loop uses to regulate  
the inductor current as a voltage drop across the external  
The EN/UVLO pin functions as a precision shutdown  
pin. When the voltage at the EN/UVLO pin is lower than  
1.52V, the internal reset flag is asserted and switching is  
terminated. Full shutdown is guaranteed below 0.5V with  
aquiescentcurrentoflessthan2µA. TheEN/UVLOpinhas  
185mV of hysteresis built in, and a 5µA current source is  
connected to this pin that allows any amount of hysteresis  
to be added with a series resistor or resistor divider from  
sense resistor, R . The outputs of the internal buffers are  
S
clamped at 1.5V, limiting the control range of the CTRL1  
V . Alternatively, this pin can be tied directly to V to  
IN  
IN  
and CTRL2 pins from 0V to 1.5V—corresponding to a  
reduce the number of off-chip components.  
0mV to 51mV range on R .  
S
During start-up, the SS pin is held low until the internal  
reset goes low and PWM goes high the first time after  
a reset event. Once the reset is cleared, the capacitor  
connected to the soft-start pin is charged with an 11μA  
currentsource. Initially, theinternalbuffersfortheCTRL1,  
CTRL2, and FBIN voltages are limited by the voltage at the  
soft-start pin, and the inductor current reference slowly  
increases to the level determined by the lowest voltage  
of those three pins.  
The FBIN pin provides a third input to the current control  
loop. This input is dedicated to regulating the input volt-  
age by controlling the inductor current. Inductor current  
regulation commences when the voltage at the FBIN pin  
riseshigherthan1.206V.Above1.206V,theinductorcurrent  
is linearly increased, providing the maximum current, as  
determined by the voltages at the CTRL pins, when FBIN  
is at and above 1.26V. When input voltage regulation is  
not needed, FBIN should be tied to V to allow the CTRL  
REF  
The rising threshold for thermal shutdown is set at 165°C  
withChysteresis.Duringthermalshutdown,allswitch-  
ing is terminated, and the part is in reset mode (forcing  
the SS pin low).  
pins to control the inductor current.  
The 2V reference provided on the V  
pin allows the  
REF  
use of a resistor voltage divider to the CTRL1 and CTRL2  
pins. The current supplied by the V pin should be less  
REF  
The switching frequency is determined by a resistor at  
the RT pin. This pin is limited to 55µA, which limits the  
switching frequency to approximately 2MHz when the  
RT pin is shorted to ground. The LT3763 may also be  
synchronized to an external clock through the use of the  
than 0.5mA.  
The error amplifier for the average current mode control  
loophasacommonmodelockoutthatregulatestheinduc-  
tor current so that the error amplifier is never operated out  
of the common mode range. The common mode range is  
from ground to 1.4V below the V supply rail.  
IN  
3763f  
13  
LT3763  
operaTion  
SYNC pin which has precise thresholds at 2.175V and  
1.5V for rising and falling edges, respectively.  
informationsuchastheinputpowerandoutputpower.The  
outputs of the current monitors, IVINMON and ISMON,  
range from 0V to 1V when the inputs vary from 0V to  
50mV. When using 2.5mΩ sense resistors, for example,  
these current monitoring amplifiers sense from 0A to  
20A. To filter out the switching portion of the currents  
and measure the average current information, the input  
pins of the input current monitor, IVINP and IVINN, should  
connect to the sense resistor through two 1k resistors  
and a capacitor directly between the IVINP and IVINN  
pins. The capacitance value can be adjusted according to  
the switching frequency and the ripple magnitude. The  
outputcurrentmonitoremploysaninternalfiltertoreduce  
ripple, and it does not require an external filter, but if one  
is added, the corner frequency should be higher than the  
switching frequency.  
LT3763 also features a PWM driver for LED dimming.  
PWM_OUTishighwhenthePWMpinvoltageishigherthan  
2.175V, and low when PWM is lower than 1.5V. Switching  
is terminated when PWM is lower than 1.5V. PWM should  
be tied to INTV when the PWM function is not needed.  
CC  
The FAULT pin is pulled down to ground when the voltage  
at FB becomes less than 0.25V which indicates a short-  
circuit condition. It is also pulled down to indicate an  
open-circuit condition when the voltage becomes greater  
than1.16Vandtheinductorcurrentislessthantenpercent  
of the maximum (C/10), or equivalently, when the volt-  
age between SENSE and SENSE is less than 5mV. To  
avoid jitter when recovering from a fault condition, 50mV  
hysteresis is employed in the comparators. Additionally,  
