LT1011A [Linear]

Voltage Comparator; 电压比较器
LT1011A
型号: LT1011A
厂家: Linear    Linear
描述:

Voltage Comparator
电压比较器

比较器
文件: 总16页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1011/LT1011A  
Voltage Comparator  
U
FEATURES  
DESCRIPTIO  
The LT®1011 is a general purpose comparator with sig-  
nificantly better input characteristics than the LM111.  
Although pin compatible with the LM111, it offers four  
timeslowerbiascurrent,sixtimesloweroffsetvoltageand  
five times higher voltage gain. Offset voltage drift, a  
previously unspecified parameter, is guaranteed at  
15µV/°C. Additionally, the supply current is lower by a  
factor of two with no loss in speed. The LT1011 is several  
times faster than the LM111 when subjected to large  
overdrive conditions. It is also fully specified for DC  
parameters and response time when operating on a single  
5V supply. These parametric improvements allow the  
LT1011 to be used in high accuracy (12-bit) systems  
withouttrimming. Ina12-bitA/Dapplication, forinstance,  
using a 2mA DAC, the offset error introduced by the  
LT1011 is less than 0.5LSB. The LT1011 retains all the  
versatile features of the LM111, including single 3V to  
±18V supply operation, and a floating transistor output  
with 50mA source/sink capability. It can drive loads refer-  
enced to ground, negative supply or positive supply, and  
isspecifiedupto50VbetweenVandthecollectoroutput.  
A differential input voltage up to the full supply voltage is  
allowed, even with ±18V supplies, enabling the inputs to  
be clamped to the supplies with simple diode clamps.  
Pin Compatible with LM111 Series Devices  
Guaranteed Max 0.5mV Input Offset Voltage  
Guaranteed Max 25nA Input Bias Current  
Guaranteed Max 3nA Input Offset Current  
Guaranteed Max 250ns Response Time  
Guaranteed Min 200,000 Voltage Gain  
50mA Output Current Source or Sink  
±30V Differential Input Voltage  
Fully Specified for Single 5V Operation  
U
APPLICATIO S  
SAR A/D Converters  
Voltage-to-Frequency Converters  
Precision RC Oscillator  
Peak Detector  
Motor Speed Control  
Pulse Generator  
Relay/Lamp Driver  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
10µs 12-Bit A/D Converter  
3.9k  
R1  
1k  
15V  
LM329  
7V  
Response Time vs Overdrive  
FULL-SCALE  
TRIM  
*R2 AND R4  
SHOULD TC TRACK  
500  
450  
400  
350  
–15V  
R2*  
6.49k  
R3  
6.98k  
0.001µF  
15V  
20  
14  
15  
16  
17  
INPUT  
0V TO 10V  
5V  
19  
6012  
12-BIT  
D/A CONVERTER  
R4*  
R5  
1k  
300  
250  
2.49k  
FALLING  
OUTPUT  
2
3
13  
18  
+
7
R6  
820Ω  
200  
150  
100  
50  
LT1011A  
RISING  
OUTPUT  
12 11 10  
9
7
8
7
6
5
4
3
2
1
PARALLEL  
OUTPUTS  
PARALLEL  
OUTPUTS  
SERIAL OUTPUT  
4
5
6
8
9
16 17 18 19 20 21  
D
0
0.1  
7475  
LATCH  
1
10  
100  
AM2504  
24  
OVERDRIVE (mV)  
5V  
SAR REGISTER  
CC  
S
1011 TA02  
E
S
CP  
12  
START  
CLOCK f = 1.4MHz  
1011 TA01  
1
LT1011/LT1011A  
W W U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Input Voltage (Note 2) ....................... Equal to Supplies  
Output Short-Circuit Duration.............................. 10 sec  
Operating Temperature Range (Note 3)  
LT1011AC, LT1011C ............................... 0°C to 70°C  
LT1011AI, LT1011I ........................... 40°C to 85°C  
LT1011AM, LT1011M ..................... 55°C to 125°C  
Storage Temperature Range ................. – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Supply Voltage (Pin 8 to Pin 4) .............................. 36V  
Output to Negative Supply (Pin 7 to Pin 4)  
LT1011AC, LT1011C .......................................... 40V  
LT1011AI, LT1011I ............................................ 40V  
LT1011AM, LT1011M ........................................ 50V  
Ground to Negative Supply (Pin 1 to Pin 4) ............ 30V  
Differential Input Voltage ...................................... ±36V  
Voltage at STROBE Pin (Pin 6 to Pin 8) .................... 5V  
U
W U  
PACKAGE/ORDER INFORMATION  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
LT1011ACH  
LT1011ACJ8  
TOP VIEW  
+
LT1011CH  
LT1011CJ8  
V
GND  
INPUT  
INPUT  
1
2
3
4
V+  
8
7
6
5
8
LT1011AMH  
LT1011MH  
LT1011ACN8  
