LT1011ACN8#PBF [Linear]

LT1011/LT1011A - Voltage Comparator; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C;
LT1011ACN8#PBF
型号: LT1011ACN8#PBF
厂家: Linear    Linear
描述:

LT1011/LT1011A - Voltage Comparator; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总20页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1011/LT1011A  
Voltage Comparator  
FeaTures  
DescripTion  
The LT®1011 is a general purpose comparator with sig-  
nificantly better input characteristics than the LM111.  
Although pin compatible with the LM111, it offers four  
times lower bias current, six times lower offset voltage  
and five times higher voltage gain. Offset voltage drift,  
a previously unspecified parameter, is guaranteed at  
15µV/°C. Additionally, the supply current is lower by  
a factor of two with no loss in speed. The LT1011 is  
several times faster than the LM111 when subjected to  
large overdrive conditions. It is also fully specified for DC  
parameters and response time when operating on a single  
5V supply. The LT1011 retains all the versatile features of  
the LM111, including single 3V to 1ꢀV supply operation,  
and a floating transistor output with 50mA source/sink  
capability. It can drive loads referenced to ground, nega-  
tive supply or positive supply, and is specified up to 50V  
n
Pin Compatible with LM111 Series Devices  
n
Guaranteed Max 0.5mV Input Offset Voltage  
n
Guaranteed Max 25nA Input Bias Current  
n
Guaranteed Max 3nA Input Offset Current  
n
Guaranteed Max 250ns Response Time  
n
Guaranteed Min 200,000 Voltage Gain  
n
50mA Output Current Source or Sink  
n
30V Differential Input Voltage  
n
Fully Specified for Single 5V Operation  
n
Available in ꢀ-Lead PDIP and SO Packages  
applicaTions  
n
SAR A/D Converters  
n
Voltage-to-Frequency Converters  
n
Precision RC Oscillator  
n
Peak Detector  
between V and the collector output. A differential input  
n
Motor Speed Control  
voltage up to the full supply voltage is allowed, even with  
1ꢀV supplies, enabling the inputs to be clamped to the  
supplies with simple diode clamps.  
n
Pulse Generator  
n
Relay/Lamp Driver  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
10µs 12-Bit A/D Converter  
3.9k  
Response Time vs Overdrive  
R1  
1k  
15V  
LM329  
7V  
500  
450  
FULL-SCALE  
TRIM  
*R2 AND R4  
SHOULD TC TRACK  
–15V  
R2*  
6.49k  
R3  
6.98k  
400  
350  
0.001µF  
15V  
INPUT  
0V TO 10V  
300  
250  
5V  
FALLING  
OUTPUT  
6012  
12-BIT  
D/A CONVERTER  
R4*  
2.49k  
R5  
1k  
200  
150  
100  
50  
RISING  
OUTPUT  
+
R6  
LT1011A  
820Ω  
PARALLEL  
OUTPUTS  
PARALLEL  
OUTPUTS  
0
0.1  
1
10  
100  
SERIAL OUTPUT  
OVERDRIVE (mV)  
1011 TA02  
7475  
LATCH  
D
AM2504  
SAR REGISTER  
5V  
CC  
S
E
S
CP  
START  
CLOCK f = 1.4MHz  
1011 TA01  
1011afe  
1
For more information www.linear.com/LT1011  
LT1011/LT1011A  
absoluTe MaxiMuM raTings  
(Note 1)  
Supply Voltage (Pin ꢀ to Pin 4) .................................36V  
Output to Negative Supply (Pin 7 to Pin 4)  
Input Voltage (Note 2)..........................Equal to Supplies  
Output Short-Circuit Duration...............................10 sec  
Operating Temperature Range (Note 3)  
LT1011AC, LT1011C.................................. 0°C to 70°C  
LT1011AI, LT1011I................................–40°C to ꢀ5°C  
LT1011AM, LT1011M (OBSOLETE)..... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
LT1011AC, LT1011C...............................................40V  
LT1011AI, LT1011I.................................................40V  
LT1011AM, LT1011M (OBSOLETE)........................50V  
Ground to Negative Supply (Pin 1 to Pin 4) ..............30V  
Differential Input Voltage ........................................ 36V  
Voltage at STROBE Pin (Pin 6 to Pin ꢀ).......................5V  
pin conFiguraTion  
TOP VIEW  
+
V
TOP VIEW  
+
8
GND  
+
1
3
7
5
OUTPUT  
BALANCE/  
GND  
1
2
3
4
V
8
7
6
5
+
INPUT  
OUTPUT  
BALANCE/  
STROBE  
+
+
INPUT  
2
6
STROBE  
INPUT  
BALANCE  
INPUT  
V
BALANCE  
4
V
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
H PACKAGE  
8-LEAD TO-5 METAL CAN  
T
= 150°C, θ = 130°C/W(Nꢀ)  
JA  
= 150°C, θ = 150°C/W(Sꢀ)  
JA  
JMAX  
T
JMAX  
T
= 150°C, θ = 150°C/W, θ = 45°C/W  
JA JC  
JMAX  
OBSOLETE PACKAGE  
Consider the Nꢀ or Sꢀ Packages for Alternate Source  
1011afe  
2
For more information www.linear.com/LT1011  
LT1011/LT1011A  
orDer inForMaTion  
LEAD FREE FINISH  
LT1011ACNꢀ#PBF  
LT1011CNꢀ#PBF  
LT1011AISꢀ#PBF  
LT1011CSꢀ#PBF  
LT1011ISꢀ#PBF  
TAPE AND REEL  
PART MARKING*  
LT1011  
PACKAGE DESCRIPTION  
ꢀ-Lead Plastic DIP  
ꢀ-Lead Plastic DIP  