when the inductor current is lower than C/10, the C/10  
comparator disables the low side MOSFET regardless of  
the voltage at FB.  
+
The LT3763 also includes an input current limiting func-  
tion to regulate the input current to a value determined by  
the R  
SENSE_IN  
resistor. When the voltage drop across the  
SENSE_IN  
R
resistor approaches 50mV, the inductor current  
The integrated input current and output current monitor-  
ing functions of the LT3763 allow users to acquire system  
isreducedandregulatedsothat50mVismaintainedacross  
the IVINP and IVINN pins.  
applicaTions inForMaTion  
Programming Inductor Current  
30  
25  
The analog voltage at the CTRL1 pin is buffered and pro-  
ducesareferencevoltage,V  
,acrossaninternalresistor.  
CTRL  
20  
15  
The regulated average inductor current is determined by:  
VCTRL  
IO =  
30RS  
10  
5
where R is the external sense resistor and I is the aver-  
S
O
age inductor current, which is equal to the output current.  
0
0
2
4
6
8
10 12 14 16 18 20  
Figure 2 shows the maximum output current versus R .  
S
R
S
(mΩ)  
The maximum power dissipation in the resistor will be:  
3763 F02  
2
Figure 2ꢀ RS ꢁalue Selection for Regulated Output Current  
0.05V  
RS  
(
)
PRS =  
maximum inductor current and sense-resistor power dis-  
sipation. Susumu, Panasonic and Vishay offer accurate  
sense resistors.  
Figure 3 plots the power dissipation in R , and Table 1  
lists several resistance values and the corresponding  
S
3763f  
14  
LT3763  
applicaTions inForMaTion  
1.4  
Table 2ꢀ Recommended Inductor Manufacturers  
1.2  
ꢁENDOR  
WEBSITE  
www.coilcraft.com  
Coilcraft  
1.0  
Sumida  
www.sumida.com  
www.vishay.com  
0.8  
0.6  
0.4  
0.2  
Vishay  
Würth Electronics  
NEC-Tokin  
www.we-online.com  
www.nec-tokin.com  
Switching MOSFET Selection  
0
2
4
8
10 12 14 16 18 20  
0
6
The following parameters are critical in determining the  
best switching MOSFETs for a given application: total gate  
R
(mΩ)  
S
3763 F03  
charge(Q ), on-resistance(R  
), gatetodraincharge  
Figure 3ꢀ Power Dissipation in RS  
Table 1ꢀ Sense Resistor ꢁalues  
G
DS(ON)  
(Q ), gate-to-source charge (Q ), gate resistance (R ),  
GD  
GS  
G
breakdown voltages (maximum V and V ) and drain  
GS  
DS  
current (maximum I ). The following guidelines provide  
D
MAXIMUM OUTPUT  
CURRENT (A)  
RESISTOR, R (mΩ) POWER DISSIPATION (W)  
information to make the selection process easier, and  
S
1
5
50  
10  
5
0.05  
0.25  
0.50  
1.25  
Table3listssomerecommendedpartsandmanufacturers.  
ForbothswitchingMOSFETstherateddraincurrentshould  
be greater than the maximum inductor current. Use the  
following equation to calculate the peak inductor current:  
10  
25  
2
2
V V – V  
Inductor Selection  
IN  
O
O
I
= I +  
O
MAX  
2 f L V  
IN  
SW  
Size the inductor so that the peak-to-peak ripple current  
is approximately 30% of the output current.  
The rated drain current is temperature dependent, and  
most data sheets include a table or graph of the rated  
drain current versus temperature.  
The following equation sizes the inductor for best per-  
formance:  
2
The rated V should be higher than the maximum input  
V V – V  
DS  
IN  
O
O
L =  
voltage(includingtransients)forbothMOSFETs.Asforthe  
0.3 f I V  
IN  
SW  
O
rated V , the signals driving the gates of the switching  
GS  
MOSFETshaveamaximumvoltageof5Vwithrespecttothe  
source.However,duringstart-upandrecoveryconditions,  
the gate-drive signals may be as low as 3V. Therefore, to  
ensure that the LT3763 recovers properly, the maximum  
threshold voltage should be less than 2V, and for a robust  
where V is the output voltage, V is the input voltage,  
O
IN  
I is the maximum regulated current in the inductor and  
O
SW  
f
is the switching frequency.  
The overcurrent comparator terminates switching when  
+
thevoltagebetweentheSENSE andSENSE pinsexceeds  
85mV. The saturation current for the inductor should be  
at least 20% higher than the maximum regulated current.  
RecommendedinductormanufacturersarelistedinTable2.  
design, ensure that the rated V is greater than 7V.  
GS  
Power losses in the switching MOSFETs are related to the  
on-resistance, R  
; gate resistance, R ; gate-to-drain  
DS(ON)  
G
charge,Q andgate-to-sourcecharge,Q .Powerlostto  
GD  
GS  
2
the on-resistance is an Ohmic loss, I R  
, and usually  
DS(ON)  
dominates for input voltages less than 15V. Power lost  
whilechargingthegatecapacitancedominatesforvoltages  
3763f  
15  
LT3763  
applicaTions inForMaTion  
greater than 15V. When operating at higher input voltages,  
efficiencycanbeoptimizedbyselectingahighsideMOSFET  
7
6
5
with higher R  