LT1011CN8  
LT1011CS8  
LT1011AIS8  
LT1011IS8  
LT1011AMJ8  
LT1011MJ8  
OUTPUT  
BALANCE/  
STROBE  
GND  
INPUT  
INPUT  
1
3
7
5
OUTPUT  
BALANCE/  
+
+
2
6
STROBE  
V
BALANCE  
BALANCE  
J8 PACKAGE  
8-LEAD CERDIP  
N8 PACKAGE  
8-LEAD PDIP  
4
V
S8 PACKAGE  
8-LEAD PLASTIC SO  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
TJMAX = 150°C, θJA = 100°C/ W(J8)  
TJMAX = 150°C, θJA = 150°C/ W, θJC = 45°C/ W  
T
JMAX = 150°C, θJA = 130°C/ W(N8)  
S8 PART MARKING  
TJMAX = 150°C, θJA = 150°C/ W(S8)  
1011  
1011AI  
1011I  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwide specifications are at TA = 25°C.  
VS = ±15V, VCM = 0V, RS = 0, V1 = –15V, output at pin 7 unless otherwise noted.  
LT1011AC/AI/AM  
LT1011C/I/M  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
VOS  
Input Offset Voltage  
(Note 4)  
0.3  
0.5  
1.0  
0.6  
1.5  
3.0  
mV  
mV  
*Input Offset Voltage  
*Input Offset Current  
RS 50k (Note 5)  
0.75  
1.50  
2.0  
3.0  
mV  
mV  
IOS  
IB  
(Note 5)  
0.2  
3
5
0.2  
4
6
nA  
nA  
Input Bias Current  
*Input Bias Current  
(Note 4)  
(Note 5)  
15  
20  
25  
20  
25  
50  
nA  
35  
50  
65  
80  
nA  
nA  
Indicates parameters which are guaranteed for all supply voltages, including a single 5V supply. See Note 5.  
*
2
LT1011/LT1011A  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature range, otherwide specifications are at TA = 25°C.  
VS = ±15V, VCM = 0V, RS = 0, V1 = –15V, output at pin 7 unless otherwise noted.  
LT1011AC/AI/AM  
LT1011C/I/M  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN T TMAX  
MIN  
TYP  
MAX  
MIN  
VOS  
T  
Input Offset Voltage Drift  
(Note 6)  
*Large-Signal Voltage Gain RL = 1k to 15V,  
–10V VOUT 14.5V  
T
4
15  
4
25  
µV/°C  
V/mV  
V/mV  
dB  
AVOL  
200  
50  
500  
300  
115  
200  
50  
500  
300  
115  
RL = 500to 5V,  
0.5V VOUT 4.5V  
CMRR  
Common Mode  
Rejection Ratio  
94  
90  
*Input Voltage Range  
(Note 9)  
VS = ±15V  
VS = Single 5V  
–14.5  
0.5  
13  
3
–14.5  
0.5  
13  
3
V
V
tD  
*Response Time  
(Note 7)  
150  
250  
150  
250  
ns  
VOL  
*Output Saturation Voltage, VIN = 5mV, ISINK = 8mA, TJ 100°C  
0.25  
0.25  
0.70  
0.40  
0.45  
1.50  
0.25  
0.25  
0.70  
0.40  
0.45  
1.50  
V
V
V
V1 = 0  
VIN = 5mV, ISINK = 8mA  
VIN = 5mV, ISINK = 50mA  
*Output Leakage Current  
VIN = 5mV, V1 = –15V,  
VOUT = 35V (25V for LT1011C/I)  
0.2  
10  
500  
0.2  
10  
500  
nA  
nA  
*Positive Supply Current  
*Negative Supply Current  
3.2  
1.7  
4.0  
2.5  
3.2  
1.7  
4.0  
2.5  
mA  
mA  
µA  
*Strobe Current  
(Note 8)  
Minimum to Ensure Output  
Transistor is Off  
500  
500  
Input Capacitance  
6
6
pF  
Indicates parameters which are guaranteed for all supply voltages, including a single 5V supply. See Note 5.  
*
Note 1: Absolute Maximum Ratings are those values beyond which the  
life of a device may be impaired.  
Note 6: Drift is calculated by dividing the offset voltage difference  
measured at min and max temperatures by the temperature difference.  
Note 2: Inputs may be clamped to supplies with diodes so that  
maximum input voltage actually exceeds supply voltage by one diode  
drop. See Input Protection in the Applications Information section.  
Note 7: Response time is measured with a 100mV step and 5mV  
overdrive. The output load is a 500resistor tied to 5V. Time  
measurement is taken when the output crosses 1.4V.  
Note 3: TJMAX = 150°C.  
Note 4: Output is sinking 1.5mA with VOUT = 0V.  
Note 8: Do not short the STROBE pin to ground. It should be current  
driven at 3mA to 5mA for the shortest strobe time. Currents as low as  
500µA will strobe the LT1011A if speed is not important. External  
leakage on the STROBE pin in excess of 0.2µA when the strobe is “off”  
can cause offset voltage shifts.  
Note 5: These specifications apply for all supply voltages from a single  
5V to ±15V, the entire input voltage range, and for both high and low  
output states. The high state is ISINK 100µA, VOUT (V+ – 1V) and  
the low state is ISINK 8mA, VOUT 0.8V. Therefore, this specification  
defines a worst-case error band that includes effects due to common  
mode signals, voltage gain and output load.  