ꢀ-Lead Plastic SO  
ꢀ-Lead Plastic SO  
ꢀ-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
N/A  
N/A  
LT1011  
0°C to 70°C  
LT1011AISꢀ#TRPBF  
LT1011CSꢀ#TRPBF  
LT1011ISꢀ#TRPBF  
1011AI  
–40°C to ꢀ5°C  
0°C to 70°C  
1011  
1011I  
–40°C to ꢀ5°C  
OBSOLETE PACKAGES  
LT1011ACH#PBF  
LT1011CH#PBF  
LT1011AMH#PBF  
LT1011MH#PBF  
LT1011ACJꢀ#PBF  
LT1011CJꢀ#PBF  
LT1011AMJꢀ#PBF  
LT1011MJꢀ#PBF  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ꢀ-Lead TO-5 Metal Can  
ꢀ-Lead TO-5 Metal Can  
ꢀ-Lead TO-5 Metal Can  
ꢀ-Lead TO-5 Metal Can  
ꢀ-Lead CERDIP  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
ꢀ-Lead CERDIP  
ꢀ-Lead CERDIP  
ꢀ-Lead CERDIP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1011afe  
3
For more information www.linear.com/LT1011  
LT1011/LT1011A  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, RS = 0Ω, VGND = –15V, output at pin 7 unless  
otherwise noted.  
LT1011AC/AI/AM  
LT1011C/I/M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage  
*Input Offset Voltage  
*Input Offset Current  
(Note 4)  
0.3  
0.5  
1
0.6  
1.5  
3
mV  
mV  
OS  
R ≤ 50k (Note 5)  
S
0.75  
1.5  
2
3
mV  
mV  
I
I
(Note 5)  
0.2  
3
5
0.2  
4
6
nA  
nA  
OS  
Input Bias Current  
*Input Bias Current  
(Note 4)  
(Note 5)  
15  
20  
25  
20  
25  
50  
nA  
B
35  
50  
65  
ꢀ0  
nA  
nA  
∆V  
∆T  
Input Offset Voltage Drift  
(Note 6)  
T
≤ T ≤ T  
MAX  
4
15  
4
25  
µV/°C  
V/mV  
V/mV  
OS  
MIN  
A
*Large-Signal Voltage Gain  
R = 1k Connected to 15V,  
200  
50  
500  
300  
200  
50  
500  
300  
VOL  
L
–10V ≤ V  
≤ 14.5V  
OUT  
R = 500Ω Connected to 5V,  
L
V = Single 5V, V  
= 0V,  
S
GND  
≤ 4.5V  
0.5V ≤ V  
OUT  
CMRR  
Common Mode Rejection Ratio  
*Input Voltage Range (Note 9)  
94  
115  
90  
115  
dB  
V = 15V  
S
–14.5  
0.5  
13  
3
–14.5  
0.5  
13  
3
V
V
S
V = Single 5V  
t
D
*Response Time  
(Note 7)  
150  
250  
150  
250  
ns  
V
OL  
*Output Saturation Voltage,  
GND  
V
IN  
V
IN  
V
IN  
= –5mV, I  
= –5mV, I  
= –5mV, I  
= ꢀmA, T ≤ 100°C  
0.25  
0.25  
0.7  
0.4  
0.45  
1.5  
0.25  
0.25  
0.7  
0.4  
0.45  
1.5  
V
V
V
SINK  
SINK  
SINK  
J
V
= 0  
= ꢀmA  
= 50mA  
*Output Leakage Current  
V
V
= 5mV, V  
OUT  
= –15V,  
GND  
0.2  
10  
500  
0.2  
10  
500  
nA  
nA  
IN  
= 20V  
*Positive Supply Current  
*Negative Supply Current  
*Strobe Current (Note ꢀ)  
V
V
= 0  
3.2  
1.7  
4
3.2  
1.7  
4
mA  
mA  
µA  
GND  
GND  
= 0  
2.5  
2.5  
Minimum to Ensure Output Transistor is Off,  
= 0  
500  
500  
V
GND  
Input Capacitance  
6
6
pF  
*Indicates parameters which are guaranteed for all supply voltages, including a single 5V supply. See Note 5.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
defines a worst-case error band that includes effects due to common  
mode signals, voltage gain and output load.  
Note 6: Drift is calculated by dividing the offset voltage difference  
measured at min and max temperatures by the temperature difference.  
Note 2: Inputs may be clamped to supplies with diodes so that  
maximum input voltage actually exceeds supply voltage by one diode  
drop. See Input Protection in the Applications Information section.  
Note 7: Response time is measured with a 100mV step and 5mV  
overdrive. The output load is a 500Ω resistor tied to 5V. Time  
measurement is taken when the output crosses 1.4V.  
Note 3: TJMAX = 150°C.  
Note 4: Output is sinking 1.5mA with VOUT = 0V.  
Note 5: These specifications apply for all supply voltages from a single  
5V to 15V, the entire input voltage range, and for both high and low  
output states. The high state is ISINK = 100µA, VOUT = (V+ – 1V) and  
the low state is ISINK = ꢀmA, VOUT = 0.ꢀV. Therefore, this specification  
Note 8: Do not short the STROBE pin to ground. It should be current  
driven at 3mA to 5mA for the shortest strobe time. Currents as low  
as 500µA will strobe the LT1011A if speed is not important. External  
leakage on the STROBE pin in excess of 0.2µA when the strobe is “off”  
can cause offset voltage shifts.  
Note 9: See graph “Input Offset Voltage vs Common Mode Voltage.”  
1011afe  
4
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical perForMance characTerisTics  
Input Bias Current  
Input Offset Current  
Worst-Case Offset Error  
100  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
I
FLOWS OUT  
B
OF INPUTS  
LM311  
(FOR COMPARISON)  
10  
1
LT1011M  
LT1011C  
LT1011AM  
LT1011AC  
0.1  
0
0
–50 –25  
25 50 75 100 125 150  
0
1k  
10k  
100k  
1M  
–50 –25  
25 50 75 100 125 150  
SOURCE RESISTANCE (Ω)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1011 G03  