and lower Q . The total power loss in  
G
DS(ON)  
the high side MOSFET can be approximated by:  
TOTAL  
4
3
2
1
0
P
LOSS  
= ohmic loss + transition loss  
TRANSITIONAL  
VO  
2
P
IO RDS(ON) ρT +  
LOSS  
V
IN  
OHMIC  
Q
GD +QGS •  
(
(
)
V I  
OUT   
IN  
10  
20  
INPUT VOLTAGE (V)  
40  
0
30  
f  
SW   
5V  
2R +RPU +RPD  
)
G
3763 F04a  
Figure 4aꢀ Power Loss Example for M1  
where r is a dimensionless temperature dependent  
T
factor in the MOSFET’s on-resistance. Using 70°C as the  
maximum ambient operating temperature, r is roughly  
2.5  
2.0  
T
equal to 1.3. R and R are the LT3763 high side gate  
PD  
PU  
driver output impedances: 1.3Ω and 2.2Ω, respectively.  
A good approach to MOSFET sizing is to select a high side  
MOSFET, then select the low side MOSFET. The trade-off  
1.5  
TOTAL  
between R  
, Q , and Q for the high side MOSFET  
DS(ON)  
G GS  
1.0  
TRANSITIONAL  
is evident in the following example. V is equal to 4V.  
O
These two N-channel MOSFETs are rated for a V of 40V  
0.5  
0
OHMIC  
DS  
and mounted in the same package, but with 8× different  
R
and 4.5× different Q and Q :  
G GD  
DS(ON)  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
M1: R  
= 2.3mΩ, Q = 45.5nC,  
G
DS(ON)  
3763 F04b  
Q
GS  
= 13.8nC, Q = 14.4nC, R = 1Ω  
GD G  
Figure 4bꢀ Power Loss Example for M2  
M2: R  
= 18mΩ, Q = 10nC,  
G
DS(ON)  
Q ,mustbechargedanddischargedeachswitchingcycle,  
G
Q
GS  
= 4.5nC, Q = 3.1nC, R = 3.5Ω  
GD G  
so the power lost to the charging of the gates is:  
PowerlossforbothMOSFETsisshowninFigure4.Observe  
that whereas the R of M1 is eight times lower, the  
P
= V • (Q  
+ Q ) • f  
GATE  
IN  
GLG GHG SW  
DS(ON)  
where Q  
high side gate charge.  
is the low side gate charge and Q  
is the  
GLG  
GHG  
power loss at low input voltages is about equal to that of  
M2, and at high voltages, it is four times higher.  
The majority of this loss occurs in the internal LDO within  
the LT3763:  
Power loss within the low side MOSFET is almost entirely  
from the R  
of the FET. Select the low side FET with  
DS(ON)  
the lowest R  
while keeping the total gate charge Q  
P
≈ (V – 5V) • (Q  
+ Q ) • f  
GLG GHG SW  
DS(ON)  
G
LOSS_LDO  
IN  
to 30nC or less.  
Whenever possible, utilize a switching MOSFET that  
minimizes the total gate charge to limit the internal power  
dissipation of the LT3763. Some recommended MOSFETs  
are listed in Table 3.  
AnotherpowerlossrelatedtoswitchingMOSFETselection  
is the power lost driving the gates. The total gate charge,  
3763f  
16  
LT3763  
applicaTions inForMaTion  
Table 3ꢀ Recommended Switching FETs  
endofeverypulseasthedecreasinginductorcurrentflows  
into the output capacitor. Use of a small output capacitor  
may trigger overvoltage protection through the FB pin.  
I
OUT  
IN  
OUT  
(ꢁ) (ꢁ)  
(A)  
20 RJK0853DPB RJK0853DPB Renesas  
www.renesas.com  
TOP FET  
BOTTOM FET MANUFACTURER  
60  
24  
4
4
C
BOOT  
Capacitor Selection  
5
RJK0368DPA RJK0332DPB  
48 10 to 35 10 RJK0851DPB RJK0851DPB  
The C  
capacitor must be sized no bigger than 220nF  
BOOT  
12 2 to 4 10  
FDMS8680  
FDMS8672AS Fairchild  
www.fairchildsemi.com  
and more than 50nF to ensure proper operation of the  
LT3763. Use 220nF for high current switching MOSFETs  
with high gate charge.  
26  
24  
36  
4
4
20  
Si7884BDP  
SiR470DP Vishay  
www.vishay.com  
40 PSMN4R0-30YL RJK0346DPA NXP/Philips  
www.nxp.com  
INTꢁ Capacitor Selection  
CC  
12  
10 BSC100N06LS3 BSC100N06LS3 www.infineon.com  
The bypass capacitor for the INTV pin should be larger  
CC  
than 22µF to ensure stability, and it should be connected  
as close as possible to the exposed pad underneath  
the package. It is recommended that the ESR be lower  
than 50mΩ to reduce noise within the LT3763. For driv-  
ing MOSFETs with gate charges larger than 44nC, use  
0.5µF/nC of total gate charge.  
Input Capacitor Selection  
The input capacitor should be sized at least 2µF for every  
1A of output current and placed very close to the high side  
MOSFET. The loop created by the input capacitor, high side  
MOSFET, lowsideMOSFETshouldbeminimized. Itshould  
have a ripple current rating equal to half of the maximum  
outputcurrent. Additionally, asmall4.7µFceramiccapaci-  
Soft-Start  
tor should be placed between V and ground as close as  
Unlikeconventionalvoltageregulators,theLT3763utilizes  
the soft-start function to control the regulated inductor  
currentinsteadoftheoutputvoltage.Thechargingcurrent  
is 11µA and reduces the set current as long as the SS pin  
voltage is lower than CTRL1 and CTRL2.  
IN  
possible to the V pin and the exposed pad of the package  
IN  
for optimal noise immunity.  