Note 9: See graph “Input Offset Voltage vs Common Mode Voltage.”  
3
LT1011/LT1011A  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Input Bias Current  
Input Offset Current  
Worst-Case Offset Error  
100  
10  
1
45  
40  
35  
30  
25  
20  
15  
10  
5
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
FLOWS OUT  
B
OF INPUTS  
LM311  
(FOR COMPARISON)  
LT1011M  
LT1011C  
LT1011AM  
LT1011AC  
0.1  
0
1k  
10k  
100k  
1M  
0
0
150  
25 50 75 100 125  
50 25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
1011 G01  
50 25  
SOURCE RESISTANCE ()  
TEMPERATURE (°C)  
1011 G03  
1011 G01  
Input Characteristics*  
Common Mode Limits  
Transfer Function (Gain)  
+
50  
40  
30  
20  
10  
0
V
5
0
T
= 25°C  
A
*EITHER INPUT.  
0.5  
–1.0  
–1.5  
2.0  
0.4  
REMAINING INPUT GROUNDED.  
CURRENT FLOWS OUT OF INPUT.  
COLLECTOR  
OUTPUT  
POSITIVE LIMIT  
–5  
V
S
= ±15V  
R
L
= 1k  
–10  
–15  
20  
25  
30  
35  
40  
REFERRED TO SUPPLIES  
NEGATIVE LIMIT  
0.3  
0.2  
EMITTER  
OUTPUT  
0.1  
R
L
= 600Ω  
V
–10  
50 25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
1011 G05  
– 0.5  
0.3  
0.1  
0.1  
0.3  
0.5  
20 –15  
–5  
0
5
10 15 20  
INPUT VOLTAGE (V)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
1011 G04  
1011 G06  
Collector Output Saturation  
Voltage  
Response Time—Collector Output  
Response Time—Collector Output  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= ±15V  
V = ±15V  
S
PIN 1 GROUNDED  
S
15V  
5V  
500  
V
+
IN  
OVERDRIVE  
20mV  
5mV  
2mV  
T
= 125°C  
OVERDRIVE  
A
20mV  
5mV  
2mV  
15V  
5V  
T
= 25°C  
A
500Ω  
V
+
–15V  
IN  
T
= 55°C  
A
–15V  
100mV  
0
100mV  
0
INPUT = 100mV STEP  
INPUT = 100mV STEP  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
0
5
10 15 20 25 30 35 40 45 50  
SINK CURRENT (mA)  
1011 G09  
TIME (ns)  
TIME (ns)  
1011 G07  
1011 G08  
4
LT1011/LT1011A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Response Time Using GND Pin  
as Output  
Response Time Using GND Pin  
as Output  
Output Limiting Characteristics*  
140  
120  
100  
80  
0.7  
+
V
T = 25°C  
A
15  
10  
15  
10  
20mV  
5mV  
2mV  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
IN  
+
POWER  
V
DISSIPATION  
5
5
V
V
IN  
OUT  
0
0
2k  
–5  
–10  
–15  
0
–5  
–10  
–15  
0
V
OUT  
V
2k  
60  
SHORT-CIRCUIT  
CURRENT  
5mV  
2mV  
20mV  
V
40  
V
= ±15V  
= 25°C  
S
A
50  
–100  
50  
–100  
T
20  
V
= ±15V  
= 25°C  
S
A
*MEASURED 3 MINUTES  
AFTER SHORT  
T
0
0
2
TIME (µs)  
3
4
0
2
3
4
0
5
10  
OUTPUT VOLTAGE (V)  
15  
1
1
TIME (µs)  
1011 G10  
1011 G11  
1011 G12  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Output Leakage Current  
–7  
–8  
–9  
5
4
3
2
10  
10  
10  
6
5
4
3
V
S
= ±15V  
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
V
OUT  
V
GND  
= 35V  
= –15V  
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
2
1
0
–10  
–11  
10  
10  
1
0
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
0
10  
15  
20  
25  
30  
5
50  
TEMPERATURE (˚C)  
100 125  
–50 –25  
0
25  
75  
25  
45  
65  
85  
105  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1011 G15  
1011 G13  
1011 G14  
Output Saturation—  
Ground Output  
Output Saturation Voltage  
Response Time vs Input Step Size  
0.6  
5
4
3
2
1
0
1000  
800  
+
I
= 8mA  
V
= ±15V  
S
L
REFERRED TO V  
SINK  
+
V
2
8
R
= 500TO 5V  
+
0.5  
0.4  
0.3  
0.2  
0.1  
0
OVERDRIVE = 5mV  
7
LT1011  
T = 125°C  
J
5V  
3
1
R
L
3
500  
7
INPUT  
4
V
600  
OUT  
V
T
= 55°C  
J
T = 25°C  
J
2
+
1
400  
200  
0
T
= 25°C  
J
RISING INPUT  
FALLING INPUT  
T = 55°C  
J
T
= 125°C  
J
5
6
0
1
2
3
4
7
8
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
10  
INPUT OVERDRIVE (mV)  
OUTPUT CURRENT (mA)  
INPUT STEP (V)  
1011 G17  
1011 G16  
1011 G18  
5
LT1011/LT1011A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage  
vs Common Mode Voltage  
Offset Pin Characteristics  
2.5  
2.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
J
1.5  
CHANGE IN V FOR CURRENT  
OS  
1.0  
UPPER  
INTO PINS 5 OR 6  
COMMON MODE  
+
0.5  
LIMIT = V – (1.5V)  
0
VOLTAGE ON PINS 5 AND 6  
0.5  
–1.0  
–1.5  
2.0  
2.5  
+
WITH RESPECT TO V  
–150mV  
–100mV  