1011 G02  
1011 G01  
Input Characteristics*  
Common Mode Limits  
Transfer Function (Gain)  
+
50  
40  
30  
20  
10  
0
5
0
V
T
= 25°C  
A
*EITHER INPUT.  
–0.5  
–1.0  
–1.5  
–2.0  
0.4  
REMAINING INPUT GROUNDED.  
CURRENT FLOWS OUT OF INPUT.  
COLLECTOR  
OUTPUT  
POSITIVE LIMIT  
–5  
V
= 15V  
S
R
L
= 1k  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
REFERRED TO SUPPLIES  
NEGATIVE LIMIT  
0.3  
0.2  
EMITTER  
OUTPUT  
0.1  
R
L
= 600Ω  
V
– 0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
–10  
0
150  
–20 –15  
–5  
0
5
10 15 20  
–50 –25  
25 50 75 100 125  
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
INPUT VOLTAGE (V)  
1011 G04  
1011 G05  
1011 G06  
Collector Output Saturation  
Voltage  
Response Time—Collector Output  
Response Time—Collector Output  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
=
15V  
V
=
S
15V  
PIN 1 GROUNDED  
S
15V  
5V  
500Ω  
V
IN  
+
OVERDRIVE  
20mV  
T
= 125°C  
OVERDRIVE  
20mV  
A
15V  
5V  
5mV  
2mV  
T
= 25°C  
A
5mV  
2mV  
500Ω  
V
IN  
+
–15V  
T
= –55°C  
A
–15V  
100mV  
0
0
INPUT = 100mV STEP  
INPUT = 100mV STEP  
–100mV  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
TIME (ns)  
SINK CURRENT (mA)  
1011 G07  
1011 G08  
1011 G09  
1011afe  
5
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical perForMance characTerisTics  
Response Time Using GND Pin  
as Output  
Response Time Using GND Pin  
as Output  
Output Limiting Characteristics*  
140  
120  
100  
80  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+
V
T = 25°C  
A
15  
10  
15  
10  
20mV  
5mV  
2mV  
V
IN  
+
POWER  
DISSIPATION  
V
5
5
+
V
V
IN  
OUT  
0
0
2k  
–5  
–5  
+
V
OUT  
V
–10  
–15  
0
–10  
–15  
–100  
–50  
0
2k  
=
60  
SHORT-CIRCUIT  
CURRENT  
5mV  
2mV  
20mV  
V
40  
V
=
15V  
S
A
–50  
–100  
T
= 25°C  
20  
V
15V  
S
A
*MEASURED 3 MINUTES  
AFTER SHORT  
T
= 25°C  
0
0
2
TIME (µs)  
3
4
0
2
3
4
0
10  
5
OUTPUT VOLTAGE (V)  
15  
1
1
TIME (µs)  
1011 G10  
1011 G11  
1011 G12  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Output Leakage Current  
–7  
–8  
–9  
5
4
3
2
6
5
4
3
10  
10  
10  
V
= 15V  
S
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
V
V
= 35V  
= –15V  
OUT  
GND  
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
2
1
0
–10  
–11  
10  
10  
1
0
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
50  
TEMPERATURE (˚C)  
100 125  
0
10  
15  
20  
25  
30  
–50 –25  
0
25  
75  
5
25  
45  
65  
85  
105  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1011 G13  
1011 G14  
1011 G15  
Output Saturation—  
Ground Output  
Output Saturation Voltage  
Response Time vs Input Step Size  
5
4
3
2
1
0
1000  
800  
0.6  
+
V
= 15V  
REFERRED TO V  
I
= 8mA  
S
+
SINK  
V
2
+
8
R = 500Ω TO 5V  
L
+
OVERDRIVE = 5mV  
0.5  
0.4  
0.3  
0.2  
0.1  
0
7
LT1011  
T
J
= 125°C  
5V  
3
1
R
L
3
500Ω  
7
INPUT  
4
V
600  
OUT  
V
T = –55°C  
J
2
+
T
= 25°C  
J
1
400  
200  
0
T = 25°C  
J
RISING INPUT  
FALLING INPUT  
T
= –55°C  
J
T = 125°C  
J
0
10  
20  
30  
40  
50  
5
6
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
7
8
INPUT OVERDRIVE (mV)  
OUTPUT CURRENT (mA)  
INPUT STEP (V)  
1011 G16  
1011 G18  
1011 G17  
1011afe  
6
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical perForMance characTerisTics  
Input Offset Voltage  
vs Common Mode Voltage  
Offset Pin Characteristics  
2.5  
2.0  
0.8  
0.6  
0.4  
0.2  
0
T = 25°C  
J
1.5  
CHANGE IN V FOR CURRENT  
OS  
1.0  
UPPER  
INTO PINS 5 OR 6  
COMMON MODE  
+
0.5  
LIMIT = V – (1.5V)  
0
VOLTAGE ON PINS 5 AND 6  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
+
WITH RESPECT TO V  
–150mV  
–100mV  
–50mV  
V
(OR GND WITH  
SINGLE SUPPLY)  
0
+
V
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
COMMON MODE VOLTAGE (V)  
V
25  
150  
50 75 100 125  
–50 –25  
0
TEMPERATURE (°C)  
1011 G19  
1011 G20  
pin FuncTions  
GND (PIN 1): Ground.  
BALANCE/STROBE (PIN 6): Strobe Input Pin. Using this  
pin, the output transistor can be forced to an “off” state,  
giving a “hi” output at the collector (Pin 7). This input can  
be used to adjust the input voltage offset or used to add  
hysteresis. If offset balancing or hysteresis is not used,  
the BALANCE pins should be connected together with a  
0.1µF capacitor.  
+
INPUT (PIN 2): Non-Inverting Input of Comparator  
INPUT (PIN 3): Inverting Input of Comparator  
V (PIN 4): Negative Supply Voltage  
OUT (PIN 7): Open-Collector Output of Comparator  
+
BALANCE (PIN 5): Balance Input. This input can be used  
to adjust the input voltage offset or to add hysteresis. If  