It is recommended that several low ESR (equivalent se-  
ries resistance) ceramic capacitors be used as the input  
capacitance,althoughothercapacitorswithhigherdensity  
may be required to reduce board area. Only X5R or X7R  
capacitors maintain their capacitance over a wide range  
of operating voltages and temperatures.  
Output Current Regulation  
To adjust the regulated load current, an analog voltage is  
applied to the CTRL1 pin. Figure 5 shows the regulated  
voltage across the sense resistor for control voltages up to  
Output Capacitor Selection  
60  
TheoutputcapacitorsneedtohaveverylowESRtoreduce  
outputripple. Aminimumof20µF/Aofloadcurrentshould  
be used in most designs. The capacitors also need to be  
surge rated to the maximum output current. To achieve  
the lowest possible ESR, several low ESR ceramic capaci-  
tors should be used in parallel. Many lower output voltage  
applications benefit from the use of high density POSCAP  
capacitors, which are easily destroyed when exposed to  
overvoltage conditions. To prevent this, select POSCAP  
capacitors that have a voltage rating that is at least 50%  
higher than the regulated voltage.  
50  
40  
30  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
V
(V)  
CTRL1  
3763 F05  
Figure .ꢀ Sense ꢁoltage vs CTRL ꢁoltage  
Notethatwhendimming,theoutputvoltageincreasesatthe  
3763f  
17  
LT3763  
applicaTions inForMaTion  
output current monitoring, the LT3763 enables users to  
calculate the overall efficiency of the circuit including the  
losses in the external components.  
2V. Figure 6 shows the CTRL1 voltage created by a voltage  
dividerfromV toground.Whensizingtheresistordivider,  
REF  
please be aware that the V pin should have a total load  
REF  
current less than 0.5mA, and that above 1.5V, the control  
voltage has no effect on the regulated inductor current.  
Setting CTRL1 to 0V does not automatically stop switch-  
ing. To disable switching, set PWM pin voltage below 1.5V.  
Output Current Monitoring  
The LT3763 provides users the capability to monitor the  
output current as a voltage provided at the ISMON pin.  
The voltage will linearly increase from 0V to 1V as the  
+
Input Current Monitoring  
voltagebetweenSENSE andSENSE increasesfrom0mV  
to 50mV as shown in Figure 8. If, for example, a 2.5mΩ  
Users can monitor the input current at the IVINMON pin,  
whichproduces0Vto1VasthevoltagebetweenIVINPand  
IVINNvariesfrom0mVto50mV, asshowninFigure7. Due  
to the switching of the high side FET, the input current is  
noisyandmonitoringtheaverageinputcurrentrequiresan  
externalfilterwith1kresistorsconnectingIVINPandIVINN  
resistor is chosen for R , then a 1V output at ISMON will  
S
indicate a 20A output current. A resistor and capacitor  
may be connected to ISMON to filter noise.  
ꢁoltage Regulation and Overvoltage Protection  
to the input current sense resistor R  
. Choose the  
SENSE_IN  
The LT3763 uses the FB pin to regulate the output volt-  
age and to provide an overvoltage lockout to avoid high  
voltage conditions. The regulated output voltage is pro-  
grammed using a resistor divider from the output to the  
FB pin (Figure 9). When the output voltage approaches  
capacitorforthisfilteraccordingtotheswitchingfrequency  
so that the noise is reduced by at least a factor of 100. If  
the frequency is 500kHz, for example, 1µF is sufficient,  
and higher switching frequencies will require a smaller  
capacitor. A resistor and capacitor may be connected to  
IVINMON to further filter the noise. With both input and  
2.0  
1.5  
1.0  
0.5  
0
V
REF  
LT3763  
R2  
R1  
CTRL1  
3763 F06  
Figure ±ꢀ Analog Control of Inductor Current  
2.0  
0
25  
50  
– V  
75  
(mV)  
100  
+
V
SENSE  
SENSE  
3763 F08  
1.5  
1.0  
0.5  
0
Figure 8ꢀ Output Current Monitoring ꢁoltage  
vs Output Current Sense ꢁoltage  
V
OUT  
LT3763  
R2  
FB  
R1  
0
25  
V
50  
– V  
75  
100  
(mV)  
IVINP  
IVINN  
3763 F09  
3763 F07  
Figure 9ꢀ Output ꢁoltage Regulation and Overvoltage  
Protection Feedback Connections  
Figure 7ꢀ Input Current Monitoring ꢁoltage  
vs Input Current Sense ꢁoltage  
3763f  
18  
LT3763  
applicaTions inForMaTion  
the programmed level (1.206V at the FB pin), the voltage  
Programming Switching Frequency  
error amplifier overrides CTRL1 to set the inductor cur-  
The LT3763 has an operational switching frequency range  
between200kHzand1MHz.Thisfrequencyisprogrammed  
with an external resistor from the RT pin to ground. Do not  
leave this pin open under any condition. The RT pin is also  
current-limitedto55µA.SeeTable4andFigure10forresis-  
tor values and the corresponding switching frequencies.  