50mV  
V
(OR GND WITH  
SINGLE SUPPLY)  
0
+
25  
150  
50 75 100 125  
V
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
COMMON MODE VOLTAGE (V)  
V
50 25  
0
TEMPERATURE (°C)  
1011 G19  
1011 G20  
U
W U U  
APPLICATIONS INFORMATION  
Preventing Oscillation Problems  
BALANCE pins, which are nearly as sensitive as the  
inputs.  
Oscillation problems in comparators are nearly always  
caused by stray capacitance between the output and  
inputs or between the output and other sensitive pins on  
the comparator. This is especially true with high gain  
bandwidth comparators like the LT1011, which are  
designed for fast switching with millivolt input signals.  
The gain bandwidth product of the LT1011 is over 10GHz.  
Oscillation problems tend to occur at frequencies around  
5MHz, where the LT1011 has a gain of 2000. This  
implies that attenuation of output signals must be at  
least 2000:1 at 5MHz as measured at the inputs. If the  
source impedance is 1k, the effective stray capaci-  
tance between output and input must have a reactance  
of more than (2000)(1k) = 2M, or less than 0.02pF.  
The actual interlead capacitance between input and out-  
put pins on the LT1011 is less than 0.002pF when cut to  
printed circuit mount length. Additional stray capaci-  
tance due to printed circuit traces must be minimized by  
routing the output trace directly away from input lines  
and, if possible, running ground traces next to input  
traces to provide shielding. Additional steps to ensure  
oscillation-free operation are:  
2. Bypass the negative supply (Pin 4) with a 0.1µF  
ceramic capacitor close to the comparator. 0.1µF can  
also be used for the positive supply (Pin 8) if the pull-  
up load is tied to a separate supply. When the pull-up  
load is tied directly to Pin 8, use a 2µF solid tantalum  
bypass capacitor.  
3. Bypass any slow moving or DC input with a capacitor  
(0.01µF) close to the comparator to reduce high  
frequency source impedance.  
4. Keep resistive source impedance as low as possible. If  
a resistor is added in series with one input to balance  
source impedances for DC accuracy, bypass it with a  
capacitor. The low input bias current of the LT1011  
usually eliminates any need for source resistance bal-  
ancing. A 5kimbalance, for instance, will create only  
0.25mV DC offset.  
5. Use hysteresis. This consists of shifting the input  
offset voltage of the comparator when the output  
changes state. Hysteresis forces the comparator to  
move quickly through its linear region, eliminating  
oscillations by “overdriving” the comparator under all  
input conditions. Hysteresis may be either AC or DC.  
AC techniques do not shift the apparent offset voltage  
1. Bypass the STROBE/BALANCE pins with a 0.01µF  
capacitor connected from Pin 5 to Pin 6. This elimi-  
nates stray capacitive feedback from the output to the  
6
LT1011/LT1011A  
U
W U U  
APPLICATIONS INFORMATION  
8
7
6
5
C8 TO C6 = 0.003µF  
of the comparator, but require a minimum input signal  
slew rate to be effective. DC hysteresis works for all  
input slew rates, but creates a shift in offset voltage  
dependent on the previous condition of the input sig-  
nal. The circuit shown in Figure 1 is an excellent  
compromise between AC and DC hysteresis.  
4
3
2
1
OUTPUT “LO” TO “HI”  
15V  
0
OUTPUT “HI” TO “LO”  
(5kHz)  
+
–1  
–2  
2µF  
(50kHz)  
10  
C1  
R
TANT  
L
R2  
15M  
0.003µF  
8
1
100  
1000  
+
3
2
6
TIME/FREQUENCY (µs)  
5
7
1011 F02  
OUTPUT  
INPUTS  
LT1011  
1
Figure 2. Input Offset Voltage vs Time to Last Transition  
4
–15V  
0.1µF  
error is created by the AC hysteresis. The high  
frequency error can be reduced by reducing CH, but  
lower values may not provide clean switching with  
very low slew rate input signals.  
1011 F01  
Figure 1. Comparator with Hysteresis  
This circuit is especially useful for general purpose  
comparator applications because it does not force any  
signals directly back onto the input signal source.  
Instead, it takes advantage of the unique properties of  
the BALANCE pins to provide extremely fast, clean  
output switching even with low frequency input sig-  