offset balancing or hysteresis is not used, the BALANCE  
pins should be connected together with a 0.1µF capacitor.  
V (PIN 8): Positive Supply Voltage  
1011afe  
7
For more information www.linear.com/LT1011  
LT1011/LT1011A  
applicaTions inForMaTion  
Preventing Oscillation Problems  
3. Bypass any slow moving or DC input with a capaci-  
tor (≥0.01µF) close to the comparator to reduce high  
frequency source impedance.  
Oscillation problems in comparators are nearly always  
caused by stray capacitance between the output and  
inputs or between the output and other sensitive pins  
on the comparator. This is especially true with high  
gain bandwidth comparators like the LT1011, which are  
designed for fast switching with millivolt input signals.  
The gain bandwidth product of the LT1011 is over 10GHz.  
Oscillation problems tend to occur at frequencies around  
5MHz, wheretheLT1011hasagainof2000. Thisimplies  
thatattenuationofoutputsignalsmustbeatleast2000:1at  
5MHz as measured at the inputs. If the source impedance  
is1kΩ, theeffectivestraycapacitancebetweenoutputand  
input must have a reactance of more than (2000)(1kΩ) =  
2MΩ,orlessthan0.02pF.Theactualinterleadcapacitance  
between input and output pins on the LT1011 is less than  
0.002pFwhencuttoprintedcircuitmountlength.Additional  
stray capacitance due to printed circuit traces must be  
minimized by routing the output trace directly away from  
input lines and, if possible, running ground traces next  
to input traces to provide shielding. Additional steps to  
ensure oscillation-free operation are:  
4. Keep resistive source impedance as low as possible. If  
a resistor is added in series with one input to balance  
source impedances for DC accuracy, bypass it with a  
capacitor. The low input bias current of the LT1011  
usually eliminates any need for source resistance bal-  
ancing. A 5kΩ imbalance, for instance, will create only  
0.25mV DC offset.  
5. Use hysteresis. This consists ofshifting theinput offset  
voltage of the comparator when the output changes  
state.Hysteresisforcesthecomparatortomovequickly  
through its linear region, eliminating oscillations by  
“overdrivingthecomparatorunderallinputconditions.  
Hysteresis may be either AC or DC. AC techniques do  
not shift the apparent offset voltage of the compara-  
tor, but require a minimum input signal slew rate to be  
effective. DC hysteresis works for all input slew rates,  
but creates a shift in offset voltage dependent on the  
previousconditionoftheinputsignal.Thecircuitshown  
in Figure 1 is an excellent compromise between AC and  
DC hysteresis.  
1. BypasstheSTROBE/BALANCEpinswitha0.01µFcapaci-  
tor connected from Pin 5 to Pin 6. This eliminates stray  
capacitive feedback from the output to the BALANCE  
pins, which are nearly as sensitive as the inputs.  
15V  
+
2µF  
C1  
R
TANT  
L
R2  
15M  
2. Bypassthenegativesupply(Pin4)witha0.1µFceramic  
capacitor close to the comparator. 0.1µF can also be  
used for the positive supply (Pin ꢀ) if the pull-up load  
is tied to a separate supply. When the pull-up load is  
tied directly to Pin ꢀ, use a 2µF solid tantalum bypass  
capacitor.  
0.003µF  
8
+
3
2
6
5
7
OUTPUT  
INPUTS  
LT1011  
1
4
–15V  
0.1µF  
1011 F01  
Figure 1. Comparator with Hysteresis  
1011afe  
8
For more information www.linear.com/LT1011  
LT1011/LT1011A  
applicaTions inForMaTion  
This circuit is especially useful for general purpose  
comparator applications because it does not force  
any signals directly back onto the input signal source.  
Instead, it takes advantage of the unique properties  
of the BALANCE pins to provide extremely fast, clean  
output switching even with low frequency input signals  
in the millivolt range. The 0.003µF capacitor from Pin  
6 to Pin ꢀ generates AC hysteresis because the voltage  
on the BALANCE pins shifts slightly, depending on the  
state of the output. Both pins move about 4mV. If one  
pin (6) is bypassed, AC hysteresis is created. It is only  
a few millivolts referred to the inputs, but is sufficient  
to switch the output at nearly the maximum speed of  
which the comparator is capable. To prevent problems  
fromlowvaluesofinputslewrate,aslightamountofDC  
hysteresis is also used. The sensitivity of the BALANCE  
pins to current is about 0.5mV input referred offset for  
each microampere of BALANCE pin current. The 15M  
resistortiedfromOUTPUTtoPin5generates0.5mVDC  
hysteresis. The combination of AC and DC hysteresis  
creates clean oscillation-free switching with very small  
input errors. Figure 2 plots input referred error versus  