rent and regulate V . When the output voltage exceeds  
OUT  
125% of the regulated voltage level (1.515V at the FB pin),  
the internal overvoltage flag is set, terminating switching.  
The regulated output voltage must be greater than 1.5V  
and is set by the equation:  
R2  
R1  
Table 4ꢀ Switching Frequency  
SWITCHING FREQUENCY (MHz)  
VOUT =1.206V 1+  
R (kΩ)  
T
1.00  
0.75  
0.50  
0.30  
0.20  
40.2  
53.6  
82.5  
143  
Fault Detection  
The LT3763 detects that the load has had an open-circuit  
or short-circuit event indicated by pulling the FAULT pin to  
ground. These conditions are detected by comparing the  
voltage at the FB pin to two internal reference voltages.  
200  
Switching Frequency Synchronization  
A short-circuit is defined as V lower than 0.25V. In an  
FB  
open-circuit condition, the regulated inductor current will  
charge the output capacitor, the voltage at FB will begin  
to increase, and the voltage error amplifier will begin to  
reducetheinductorcurrent.Theopen-circuitconditionwill  
be indicated at FAULT when FB is higher than 1.16V and  
the inductor current is less than ten percent (C/10) of the  
The nominal switching frequency of the LT3763 is deter-  
mined by the resistor from the RT pin to ground and may  
be set from 200kHz to 1MHz. The internal oscillator may  
alsobesynchronizedtoanexternalclockthroughtheSYNC  
pin. The external clock applied to the SYNC pin must have  
a logic low below 1.5V and a logic high above 2.175V. The  
input frequency must be 20% higher than the frequency  
that would otherwise be determined by the resistor at the  
RT pin. Input signals outside of these specified parameters  
will cause erratic switching behavior and subharmonic  
oscillations. Synchronization is tested at 500kHz with  
maximum value set by the sense resistor R . The output  
S
voltage will be regulated as determined by the resistor  
divider to the FB pin.  
Low Current Detection  
When the inductor current decreases to ten percent of the  
maximum current, the C/10 comparator will also disable  
the low side gate driver, so the converter will become  
non-synchronous and automatically transition into dis-  
continuous conduction mode when the inductor current  
is low enough relative to the ripple.  
a 200k R resistor. Operation under other conditions is  
T
guaranteed by design. When synchronizing to an external  
1.2  
1.0  
0.8  
0.6  
The low current condition is an essential part of battery  
charging applications. The LT3763 works well in this ap-  
plication delivering a constant current to the battery as it  
charges and then automatically reducing the current to a  
trickle charge as the battery voltage approaches its fully  
charged value. In this application, the signal at FAULT  
triggered by the low current detection comparator serves  
as an indicator that the trickle charge phase of charging  
the battery has begun.  
0.4  
0.2  
0
0
50 100 150 200 250 300 350 400 450 500  
(kΩ)  
R
T
3763 F10  
Figure 10ꢀ Frequency vs RT Resistance  
3763f  
19  
LT3763  
applicaTions inForMaTion  
clock, please be aware that there will be a fixed delay from  
the input clock edge to the edge of the signal at the SW pin.  
The SYNC pin must be grounded if the synchronization to  
an external clock is not required. When SYNC is grounded,  
should be tied to INTV so as not to disable switching.  
CC  
PWM MOSFET Selection  
The rated V for the PWM MOSFET need only be higher  
DS  
the switching frequency is determined by the resistor R .  
T
than the maximum output voltage. Although this permits a  
MOSFET choice with a smaller Q specification than that of  
G
PWM Driver  
theswitchingMOSFETs,itwillhavelittleeffectonefficiency,  
because the PWM switching frequency will be much lower  
thanthatoftheswitchingMOSFETs.Powerlostchargingthe  
gate of the PWM MOSFET will naturally be much lower than  
The LT3763 includes a PWM driver for users who want to  
control the dimming of LEDs connected to the output. The  
driverwillpullupthegateofanexternalN-channelMOSFET  
connected to the PWM_OUT pin when the voltage at the  
PWM pin rises above 2.175V and pull down the gate when  
the power lost charging the switching MOSFETs. R  
DS(ON)  
conduction losses in the PWM MOSFET will also be much  
thevoltagefallsbelow1.5V. WhenV  
islowerthan1.5V,  
smaller if the duty cycle of the PWM signal is very low.  
PWM  
switching is terminated and V is disconnected from the  
C
Like the drivers for the switching MOSFETs, the PWM  
current regulation amplifier. When V  
is above 2.175V,  
PWM  
driver draws power from the INTV pin, and the choice  
CC  
theinductorcurrentisregulatedtothecurrentprogrammed  