nals in the millivolt range. The 0.003µF capacitor from  
Pin 6 to Pin 8 generates AC hysteresis because the  
voltage on the BALANCE pins shifts slightly, depend-  
ing on the state of the output. Both pins move about  
4mV. If one pin (6) is bypassed, AC hysteresis is  
created. It is only a few millivolts referred to the in-  
puts, but is sufficient to switch the output at nearly the  
maximum speed of which the comparator is capable.  
To prevent problems from low values of input slew  
rate, a slight amount of DC hysteresis is also used. The  
sensitivity of the BALANCE pins to current is about  
0.5mV input referred offset for each microampere of  
BALANCE pin current. The 15M resistor tied from  
OUTPUT to Pin 5 generates 0.5mV DC hysteresis. The  
combination of AC and DC hysteresis creates clean  
oscillation-free switching with very small input errors.  
Figure 2 plots input referred error versus switching  
frequency for the circuit as shown.  
Input Protection  
The inputs to the LT1011 are particularly suited to general  
purpose comparator applications because large differen-  
tial and/or common mode voltages can be tolerated with-  
out damage to the comparator. Either or both inputs can  
be raised 40V above the negative supply, independent of  
thepositivesupplyvoltage.Internalforwardbiaseddiodes  
will conduct when the inputs are taken below the negative  
supply. In this condition, input current must be limited to  
1mA. If very large (fault) input voltages must be accom-  
modated, series resistors and clamp diodes should be  
used (see Figure 3).  
+
V
R3*  
D1  
D3  
D2  
R1**  
R2**  
300Ω  
3
2
8
LT1011  
4
+
R4*  
300Ω  
INPUTS  
D4  
D1 TO D4: 1N4148  
*MAY BE ELIMINATED FOR I  
**SELECT ACCORDING TO ALLOWABLE  
FAULT CURRENT AND POWER DISSIPATION  
V
1mA  
FAULT  
1011 F03  
Note that at low frequencies, the error is simply the DC  
hysteresis, while at high frequencies, an additional  
Figure 3. Limiting Fault Input Currents  
7
LT1011/LT1011A  
U
W U U  
APPLICATIONS INFORMATION  
15V  
8
5V  
The input resistors should limit fault current to a reason-  
able value (0.1mA to 20mA). Power dissipation in the  
resistors must be considered for continuous faults, espe-  
cially when the LT1011 supplies are off. One final caution:  
lightlyloadedsuppliesmaybeforcedtohighervoltagesby  
large fault currents flowing through D1-D4.  
R
L
+
7
LT1011  
OUTPUT  
1
6
4
TTL OR  
CMOS DRIVE  
(5V SUPPLY)  
–15  
R3 and R4 limit input current to the LT1011 to less than  
1mA when the input signals are held below V. They may  
be eliminated if R1 and R2 are large enough to limit fault  
current to less than 1mA.  
3k  
1011 F04  
Figure 4. Typical Strobe Circuit  
Input Slew Rate Limitations  
The response time of a comparator is typically measured  
with a 100mV step and a 5mV to 10mV overdrive. Unfor-  
tunately, thisdoesnotsimulatemanyrealworldsituations  
where the step size is typically much larger and overdrive  
can be significantly less. In the case of the LT1011, step  
size is important because the slew rate of internal nodes  
will limit response time for input step sizes larger than 1V.  
At5Vstepsize,forinstance,responsetimeincreasesfrom  
150ns to 360ns. See the curve “Response Time vs Input  
Step Size for more detail.  
level inputs. A 1pF capacitor between the output and Pin 5  
will greatly reduce oscillation problems without reducing  
strobe speed.  
DC hysteresis can also be added by placing a resistor from  
output to Pin 5. See step 5 under “Preventing Oscillation  
Problems.”  
Thepin(6)usedforstrobingisalsooneoftheoffsetadjust  
pins.CurrentflowintooroutofPin6mustbekeptverylow  
(<0.2µA)whennotstrobingtopreventinputoffsetvoltage  
shifts.  
If response time is critical and large input signals are  
expected, clamp diodes across the inputs are recom-  
mended. The slew rate limitation can also affect perfor-  
mance when differential input voltage is low, but both  
inputs must slew quickly. Maximum suggested common  
mode slew rate is 10V/µs.  
Output Transistor  
The LT1011 output transistor is truly floating in the sense  
that no current flows into or out of either the collector or  