switching frequency for the circuit as shown.  
Input Protection  
The inputs to the LT1011 are particularly suited to general  
purposecomparatorapplicationsbecauselargedifferential  
and/or common mode voltages can be tolerated without  
damage to the comparator. Either or both inputs can be  
raised 40V above the negative supply, independent of the  
positive supply voltage. Internal forward biased diodes  
will conduct when the inputs are taken below the negative  
supply. In this condition, input current must be limited to  
1mA. If very large (fault) input voltages must be accom-  
modated, series resistors and clamp diodes should be  
used (see Figure 3).  
8
C8 TO C6 = 0.003µF  
7
6
5
4
3
2
OUTPUT “LO” TO “HI”  
1
0
OUTPUT “HI” TO “LO”  
–1  
–2  
(50kHz)  
10  
(5kHz)  
100  
1
1000  
Note that at low frequencies, the error is simply the  
DC hysteresis, while at high frequencies, an addi-  
tional error is created by the AC hysteresis. The high  
TIME/FREQUENCY (µs)  
1011 F02  
Figure 2. Input Offset Voltage vs Time to Last Transition  
frequency error can be reduced by reducing C , but  
H
lower values may not provide clean switching with very  
low slew rate input signals.  
+
V
R3*  
D1  
D3  
D2  
R1**  
R2**  
300Ω  
3
2
8
LT1011  
4
+
R4*  
300Ω  
INPUTS  
D4  
D1 TO D4: 1N4148  
*MAY BE ELIMINATED FOR I  
V
≤ 1mA  
FAULT  
**SELECT ACCORDING TO ALLOWABLE  
1011 F03  
FAULT CURRENT AND POWER DISSIPATION  
Figure 3. Limiting Fault Input Currents  
1011afe  
9
For more information www.linear.com/LT1011  
LT1011/LT1011A  
applicaTions inForMaTion  
15V  
8
5V  
Theinputresistorsshouldlimitfaultcurrenttoareasonable  
value (0.1mA to 20mA). Power dissipation in the resis-  
tors must be considered for continuous faults, especially  
whentheLT1011suppliesareoff.Onefinalcaution:lightly  
loaded supplies may be forced to higher voltages by large  
fault currents flowing through D1-D4.  
3
2
R
L
+
7
LT1011  
OUTPUT  
1
6
4
TTL OR  
CMOS DRIVE  
(5V SUPPLY)  
–15  
R3 and R4 limit input current to the LT1011 to less than  
3k  
1mA when the input signals are held below V . They may  
1011 F04  
be eliminated if R1 and R2 are large enough to limit fault  
current to less than 1mA.  
Figure 4. Typical Strobe Circuit  
level inputs. A 1pF capacitor between the output and Pin  
5 will greatly reduce oscillation problems without reduc-  
ing strobe speed.  
Input Slew Rate Limitations  
The response time of a comparator is typically measured  
with a 100mV step and a 5mV to 10mV overdrive. Unfor-  
tunately, thisdoesnotsimulatemanyrealworldsituations  
where the step size is typically much larger and overdrive  
can be significantly less. In the case of the LT1011, step  
size is important because the slew rate of internal nodes  
will limit response time for input step sizes larger than  
1V. At 5V step size, for instance, response time increases  
from 150ns to 360ns. See the curve “Response Time vs  
Input Step Size for more detail.  
DC hysteresis can also be added by placing a resistor  
from the output to Pin 5. See step 5 under “Preventing  
Oscillation Problems.”  
Thepin(6)usedforstrobingisalsooneoftheoffsetadjust  
pins. Current flow into or out of Pin 6 must be kept very  
low (<0.2µA) when not strobing to prevent input offset  
voltage shifts.  
Output Transistor  
If response time is critical and large input signals are ex-  
pected,clampdiodesacrosstheinputsarerecommended.  
The slew rate limitation can also affect performance when  
differential input voltage is low, but both inputs must  
slew quickly. Maximum suggested common mode slew  
rate is 10V/µs.  
The LT1011 output transistor is truly floating in the sense  
that no current flows into or out of either the collector  
or emitter when the transistor is in the “off” state. The  
equivalent circuit is shown in Figure 5.  
+
V
Strobing  
I
1
The LT1011 can be strobed by pulling current out of the  
STROBE pin. The output transistor is forced to an “off”  
state, giving a “hi” output at the collector (Pin 7). Currents  
as low as 250µA will cause strobing, but at low strobe  
currents, strobe delay will be 200ns to 300ns. If strobe  
current is increased to 3mA, strobe delay drops to about  
60ns.ThevoltageattheSTROBEpinisabout150mVbelow  
0.5mA  
D1  
D2  
COLLECTOR  
(OUTPUT)  
Q1  
R1  
170Ω  
OUTPUT  
Q2  
+
+
TRANSISTOR  
V at zero strobe current and about 2V below V for 3mA  
strobe current. Do not ground the STROBE pin. It must  
be current driven. Figure 4 shows a typical strobe circuit.  
V
R2  
470Ω  
EMITTER  
(GND PIN) 1011 F05  
Figure 5. Output Transistor Circuitry  