by the voltage at the CTRL1, CTRL2, or FBIN pins.  
of MOSFET should follow the same recommendations for  
thresholdvoltage(lessthan2V)andratedV (atleast7V).  
GS  
The pull-up driver impedance is 2.2Ω, and the pull-down  
driverimpedanceis0.9Ω.ThePWMdimmingpulse-width  
should be longer than two switching cycles.  
Thermal Shutdown  
The internal thermal shutdown within the LT3763 engages  
at 165°C and terminates switching and discharges the  
soft-start capacitor. When the part has cooled to 160°C,  
the internal reset is cleared and the soft-start capacitor is  
allowed to charge.  
V
OUT  
LOAD  
PWM  
1.5V  
+
PWM_OUT  
Shutdown and UꢁLO  
3763 F11  
The LT3763 has an internal UVLO that terminates switch-  
ing, resets all synchronous logic, and discharges the soft-  
start capacitor for input voltages below 4V. The LT3763  
also has a precision shutdown at 1.52V on the EN/UVLO  
pin. Partial shutdown occurs at 1.52V and full shutdown  
Figure 11ꢀ PWM Driver Operation  
PWM Operation  
When the voltage at PWM is low, all switching of the high  
and low side MOSFETS is terminated, and the inductor  
current will decrease to zero. After PWM increases above  
the logic threshold, the inductor current ramps up to the  
is guaranteed below 0.5V with less than 2µA I in the full  
Q
shutdown state. Below 1.52V, an internal current source  
provides 5µA of pull-down current to allow for program-  
mableUVLOhysteresis.Thefollowingequationsdetermine  
the voltage-divider resistors for programming the UVLO  
voltage and hysteresis as configured in Figure 12.  
regulatedvalue. Theramptime, t , canbeestimatedusing  
D
the following equation:  
LIO  
tD =  
VHYST  
R2=  
V – V  
IN  
O
5µA  
whichassumesthattheoutputcapacitordoesnotdischarge  
significantly in the time that PWM is low.  
1.52V R2  
R1=  
V
1.52V  
UVLO  
When the PWM functionality is not desired, the PWM pin  
3763f  
20  
LT3763  
applicaTions inForMaTion  
V
• 11µA/V  
CTRL  
3k  
V
IN  
V
IN  
LT3763  
EN/UVLO  
R2  
L
R
S
MODULATOR  
R1  
LOAD  
3763 F12  
+
g
m
ERROR AMP  
Figure 12ꢀ UꢁLO Configuration  
3763 F14  
R
C
Load Current Derating Using the CTRL2 Pin  
C
C
The LT3763 is designed specifically for driving high power  
loads. In high current applications, derating the maxi-  
mum current based on operating temperature prevents  
damage to the load. In addition, many applications have  
thermal limitations that will require the regulated current  
to be reduced based on load temperature and/or board  
temperature. To achieve this, the LT3763 uses the CTRL2  
pin to reduce the effective regulated current in the load,  
which is otherwise programmed by the analog voltage at  
the CTRL1 pin. The load/board temperature derating is  
programmed using a resistor divider with a temperature  
dependant resistance (Figure 13). When the load/board  
temperature rises, the CTRL2 voltage will decrease. When  
the CTRL2 voltage is lower than voltage at the CTRL1 pin,  
the regulated current is reduced.  
Figure 14ꢀ LT37±3 Average Current Mode Control Scheme  
to the slope compensation ramp determines the stability  
of the current regulation loop above 50% duty cycle. In  
the same way, average current mode controllers require  
the slope of the error voltage to not exceed the PWM ramp  
slope during the switch off time.  
Since the closed loop gain at the switching frequency  
produces the error signal slope, the output impedance of  
the error amplifier will be the compensation resistor, R .  
C
Use the following equation as a good starting point for  
compensation component sizing:  
1k1V L  
VO RS TSW  
2nF  
µs  
RC =  
, CC =  
TSW  
R
R
V
V
where T is the switching period, L is the inductance  
V
SW  
REF  
value, V is the output voltage and R is the sense resistor.  
O
S
R
R
R
R
R
R
X
LT3763  
NTC  
NTC  
X
NTC  
NTC  
R2  
For most applications, a 4.7nF compensation capacitor  
is adequate and provides excellent phase margin with  
optimized bandwidth. Please refer to Table 6 for recom-  
mended compensation values.  
CTRL2  
3763 F13  
R1  
(OPTION A TO D)  
A
B
C
D
Figure 13ꢀ Load Current Derating vs Temperature  
Using NTC Resistor  
Board Layout Considerations  
Average current mode control is relatively immune to the  
switching noise associated with other types of control  
schemes.Nevertheless,thehighdi/dtloopformedbyinput  
capacitors and switching MOSFETS should be minimized.  
Average Current Mode Control Compensation  
The use of average current mode control allows for pre-  
cise regulation of the inductor current and load current.  
Figure 14 shows the average current mode control loop  
used in the LT3763, where the regulation current is pro-  