emitter when the transistor is in the “off” state. The  
equivalent circuit is shown in Figure 5.  
Strobing  
+
V
The LT1011 can be strobed by pulling current out of the  
STROBE pin. The output transistor is forced to an “off”  
state, giving a “hi” output at the collector (Pin 7). Currents  
as low as 250µA will cause strobing, but at low strobe  
currents, strobe delay will be 200ns to 300ns. If strobe  
current is increased to 3mA, strobe delay drops to about  
60ns.ThevoltageattheSTROBEpinisabout150mVbelow  
V+ at zero strobe current and about 2V below V+ for 3mA  
strobe current. Do not ground the STROBE pin. It must be  
current driven. Figure 4 shows a typical strobe circuit.  
I
1
0.5mA  
D1  
D2  
COLLECTOR  
(OUTPUT)  
Q1  
R1  
170Ω  
OUTPUT  
TRANSISTOR  
Q2  
V
R2  
470Ω  
EMITTER  
(GND PIN) 1011 F05  
Note that there is no bypass capacitor between Pins 5 and  
6. This maximizes strobe speed, but leaves the compara-  
tor more sensitive to oscillation problems for slow, low  
Figure 5. Output Transistor Circuitry  
8
LT1011/LT1011A  
U
W U U  
APPLICATIONS INFORMATION  
Intheoffstate,I1 isswitchedoffandbothQ1andQ2turn  
off. The collector of Q2 can be now held at any voltage  
above Vwithout conducting current, including voltages  
above the positive supply level. Maximum voltage above  
Vis50VfortheLT1011Mand40VfortheLT1011C/I. The  
emitter can be held at any voltage between V+ and Vas  
long as it is negative with respect to the collector.  
designations must be reversed. When the collector is tied  
to V+, the voltage at the emitter in the “on” state is about  
2V below V+ (see curves).  
Input Signal Range  
The common mode input voltage range of the LT1011 is  
about 300mV above the negative supply and 1.5V below  
the positive supply, independent of the actual supply  
voltages (see curve in the Typical Performance Character-  
istics). This is the voltage range over which the output will  
respond correctly when the common mode voltage is  
applied to one input and a higher or lower signal is applied  
to the remaining input. If one input is inside the common  
mode range and one is outside, the output will be correct.  
If the inputs are outside the common mode range in  
opposite directions, the output will still be correct. If both  
inputs are outside the common mode range in the same  
direction, the output will not respond to the differential  
input;itwillremainunconditionallyhigh(collectoroutput)  
except at 40°C where it is undefined.  
In the “on” state, I1 is connected, turning on Q1 and Q2.  
Diodes D1 and D2 prevent deep saturation of Q2 to  
improve speed and also limit the drive current of Q1. The  
R1/R2 divider sets the saturation voltage of Q2 and pro-  
vides turn-off drive. Either the collector or emitter pin can  
be held at a voltage between V+ and V. This allows the  
remaining pin to drive the load. In typical applications, the  
emitter is connected to Vor ground and the collector  
drives a load tied to V+ or a separate positive supply.  
When the emitter is used as the output, the collector is  
typically tied to V+ and the load is connected to ground or  
V. Note that the emitter output is phase reversed with  
respecttothecollectoroutputsothatthe+andinput  
U
TYPICAL APPLICATIONS  
Offset Balancing  
Driving Load Referenced  
to Positive Supply  
Driving Load Referenced  
to Negative Supply  
R2  
3k  
+
+
++  
V
V
V
V
R1  
3
2
2
3
8
8
+
R
+
LOAD  
+
20k  
V
7
5
7
LT1011  
INPUTS*  
LT1011  
2
3
6
1
1
+
8
4
7
R
LT1011  
LOAD  
4
V
V
OR  
GROUND  
1011 TA03  
V
1011 TA06  
++  
+
V
CAN BE GREATER OR LESS THAN V  
*INPUT POLARITY IS REVERSED  
WHEN USING PIN 1 AS OUTPUT  
1011 TA05  
9
LT1011/LT1011A  
U
TYPICAL APPLICATIONS  
Strobing  
Driving Ground Referred Load  
Window Detector  
+
++**  
+
V
V
V
2
+
2
3
R
HIGH  
7
L
2
3
+
8
LT1011  
LIMIT  
+
7
7
3
7
LT1011  
INPUTS*  
LT1011  
6
OUTPUT HIGH  
1
1
INSIDE “WINDOW”  
AND LOW ABOVE  
HIGH LIMIT OR  
TTL  
STROBE  
L1  
4
V
IN  
BELOW LOW LIMIT  
2
3
1k  
V
1011 TA07  
+
*INPUT POLARITY IS REVERSED  
1011 TA04  
LT1011  
WHEN USING PIN 1 AS OUTPUT  
LOW  
LIMIT  
++  
++  
NOTE: DO NOT GROUND STROBE PIN  