Note that there is no bypass capacitor between Pins 5 and  
6. This maximizes strobe speed, but leaves the compara-  
tor more sensitive to oscillation problems for slow, low  
1011afe  
10  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
applicaTions inForMaTion  
+
In the “off” state, I is switched off and both Q1 and Q2  
is tied to V , the voltage at the emitter in the “on” state is  
1
+
turn off. The collector of Q2 can be now held at any voltage  
about 2V below V (see curves).  
above V without conducting current, including voltages  
Input Signal Range  
above the positive supply level. Maximum voltage above  
V is 50V for the LT1011M and 40V for the LT1011C/I.  
The common mode input voltage range of the LT1011 is  
about300mVabovethenegativesupplyand1.5Vbelowthe  
positive supply, independent of the actual supply voltages  
(seecurveintheTypicalPerformanceCharacteristics).This  
is the voltage range over which the output will respond  
correctly when the common mode voltage is applied to  
one input and a higher or lower signal is applied to the  
remaining input. If one input is inside the common mode  
range and one is outside, the output will be correct. If the  
inputs are outside the common mode range in opposite  
directions, the outputwillstill becorrect. If both inputs are  
outside the common mode range in the same direction,  
the output will not respond to the differential input; for  
temperatures of 25°C and above, the output will remain  
unconditionally high (collector output), for temperatures  
below 25°C, the output becomes undefined.  
+
The emitter can be held at any voltage between V and  
V as long as it is negative with respect to the collector.  
In the “on” state, I is connected, turning on Q1 and Q2.  
1
DiodesD1andD2preventdeepsaturationofQ2toimprove  
speed and also limit the drive current of Q1. The R1/R2  
dividersetsthesaturationvoltageofQ2andprovidesturn-  
off drive. Either the collector or emitter pin can be held at  
+
a voltage between V and V . This allows the remaining  
pin to drive the load. In typical applications, the emitter is  
connected to V or ground and the collector drives a load  
+
tied to V or a separate positive supply.  
When the emitter is used as the output, the collector is  
+
typically tied to V and the load is connected to ground  
or V . Note that the emitter output is phase reversed with  
respect to the collector output so that the “+” and “–”  
input designations must be reversed. When the collector  
Typical applicaTions  
Offset Balancing  
Driving Load Referenced  
to Positive Supply  
Driving Load Referenced  
to Negative Supply  
R2  
3k  
+
++  
+
V
V
V
V
3
2
8
R1  
2
3
8
R
+
LOAD  
+
+
20k  
V
7
7
LT1011  
5
INPUTS*  
LT1011  
1
2
3
6
1
+
4
8
7
R
LOAD  
LT1011  
4
V
V
OR  
GROUND  
1011 TA03  
V
1011 TA06  
++  
+
V
CAN BE GREATER OR LESS THAN V  
*INPUT POLARITY IS REVERSED  
WHEN USING PIN 1 AS OUTPUT  
1011 TA05  
1011afe  
11  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical applicaTions  
Strobing  
Driving Ground Referred Load  
Window Detector  
++**  
+
+
V
V
V
2
+
7
2
3
R
L
HIGH  
LT1011  
2
3
+
8
LIMIT  
+
3
7
7
LT1011  
6
INPUTS*  
LT1011  
OUTPUT HIGH  
1
1
INSIDE “WINDOW”  
AND LOW ABOVE  
HIGH LIMIT OR  
TTL  
STROBE  
L1  
4
V
IN  
BELOW LOW LIMIT  
1k  
2
3
V
1011 TA07  
+
7
1011 TA04  
*INPUT POLARITY IS REVERSED  
WHEN USING PIN 1 AS OUTPUT  
LT1011  
LOW  
LIMIT  
NOTE: DO NOT GROUND STROBE PIN  
++  
**V MAY BE ANY VOLTAGE ABOVE V .  
1
++  
PIN 1 SWINGS TO WITHIN ≈2V OF V  
1011 TA08  
Crystal Oscillator  
Using Clamp Diodes to Improve Frequency Response*  
CURRENT MODE  
2
3
5V  
INPUT  
+
10k  
(DAC, ETC)  
7
LT1011  
OUTPUT  
D1  
D2  
1k  
50k  
2
8
+
VOLTAGE  
INPUT  
7
85kHz  
100pF  
LT1011  
OUT  
R1  
3
4
GROUND OR  
LOW IMPEDANCE  
REFERENCE  
1
10k  
*SEE CURVE, “RESPONSE TIME vs INPUT STEP SIZE”  
1011 TA09  
10k  
1011 TA10  
Noise Immune 60Hz Line Sync**  
High Efficiency** Motor Speed Controller  
5V  
15V  
R3  
1k  
R2  
75k  
+
C1  
50µF  
R1  
1k  
2V  
RMS  
Q1  
TO  
25V  
5V  
2N6667  
R1*  
RMS  
330k  
3
60Hz  
INPUT  
8
1N4002  
7
OUTPUT  
60Hz  
C1  
0.22µF  
MOTOR-TACH  
GLOBE 397A120-2  
LT1011  
2
1
+
R2  
R3*  
10k  
R4  
470Ω  
4
27k  
MOTOR TACH  
R6  
27k  
15V  
8
1011 TA11  
R6  
2k  
5V  
R5  
100k  
R5  
10k  
2
3
+
*INCREASE R1 FOR LARGER INPUT VOLTAGES  
**LT1011 SELF OSCILLATES AT ≈60Hz CAUSING  
IT TO “LOCK” ONTO INCOMING LINE SIGNAL  
7
C2*  
0.1µF  
C3  
0.1µF  
R7  
1k  
LT1011  
1
1011 TA12  
R4  
1k  
4
*R3/C2 DETERMINES OSCILLATION  
FREQUENCY OF CONTROLLER  
**Q1 OPERATES IN SWITCH MODE  
–5V TO  