grammed by a current source and a 3k resistor.  
+
PlacingthesenseresistorascloseaspossibletotheSENSE  
andSENSE pinsalsohelpsavoidnoiseissues.Duetosense  
resistorESL(equivalentseriesinductance),10Ωresistors  
+
inserieswiththeSENSE andSENSE pinswitha33nFca-  
pacitorplacedbetweentheSENSEpinsarerecommended.  
Utilizing a good ground plane underneath the switching  
3763f  
To design the compensation network, the maximum com-  
pensation resistor needstobe calculated. In currentmode  
controllers, the ratio of the sensed inductor current ramp  
21  
LT3763  
applicaTions inForMaTion  
components will minimize interplane noise coupling. To  
dissipate the heat from the switching components, use a  
large area for the switching node while keeping in mind  
that this negatively affects the radiated noise.  
Table ±ꢀ Recommended Compensation Component ꢁalues (ꢁCTRL2 = 2ꢁ)  
(ꢁ)  
ꢁ (ꢁ)  
(ꢁ)  
I (A)  
f
(kHz)  
L (µH)  
2.2  
R (mΩ)  
R (kΩ)  
C (nF)  
IN  
O
CTRL1  
L
SW  
S
C
C
12  
4
4
0.75  
5
10  
20  
1
500  
5
5
54.9  
54.9  
44.2  
15.4  
15.4  
4.7  
4.7  
8.2  
4.7  
4.7  
12  
12  
60  
60  
1.50  
1.50  
0.15  
1.20  
500  
250  
500  
500  
2.2  
5
2.2  
2.5  
5
30  
30  
10  
8
10  
5
Typical applicaTions  
20A, Pulse Width Modulated, Single LED Driver  
R
SENSE_IN  
2.5mΩ  
V
IN  
10V TO 30V  
C
IN2  
R
C
EN1  
FILT  
R
FILTA  
1k  
R
100µF  
FILTB  
84.5k  
C
IN1  
4.7µF  
1µF  
1k  
R
EN2  
15.4k  
V
IVINP  
EN/UVLO  
IVINN  
IN  
M1  
TG  
C
BOOST  
V
REF  
220nF  
C
L1  
1.5µH  
V
REF  
R
S
OUT  
R
HOT  
BOOST  
SW  
2.2µF  
6V, 20A MAXIMUM  
2.5mΩ  
45.3k  
LT3763  
C
OUT  
CTRL2  
CTRL1  
220µF  
R
470k  
×2  
NTC  
INTV  
CC  
D1  
R
SB  
C
R
VCC  
FAULT  
R
22µF  
47.5kΩ  
SA  
10Ω  
BG  
M2  
10Ω  
50k  
GND  
FBIN  
+
SENSE  
50Ω  
50Ω  
C
S
IVINMON  
33nF  
1nF  
SENSE  
PWMOUT  
M3  
ISMON  
R
FB1  
1nF  
FAULT  
PWM  
SYNC  
RT  
47.5k  
FB  
R
FB2  
SS  
SS  
V
C
L1: COILCRAFT XAL1010-152  
M1: RENESAS RJK0365  
M2: RENESAS RJK0453  
M3: IR IRFH6200  
12.1k  
C
R
T
R
C
59k  
C
3763 TA02  
10nF  
82.5k  
C
4.7nF  
R : VISHAY WSL25122L500FEA  
S
PWM Dimming  
PWM  
10V/DIV  
V
SW  
50V/DIV  
I
L
5A/DIV  
3763 TA02b  
5µs/DIV  
3763f  
22  
LT3763  
Typical applicaTions  
1A, Five LED Driver  
R
SENSE_IN  
50mΩ  
V
IN  
32V TO 60V  
C
IN2  
C
FILT  
R
FILTA  
1k  
R
4.7µF  
FILTB  
C
1µF  
IN1  
1k  
1µF  
V
IN  
IVINP  
IVINN  
M1  
ENABLE  
EN/UVLO  
TG  
C
BOOST  
V
50nF  
L1  
100µH  
REF  
V
R
OUT  
S
C
REF  
BOOST  
SW  
R
30V, 1A MAXIMUM  
HOT  
50mΩ  
2.2µF  
LT3763  
45.3k  
C
OUT  
CTRL2  
CTRL1  
10µF  
D1  
×2  
INTV  
CC  
R
NTC  
470k  
C
R
VCC  
FAULT  
D2  
D3  
D4  
D5  
R
R
SB  
10Ω  
22µF  
47.5kΩ  
SA  
BG  
M2  
10Ω  
50k  
GND  
+
SENSE  
C
S
FBIN  
33nF  
SENSE  
IVINMON  
PWMOUT  
ISMON  
PWM  
R
FB1  
INTV  
FAULT  
CC  
287k  
SYNC  
RT  
FB  
R
FB2  
SS  
SS  
V
C
L1: COILCRAFT MSS1278-104  
M1, M2: RENESAS RJK1054  
S
12.1k  
C
R
T
R
C
59k  
3763 TA03  
R : VISHAY WSL2512R0500FEA  
10nF  
82.5k  
C
C
4.7nF  
3763f  
23  
LT3763  
Typical applicaTions  
3ꢀ3A, Six-Cell (3±ꢁ) SLA Battery Charger  
R
SENSE_IN  
15mΩ  
V
IN  
48V  
C
IN2  
C
FILT  
R
FILTA  
1k  
R
47µF  
FILTB  
C
1µF  
IN1  
1k  
1µF  
V
IN  
IVINP  
IVINN  
M1  
ENABLE  
EN/UVLO  
TG  
C
BOOST  
V
220nF  
L1  
12µH  
REF  
V
R
OUT  
S
C
REF  
BOOST  
SW  
45V, 3.3A MAXIMUM  
15mΩ  
2.2µF  
LT3763  
CTRL2  
CTRL1  
+
12V  
INTV  
CC  
C
R
+
VCC  
FAULT  
R
R
22µF  
47.5kΩ  
SA  
SB  
12V  
BG  
M2  
10Ω  
10Ω  
+
GND  
12V  
+
SENSE  
C
S
FBIN  
33nF  
SENSE  
IVINMON  
PWMOUT  
ISMON  
PWM  
R
FB1  
INTV  
FAULT  
CC  
402k  
SYNC  
RT  
FB  
R
FB2  
R
SS  
SS  
V
C
L1: WÜRTH 74471112  
FB3  
12.1k  
178k  
M1, M2: INFINEON BSC100N06LS3  
M3: VISHAY VN2222LL  
C
R
R
C
8.06k  
C
4.7nF  
T
10nF  
82.5k  
M3  
R : VISHAY WSL2512R0150  
S
C
3763 TA04  
3±ꢁ SLA Battery Charging  
FAULT  
10V/DIV  
I
L
2A/DIV  
V
OUT  
50mV/DIV  
AC-COUPLED  
3763 TA04b  
50s/DIV  
3763f  
24  
LT3763  
Typical applicaTions  
20A, Synchronized, .ꢁ Regulator  
R
SENSE_IN  
2.5mΩ  
V
IN  
7V TO 30V  
C
IN2  
R
C
EN1  
FILT  
R
FILTA  
1k  
R
100µF  
FILTB  
44.2k  
C
1µF  
IN1  
1k  
4.7µF  
R
EN2  
15.4k  
IVINP  
IVINN  
V
IN  
M1  
EN/UVLO  
TG  
C
BOOST  
V
220nF  
L1  
1.5µH  
REF  
V
R
OUT  
S
C
REF  
BOOST  
SW  
R
5V, 20A MAXIMUM  
HOT  
2.5mΩ  
2.2µF  
LT3763  
45.3k  
C
OUT  
CTRL2  
220µF  
×2  
INTV  
CC  
R
NTC  
470k  
C
R
VCC  
FAULT  
R
R
22µF  
47.5kΩ  
SA  
SB  
BG  
M2  
10Ω  
10Ω  
CTRL1  
FBIN  
GND  
+
SENSE  
C
S
33nF  
SENSE  
IVINMON  
ISMON  
PWM  
PWMOUT  
R
FB1  
INTV  
FAULT  
CC  
38.3k  
3V  
0V  
SYNC  
RT  
FB  
R
FB2  
SS  
SS  
V
C
500kHz  
L1: COILCRAFT XAL1010-152  