**V MAY BE ANY VOLTAGE ABOVE V .  
1
PIN 1 SWINGS TO WITHIN 2V OF V  
1011 TA08  
Crystal Oscillator  
Using Clamp Diodes to Improve Frequency Response*  
CURRENT MODE  
5V  
2
3
10k  
INPUT  
+
(DAC, ETC)  
7
LT1011  
OUTPUT  
D1  
D2  
1k  
50k  
2
3
8
+
VOLTAGE  
INPUT  
7
85kHz  
100pF  
LT1011  
OUT  
4
R1  
GROUND OR  
LOW IMPEDANCE  
REFERENCE  
1
10k  
*SEE CURVE, “RESPONSE TIME vs INPUT STEP SIZE”  
1011 TA09  
10k  
1011 TA10  
Noise Immune 60Hz Line Sync**  
High Efficiency** Motor Speed Controller  
15V  
5V  
+
R3  
1k  
C1  
50µF  
R2  
75k  
R1  
1k  
Q1  
2V  
TO  
25V  
RMS  
2N6667  
5V  
R1*  
RMS  
330k  
3
2
60Hz  
INPUT  
8
1N4002  
+
7
MOTOR-TACH  
GLOBE 397A120-2  
OUTPUT  
60Hz  
C1  
0.22µF  
LT1011  
1
R2  
R3*  
10k  
470Ω  
R4  
4
MOTOR TACH  
27k  
R6  
27k  
15V  
8
R6  
2k  
R5  
1011 TA11  
5V  
100k  
2
3
R5  
10k  
+
*INCREASE R1 FOR LARGER INPUT VOLTAGES  
7
C2*  
C3  
0.1µF  
R7  
1k  
**LT1011 SELF OSCILLATES AT 60Hz CAUSING  
LT1011  
0.1µF  
IT TO “LOCK” ONTO INCOMING LINE SIGNAL  
1
1011 TA12  
R4  
1k  
4
*R3/C2 DETERMINES OSCILLATION  
FREQUENCY OF CONTROLLER  
**Q1 OPERATES IN SWITCH MODE  
– 5V TO  
–15V  
0V TO 10V  
INPUT  
10  
LT1011/LT1011A  
U
TYPICAL APPLICATIONS  
Combining Offset Adjust and Strobe  
Combining Offset Adjustment and Hystersis  
+
V
+
V
5k  
R *  
10k  
2R **  
H
H
*HYSTERESIS IS 0.45mV/µA OF  
CURRENT CHANGE IN R  
20k  
H
20k  
5
6
**  
THIS RESISTOR CAUSES HYSTERESIS  
R
TTL OR CMOS  
5V  
L
+
TO BE CENTERED AROUND V  
OS  
5
6
7
1011 TA15  
LT1011  
LT1011  
1k  
+
1
1011 TA13  
Direct Strobe Drive When CMOS* Logic  
Uses Same V+ Supply as LT1011  
Low Drift R/C Oscillator†  
+
V
**  
8
15V  
15V  
74HC04  
×6  
6
2
3
8
1k  
LT1011  
+
C1  
0.015µF  
+
1011 TA14  
7
BUFFERED  
OUTPUT  
LT1011  
4
*NOT APPLICABLE FOR TTL LOGIC  
1
Positive Peak Detector  
15V  
10k*  
10k*  
15V  
2k  
3
2
8
*1% METAL FILM  
10k*  
INPUT  
**TRW TYPE MTR-5/120ppm/°C, 25k R 200k  
S
7
C1: 0.015µF = POLYSTYRENE, –120ppm/°C,  
±30ppm WESCO TYPE 32-P  
NOTE: COMPARATOR CONTRIBUTES 10ppm/°C DRIFT  
LT1011  
1011 TA16  
2
1
+
6
FOR FREQUENCIES BELOW 10kHz  
OUTPUT  
LT1008  
4
10k  
3
LOW DRIFT AND ACCURATE FREQUENCY ARE  
OBTAINED BECAUSE THIS CONFIGURATION  
REJECTS EFFECTS DUE TO INPUT OFFSET  
VOLTAGE AND BIAS CURRENT OF THE  
COMPARATOR  
8
1M**  
+
100pF  
C1*  
2µF  
1011 TA17  
–15V  
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
Negative Peak Detector  
15V  
2
+
1M**  
3
6
8
OUTPUT  
LT1008  
8
10k  
7
3
LT1011  
4
2k  
2
1
+
100pF  
INPUT  
+
C1*  
2µF  
1011 TA18  
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
–15V  
11  
LT1011/LT1011A  
U
TYPICAL APPLICATIONS  
4-Digit (10,000 Count) A/D Converter  
15V  
INPUT  
0V TO 10V  
15V  
ZERO  
TRIM  
R1  
1k  
C4  
R5  
4.7k  
5V  
0.01µF  
R2  
18k  
8
C5  
0.01µF  
R6  
2
1
+
4.7K  
6
1
7
LT1011  
2
OUTPUT = 1 COUNT  
PER mV, f = 1MHz  
3
3
5
CLOCK  
1MHz  
LF398  
4
6
R7  
5V  
4
7
22Ω  
D1  
D2  
–15V  
R3  
8
3.9k  
15V  
–15V  
C1*  
0.1µF  
C2**  
15pF  
C3  
0.1µF  
R11  
6.8K  
R4  
5.6k  
R8  
3k  
R10  
D3  
D4  
1k  
15V  
R9  
3.65k  
FULL-SCALE  
TRIM  
R12  
6.8k  
2N3904  
C6  
50pF  
LM329  
ALL DIODES: 1N4148  
*POLYSTYRENE  
**NPO  
1011 TA19  
START  
12ms  
Capacitance to Pulse Width Converter  
T
T
[C  
MAX  
10 • C  
(pF)][1µs/pF]  
MAX  
H
L
• (1µs/pF)  
D1  
TTL OR CMOS  
(OPERATING  
ON 5V)  
GAIN ADJ  
5V  
R2  
100k  
R1  
5k  
R1 + R4  
R1  
*PW = (R2 + R3)(C)  
, INPUT CAPACITANCE OF  
(
)
R3  
86.6k  
8
0.01µF  
R5  
4.7k  
LT1011 IS 6pF. THIS IS AN OFFSET TERM.  
2
3
+
+
6
1
**TYPICAL 2 SECTIONS OF 365pF VARIABLE  
CAPACITOR WHEN USED AS SHAFT ANGLE  
INDICATION  
7
OUTPUT  
1µs/pF  
10µF  
LT1011  
4
THESE COMPONENTS MAY BE ELIMINATED IF  
NEGATIVE SUPPLY IS AVAILABLE (–1V TO –15V)  
C**  
D3  
10µF  
D2  
+
1011 TA20  
12  
LT1011/LT1011A  
U
TYPICAL APPLICATIONS  
Fast Settling* Filter  
100pF  
1M  
15V  
7
2
3
1M  
6
OUTPUT  
LT1008C  
4.7k  
8
V
IN  
1
4
4.7k  
1µF  
–15V 15V  
4
OFM-1A**  
1.5k  
–15V 100pF  
0.1µF  
100k  
2
3
8
7
1
LT1011  
5
+
6
15V  
15V  
5k  
THRESHOLD  
5k  
6
+
5
7
1
LT1011  
8
4
10k  
–15V 15V  
1011 TA21  