–15V  
0V TO 10V  
INPUT  
1011afe  
12  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical applicaTions  
Combining Offset Adjust and Strobe  
Combining Offset Adjustment and Hystersis  
+
+
V
V
5k  
R *  
10k  
2R **  
H
H
*HYSTERESIS IS ≈0.45mV/µA OF  
CURRENT CHANGE IN R  
20k  
H
6
20k  
5
**THIS RESISTOR CAUSES HYSTERESIS  
R
L
3
TTL OR CMOS  
5V  
TO BE CENTERED AROUND V  
OS  
3
5
7
1011 TA15  
6
2 +LT1011  
2 +LT1011  
1k  
1
1011 TA13  
Direct Strobe Drive When CMOS* Logic  
Uses Same V+ Supply as LT1011  
Low Drift R/C Oscillator†  
+
V
**  
15V  
15V  
8
3
74HC04  
×6  
2
3
6
8
1k  
+
2 +LT1011  
C1  
0.015µF  
7
BUFFERED  
OUTPUT  
1011 TA14  
LT1011  
4
*NOT APPLICABLE FOR TTL LOGIC  
1
Positive Peak Detector  
15V  
10k*  
10k*  
15V  
2k  
3
2
8
*1% METAL FILM  
INPUT  
***  
+
10k*  
**TRW TYPE MTR-5/120ppm/°C, 25k ≤ R ≤ 200k  
S
7
LT1011  
C1: 0.015µF = POLYSTYRENE, –120ppm/°C,  
30ppm WESCO TYPE 32-P  
1011 TA16  
2
1
NOTE: COMPARATOR CONTRIBUTES ≤10ppm/°C DRIFT  
FOR FREQUENCIES BELOW 10kHz  
LOW DRIFT AND ACCURATE FREQUENCY ARE  
OBTAINED BECAUSE THIS CONFIGURATION  
REJECTS EFFECTS DUE TO INPUT OFFSET  
VOLTAGE AND BIAS CURRENT OF THE  
COMPARATOR  
6
OUTPUT  
LT1008  
4
10k  
3
+
8
1M**  
+
100pF  
C1*  
2µF  
1011 TA17  
–15V  
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
***INPUT POLARITY IS REVERSED WHEN USING PIN 1 AS OUTPUT  
Negative Peak Detector  
15V  
2
+
1M**  
2k  
3
2
6
8
OUTPUT  
+
LT1008  
8
10k  
7
3
LT1011  
1
+
100pF  
INPUT  
C1*  
2µF  
1011 TA18  
4
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
–15V  
1011afe  
13  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical applicaTions  
4-Digit (10,000 Count) A/D Converter  
15V  
INPUT  
0V TO 10V  
15V  
ZERO  
TRIM  
R1  
1k  
C4  
0.01µF  
R5  
4.7k  
5V  
R2  
18k  
8
C5  
0.01µF  
R6  
2
1
+
4.7K  
6
1
7
LT1011  
2
OUTPUT = 1 COUNT  
PER mV, f = 1MHz  
3
3
5
CLOCK  
1MHz  
LF398  
4
6
R7  
4
5V  
7
22Ω  
D1  
D2  
–15V  
R3  
8
3.9k  
15V  
–15V  
C1*  
0.1µF  
C2**  
15pF  
C3  
0.1µF  
R11  
6.8K  
R4  
5.6k  
R8  
3k  
R10  
D3  
1k  
15V  
R9  
3.65k  
FULL-SCALE  
TRIM  
R12  
6.8k  
D4  
2N3904  
C6  
50pF  
LM329  
ALL DIODES: 1N4148  
*POLYSTYRENE  
**NPO  
1011 TA19  
START  
≥12ms  
Capacitance to Pulse Width Converter  
T
T
≥ [C  
(pF)][1µs/pF]  
MAX  
H
L
MAX  
≥ 10 • C  
• (1µs/pF)  
D1  
TTL OR CMOS  
(OPERATING  
ON 5V)  
GAIN ADJ  
5V  
R2  
100k  
R1  
5k  
R1 + R4  
R1  
*PW = (R2 + R3)(C)  
, INPUT CAPACITANCE OF  
(
)
R3  
86.6k  
8
0.01µF  
7
R5  
4.7k  
LT1011 IS ≈6pF. THIS IS AN OFFSET TERM.  
2
3
+
+
6
1
**TYPICAL 2 SECTIONS OF 365pF VARIABLE  
CAPACITOR WHEN USED AS SHAFT ANGLE  
INDICATION  
OUTPUT  
1µs/pF  
10µF  
LT1011  
4
THESE COMPONENTS MAY BE ELIMINATED IF  
NEGATIVE SUPPLY IS AVAILABLE (–1V TO –15V)  
C**  
D3  
10µF  
D2  
+
1011 TA20  
1011afe  
14  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
Typical applicaTions  
Fast Settling Filter  
100pF  
1M  
15V  
7
2
3
1M  
6
LT1008C  
OUTPUT  
4.7k  
8
V
IN  
1
4
4.7k  
1µF  
–15V 15V  
4
OFM-1A  
1.5k  
–15V 100pF  
0.1µF  
100k  
2
3
8
7
1
LT1011  
5
+
6
INPUT*  
15V  
15V  
COMPARATORS DRIVE OPTO-COUPLED FET  
“ON” WHEN DIFFERENCE BETWEEN OUTPUT  
AND INPUT EXCEEDS THRESHOLD. WHEN  
OUTPUT APPROACHES INPUT, THE GATE TURNS  
“OFF” AND LOW PASS FILTERING OCCURS.  
5k  
THRESHOLD  
5k  
6
+
3
2
5
7
*INPUT POLARITY IS REVERSED WHEN USING  
PIN 1 AS OUTPUT  
1
LT1011  
8
4
10k  
–15V 15V  
1011 TA21  
100kHz Precision Rectifier  
0.033µF  
100Ω  
5V  
5V  
5V  
5V  
2
3
8
1k  
AC INPUT  
+
12k  
74C04  
5k  
820Ω  
5V  
7
LT1011  
ZERO  
CROSS  
TRIM  
HP5082-2800  
×4  
1
–5V  
RECTIFIED  
OUTPUT  
4
–5V  
1k  
820Ω  
74C04  
–5V  
12k  
–5V  
1011 TA23  
1011afe  
15  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
scheMaTic DiagraM  
+
OFFSET  
OFFSET/STROBE  
6
V
5
8
R8  
800Ω  
R9  
800Ω  
Q6  
Q10  
R1  
1.3k  
R2  
1.3k  
R4  
300Ω  
R3  
300Ω  
R23  
4k  
R27  
3k  
R5  
160Ω  
Q11  
Q5  
Q31  
Q12  
R10  
4k  
R6  
3.2k  
R7  
3.2k  
Q13  
D1 D2  
Q30  
R11  
170Ω  
INPUT  
(+)  
Q8  
Q7  
D4  
OUTPUT  
7
D6  
Q29  
Q14  
2
Q3  
Q20  
R22  
200Ω  
Q1  
Q15  
Q9 Q19  
Q28  
R12  
470Ω  
INPUT  
(–)  
D5  
Q4  
D7  
Q27  
R16  
800Ω  
3
Q2  
Q24  
Q16  
R17  
200Ω  
R24  
400Ω  
R13  
4Ω  
Q26  
Q23  
Q21  
Q25  
R15  
700Ω  
R20  
940Ω  
1
Q22  
Q18  
Q17  
GND  
R25  
1.6k  
R26  
1.6k  
R19  
500Ω  
R18  
275Ω  
R21  
960Ω  
R14  
4.8k  
D3  
4
1011 SD  
V
1011afe  
16  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
H Package  
8-Lead TO-5 Metal Can (.230 Inch PCD)  
(Reference LTC DWG # 05-0ꢀ-1321)  