M1: RENESAS RJK0365  
M2: RENESAS RJK0453  
12.1k  
C
R
T
R
C
59k  
C
3763 TA05  
10nF  
121k  
R : VISHAY WSL25122L500FEA  
S
C
4.7nF  
Output ꢁoltage Load Regulation  
Efficiency vs Load Current  
8
6
4
2
0
100  
95  
90  
85  
80  
V
V
= 12V  
IN  
= 5V  
OUT  
LIMIT  
I
= 20A  
V
V
= 12V  
OUT  
IN  
= 5V  
0
6
12  
18  
24  
0
6
12  
18  
24  
I
(A)  
I
(A)  
LOAD  
LOAD  
3763 TA05b  
3763 TA05c  
3763f  
25  
LT3763  
Typical applicaTions  
350W White LED Driver  
V
IN  
48V  
C
IN2  
R
EN1  
100µF  
374k  
C
IN1  
4.7µF  
R
EN2  
124k  
IVINP  
IVINN  
V
IN  
M1  
EN/UVLO  
TG  
×2  
C
BOOST  
V
220nF  
L1  
6µH  
REF  
V
R
OUT  
S
C
REF  
BOOST  
SW  
37V, 10A MAXIMUM  
5mΩ  
2.2µF  
LT3763  
C
OUT  
CTRL2  
10µF  
×6  
INTV  
CC  
C
R
VCC  
FAULT  
22µF  
100k  
M2  
×2  
BG  
LUMINUS  
PT-121  
CTRL1  
FBIN  
GND  
+
SENSE  
C
S
1nF  
SENSE  
IVINMON  
ISMON  
PWM  
PWMOUT  
R
FB1  
INTV  
FAULT  
CC  
931k  
3V  
0V  
SYNC  
RT  
FB  
R
FB2  
SS  
SS  
V
C
400kHz  
L1: COILTRONICS HC2-6R0  
M1, M2: RENESAS RJK0851  
S
30.9k  
C
R
T
R
C
5k  
3763 TA06  
10nF  
200k  
R : VISHAY WSL25125L000  
C
C
5nF  
Maximum Output oltage  
Efficiency vs LED Current  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
V
I
= 48V  
= 10A  
V
V
= 48V  
IN  
IN  
OUT  
= 35V  
LIMIT  
0
3
6
9
12  
0
3
6
9
12  
I
(A)  
I
(A)  
LED  
LED  
3763 TA06b  
3763 TA06c  
3763f  
26  
LT3763  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev I)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 27 26 2524 23 22 21 20 1918 17 16 15  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
6.60 ±0.10  
4.50 ±0.10  
SEE NOTE 4  
6.40  
2.74  
(.252)  
(.108)  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP REV I 0211  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3763f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT3763  
Typical applicaTion  
70W, Solar Energy Harvester with Maximum Power Point Regulation  
R
SENSE_IN  
10mΩ  
PANEL VOLTAGE  
UP TO 60V  
IN  
C
IN2  
37V V REG POINT  
C
FILT  
1µF  
D1  
D2  
R
FILTA  
1k  
R
100µF  
FILTB  
C
IN1  
1k  
4.7µF  
IVINP  
IVINN  
V
IN  
M1  
ENABLE  
EN/UVLO  
TG  
Dn  
C
BOOST  
100nF  
V
REF  
L1  
12µH  
V
R
OUT  
S
C
REF  
BOOST  
SW  
R
14V MAXIMUM  
HOT  
10mΩ  
2.2µF  
LT3763  
45.3k  
CTRL2  
CTRL1  
+
3.6V  
INTV  
CC  
R
NTC  
470k  
C
R
VCC  
FAULT  
R
R
22µF  
47.5kΩ  
SA  
SB  
BG  
M2  
10Ω  
10Ω  
V
REF  
GND  
R
FBIN1  
+
SENSE  
348k  
C
S
FBIN  
33nF  
SENSE  
R
FBIN2  
IVINMON  
12.1k  
PWMOUT  
ISMON  
PWM  
R
FB1  
INTV  
FAULT  
CC  
121k  
SYNC  
RT  
FB  
R
FB2  
R
SS  
SS  
V
C
FB3  
L1: COILCRAFT MSS1278-123  
M1, M2: INFINEON BSC100N06LS3  
M3: VISHAY VN2222LL  
12.1k  
182k  
C
R
T
R
C
26.1k  
C
4.7nF  
10nF  
82.5k  
M3  
R : VISHAY WSL2512R0100FEA  
S
C
3763 TA07  
Solar Powered SLA Battery  
Charging  
FAULT  
10V/DIV  
V
IN  
500mV/DIV  
AC-COUPLED  
I
L
2A/DIV  
V
OUT  
50mV/DIV  
3763 TA07b  
50s/DIV  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT3743  
LT3741  
LT3791  
Synchronous Step-Down LED Driver Controller  
Synchronous Step-Down LED Driver Controller  
Synchronous Buck-Boost LED Driver Controller  
92% Efficiency, I  
to 20A, V : 5.5V to 36V, I = 2mA, I < 1µA, 4mm × 5mm  
IN Q SD  
OUT  
QFN-28, TSSOP-28E  
94% Efficiency, I  
to 20A, V : 6V to 36V, I = 1.8mA, I < 1µA, 4mm × 4mm  
IN Q SD  
OUT  
QFN-20, TSSOP-20E  
98.5% Efficiency, I  
to 25A, V : 4.7V to 60V, TSSOP-38E  
OUT  
IN  
3763f  
LT 1012 • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3781

Bootstrap Start Dual Transistor Synchronous Forward Controller
Linear

LT3781EG

Bootstrap Start Dual Transistor Synchronous Forward Controller
Linear

LT3781EG#PBF

LT3781 - Bootstrap Start Dual Transistor Synchronous Forward Controller; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3781EG#TR

LT3781 - Bootstrap Start Dual Transistor Synchronous Forward Controller; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3781EG#TRPBF

LT3781 - Bootstrap Start Dual Transistor Synchronous Forward Controller; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3781IG

Bootstrap Start Dual Transistor Synchronous Forward Controller
Linear

LT3781IG#PBF

LT3781 - Bootstrap Start Dual Transistor Synchronous Forward Controller; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3781IG#TRPBF

LT3781 - Bootstrap Start Dual Transistor Synchronous Forward Controller; Package: SSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3781_09

“Bootstrap” Start Dual Transistor Synchronous Forward Controller
Linear

LT3782

2-Phase Step-Up DC/DC Controller
Linear

LT3782A

2-Phase Step-Up DC/DC Controller
Linear

LT3782AEFE

2-Phase Step-Up DC/DC Controller
Linear