100kHz Precision Rectifier  
0.033µF  
100Ω  
5V  
5V  
5V  
5V  
1k  
2
8
AC INPUT  
+
12k  
74C04  
5k  
ZERO  
CROSS  
TRIM  
820Ω  
7
LT1011  
HP5082-2800  
×4  
3
1
5V  
RECTIFIED  
OUTPUT  
4
5V  
5V  
1k  
820Ω  
74C04  
5V  
12k  
5V  
1011 TA23  
13  
LT1011/LT1011A  
W
W
SCHE ATIC DIAGRA  
+
OFFSET  
5
OFFSET/STROBE  
6
V
8
R8  
800  
R9  
800Ω  
Q6  
Q10  
R1  
1.3k  
R2  
1.3k  
R4  
300Ω  
R3  
300Ω  
R23  
4k  
R27  
3k  
R5  
160Ω  
Q11  
Q5  
Q31  
Q12  
R10  
4k  
R6  
3.2k  
R7  
3.2k  
Q13  
D1 D2  
Q30  
R11  
170Ω  
INPUT  
(+)  
Q8  
Q7  
D4  
OUTPUT  
7
D6  
Q29  
Q14  
2
Q3  
Q20  
R22  
200Ω  
Q1  
Q15  
Q9 Q19  
Q28  
R12  
470Ω  
INPUT  
(–)  
D5  
Q4  
D7  
Q27  
R16  
800Ω  
3
Q2  
Q24  
Q16  
R17  
200Ω  
R24  
400Ω  
R13  
4Ω  
Q26  
Q23  
Q21  
Q25  
R15  
700Ω  
R20  
940Ω  
1
Q22  
Q18  
Q17  
GND  
R25  
1.6k  
R26  
1.6k  
R19  
500Ω  
R18  
275Ω  
R21  
960Ω  
R14  
4.8k  
D3  
4
1011 SD  
V
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
H Package  
8-Lead TO-5 Metal Can (0.230 PCD)  
(LTC DWG # 05-08-1321)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.270)  
MAX  
(1.016)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
0.230  
(5.842)  
REFERENCE  
PLANE  
SEATING  
PLANE  
TYP  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
H8 (TO-5) 0.230 PCD 1197  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
14  
LT1011/LT1011A  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
CORNER LEADS OPTION  
(4 PLCS)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.045 – 0.068  
0.300 BSC  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
(0.762 BSC)  
6
5
4
8
7
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.457)  
1
2
3
J8 1197  
0.045 – 0.068  
(1.143 – 1.727)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
(2.540 ± 0.254)  
(0.360 – 0.660)  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
N8 1197  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
+0.889  
8.255  
(
)
(0.457 ± 0.076)  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 0996  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT1011/LT1011A  
U
TYPICAL APPLICATION  
10Hz to 100kHz Voltage to Frequency Converter  
R7  
4.7k  
R4  
1M  
15V  
15V  
R1  
C1  
0.002µF  
4.7k  
POLYSTYRENE  
LT1009  
2.5V  
15V  
R2  
5k  
R5  
R6  
15V  
8
2k  
FULL-SCALE  
TRIM  
R3  
2k  
LINEARITY 0.01%  
8.06k  
3
2
INPUT  
0V TO 10V  
+
R8  
4.7k  
C2  
0.68µF  
7
LT1011  
1
15V  
–15V  
4
1.5µs  
R17  
22M  
6
R16  
50k  
10Hz TRIM  
4.4V  
–15V  
15V  
0.002µF  
–15V  
R9  
5k  
15V  
TTL OUTPUT  
10HZ TO 100kHz  
15V  
R11  
20k  
10pF  
1.5µs  
Q2  
R10  
2.7k  
ALL DIODES 1N4148  
R15 R14  
22k 1k  
TRANSISTORS 2N3904  
USED ONLY TO GUARANTEE  
START-UP  
*
R12  
100k  
1011 TA22  
Q1*  
MAY BE INCREASED FOR BETTER  
10Hz TRIM RESOLUTION  
+
R13  
620k  
2µF  
–15V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
UltraFastTM Precision Comparator  
COMMENTS  
LT1016  
Industry Standard 10ns Comparator  
Single Supply Version of the LT1016  
7ns, 6mA Single Supply Comparator  
450µA Single Supply Comparator  
LT1116  
12ns Single Supply Ground-Sensing Comparator  
UltraFast Single Supply Comparator  
60ns, Low Power Comparator  
LT1394  
LT1671  
UltraFast is a trademark of Linear Technology Corporation.  
1011fa LT/TP 0699 2K REV A • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1991  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LT1011ACH

Voltage Comparator
Linear

LT1011ACH#PBF

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, LEAD FREE, TO-5, 8 PIN, Comparator
Linear

LT1011ACH#TR

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator
Linear

LT1011ACJ8

Voltage Comparator
Linear

LT1011ACJG

Analog Comparator
ETC

LT1011ACL

Analog Comparator
ETC

LT1011ACN8

Voltage Comparator
Linear

LT1011ACN8#PBF

LT1011/LT1011A - Voltage Comparator; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1011ACP

Analog Comparator
ETC

LT1011AIS8

Voltage Comparator
Linear

LT1011AIS8#PBF

LT1011/LT1011A - Voltage Comparator; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1011AIS8#TR

Comparator, 1 Func, 1000uV Offset-Max, 150ns Response Time, BIPolar, PDSO8
Linear