0.335 – 0.370  
OBSOLETE PACKAGE  
(8.509 – 9.398)  
DIA  
0.027 – 0.045  
(0.686 – 1.143)  
0.305 – 0.335  
(7.747 – 8.509)  
45°TYP  
PIN 1  
0.040  
(1.016)  
MAX  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.270)  
MAX  
0.165 – 0.185  
(4.191 – 4.699)  
0.230  
(5.842)  
REFERENCE  
PLANE  
SEATING  
PLANE  
TYP  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
H8 (TO-5) 0.230 PCD 1197  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
0.016 – 0.021**  
(0.406 – 0.533)  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-0ꢀ-1110)  
OBSOLETE PACKAGE  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(0.635)  
RAD TYP  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
4
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
1011afe  
17  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-0ꢀ-1510)  
.400ꢁ  
(10.160)  
MAX  
.130 .005  
.300 – .325  
.045 – .065  
(3.302 0.12ꢀ)  
(1.143 – 1.651)  
(ꢀ.620 – 8.255)  
8
1
6
5
4
.065  
(1.651)  
TYP  
.255 .015ꢁ  
(6.4ꢀꢀ 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
2
3
.325  
.018 .003  
(0.45ꢀ 0.0ꢀ6)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
ꢁTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-0ꢀ-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
.045 .005  
.160 .005  
.050 BSC  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0°– 8° TYP  
(0.203 – 0.254)  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.245  
MIN  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1
2
3
4
.030 .005  
TYP  
SO8 0303  
RECOMMENDED SOLDER PAD LAYOUT  
1011afe  
18  
For more information www.linear.com/LT1011  
LT1011/LT1011A  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
10/12 Update to Product Description  
Addition of Order Information  
1
2, 3  
7
Addition of Pin Function Information  
Correction to Positive Peak Detector Circuit  
13  
2, 7  
3
E
4/13  
Correction to Pin Function descriptions  
Correction to Order Information and Obsolete Packages  
Correction to Graphs:  
5, 6  
Response Time—Collector Output – high to low  
Response Time Using GND Pin as Output – low to high  
Response Time Using GND Pin as Output – high to low  
Output Saturation—Ground Output  
Correction to input pin polarity  
10, 13, 15  
1011afe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT1011/LT1011A  
Typical applicaTion  
10Hz to 100kHz Voltage to Frequency Converter  
R7  
4.7k  
R4  
1M  
15V  
15V  
R1  
C1  
0.002µF  
4.7k  
POLYSTYRENE  
LT1009  
2.5V  
15V  
R2  
5k  
R5  
R6  
15V  
8
2k  
FULL-SCALE  
TRIM  
R3  
2k  
LINEARITY ≈0.01%  
8.06k  
3
2
INPUT  
0V TO 10V  
+
R8  
4.7k  
C2  
0.68µF  
7
LT1011  
1
15V  
–15V  
4
1.5µs  
R17  
22M  
6
R16  
50k  
10Hz TRIM  
4.4V  
–15V  
15V  
15V  
0.002µF  
10pF  
–15V  
R9  
5k  
TTL OUTPUT  
10HZ TO 100kHz  
–15V  
R11  
20k  
1.5µs  
Q2  
R10  
2.7k  
ALL DIODES 1N4148  
R15 R14  
22k 1k  
TRANSISTORS 2N3904  
USED ONLY TO GUARANTEE  
START-UP  
*
R12  
100k  
1011 TA22  
Q1*  
MAY BE INCREASED FOR BETTER  
10Hz TRIM RESOLUTION  
+
R13  
620k  
2µF  
–15V  
relaTeD parTs  
PART NUMBER  
LT1016  
DESCRIPTION  
COMMENTS  
UltraFast™ Precision Comparator  
Industry Standard 10ns Comparator  
Single Supply Version of the LT1016  
7ns, 6mA Single Supply Comparator  
450µA Single Supply Comparator  
LT1116  
12ns Single Supply Ground-Sensing Comparator  
UltraFast Single Supply Comparator  
60ns, Low Power Comparator  
LT1394  
LT1671  
UltraFast is a trademark of Linear Technology Corporation.  
1011afe  
LT 0413 REV E • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 1991  
(40ꢀ)432-1900 FAX: (40ꢀ) 434-0507 www.linear.com/LT1011  

相关型号:

LT1011ACP

Analog Comparator
ETC

LT1011AIS8

Voltage Comparator
Linear

LT1011AIS8#PBF

LT1011/LT1011A - Voltage Comparator; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1011AIS8#TR

Comparator, 1 Func, 1000uV Offset-Max, 150ns Response Time, BIPolar, PDSO8
Linear

LT1011AMH

Voltage Comparator
Linear

LT1011AMH#PBF

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, LEAD FREE, TO-5, 8 PIN, Comparator
Linear

LT1011AMH#TR

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator
Linear

LT1011AMH#TRPBF

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, LEAD FREE, TO-5, 8 PIN, Comparator
Linear

LT1011AMH/883

LT1011AMH/883
Linear

LT1011AMH883B

IC COMPARATOR, 1000 uV OFFSET-MAX, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator
Linear

LT1011AMJ8

Voltage Comparator
Linear

LT1011AMJ8#PBF

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, CDIP8, 0.300 INCH, LEAD FREE, HERMETIC SEALED, CERDIP-8, Comparator
Linear