LT1011ACH#TR [Linear]

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator;
LT1011ACH#TR
型号: LT1011ACH#TR
厂家: Linear    Linear
描述:

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator

放大器
文件: 总16页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1011/LT1011A  
Voltage Comparator  
FEATURES  
DESCRIPTION  
The LT®1011 is a general purpose comparator with sig-  
nificantly better input characteristics than the LM111.  
Although pin compatible with the LM111, it offers four  
times lower bias current, six times lower offset voltage  
and five times higher voltage gain. Offset voltage drift,  
a previously unspecified parameter, is guaranteed at  
15μV/°C.Additionally,thesupplycurrentislowerbyafactor  
of two with no loss in speed. The LT1011 is several times  
faster than the LM111 when subjected to large overdrive  
conditions. It is also fully specified for DC parameters and  
responsetimewhenoperatingonasingle5Vsupply.These  
parametric improvements allow the LT1011 to be used in  
high accuracy (≥12-bit) systems without trimming. In a  
12-bit A/D application, for instance, using a 2mA DAC, the  
offset error introduced by the LT1011 is less than 0.5LSB.  
The LT1011 retains all the versatile features of the LM111,  
including single 3V to 1ꢀV supply operation, and a ꢁoat-  
ing transistor output with 50mA source/sink capability. It  
can drive loads referenced to ground, negative supply or  
n
Pin Compatible with LM111 Series Devices  
n
Guaranteed Max 0.5mV Input Offset Voltage  
n
Guaranteed Max 25nA Input Bias Current  
n
Guaranteed Max 3nA Input Offset Current  
n
Guaranteed Max 250ns Response Time  
n
Guaranteed Min 200,000 Voltage Gain  
n
50mA Output Current Source or Sink  
n
30V Differential Input Voltage  
n
Fully Specified for Single 5V Operation  
n
Available in ꢀ-Lead PDIP and SO Packages  
APPLICATIONS  
n
SAR A/D Converters  
n
Voltage-to-Frequency Converters  
n
Precision RC Oscillator  
n
Peak Detector  
n
Motor Speed Control  
n
Pulse Generator  
n
Relay/Lamp Driver  
positive supply, and is specified up to 50V between V and  
the collector output. A differential input voltage up to the  
full supply voltage is allowed, even with 1ꢀV supplies,  
enabling the inputs to be clamped to the supplies with  
simple diode clamps.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
10μs 12-Bit A/D Converter  
3.9k  
Response Time vs Overdrive  
R1  
1k  
15V  
LM329  
7V  
500  
450  
400  
350  
FULL-SCALE  
TRIM  
*R2 AND R4  
SHOULD TC TRACK  
–15V  
R2*  
6.49k  
R3  
6.9ꢀk  
0.001μF  
15V  
INPUT  
0V TO 10V  
5V  
300  
250  
FALLING  
OUTPUT  
6012  
12-BIT  
D/A CONVERTER  
R4*  
2.49k  
R5  
1k  
200  
150  
100  
50  
RISING  
OUTPUT  
+
R6  
LT1011A  
ꢀ20Ω  
PARALLEL  
OUTPUTS  
PARALLEL  
OUTPUTS  
0
0.1  
1
10  
100  
SERIAL OUTPUT  
OVERDRIVE (mV)  
1011 TA02  
7475  
LATCH  
D
AM2504  
SAR REGISTER  
5V  
CC  
S
E
S
CP  
START  
CLOCK f = 1.4MHz  
1011 TA01  
1011afc  
1
LT1011/LT1011A  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Supply Voltage (Pin ꢀ to Pin 4).................................36V  
Output to Negative Supply (Pin 7 to Pin 4)  
Input Voltage (Note 2)..........................Equal to Supplies  
Output Short-Circuit Duration ...............................10 sec  
Operating Temperature Range (Note 3)  
LT1011AC, LT1011C................................. 0°C to 70°C  
LT1011AI, LT1011I............................... –40°C to ꢀ5°C  
LT1011AM, LT1011M (OBSOLETE).... –55°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
LT1011AC, LT1011C..............................................40V  
LT1011AI, LT1011I................................................40V  
LT1011AM, LT1011M (OBSOLETE).......................50V  
Ground to Negative Supply (Pin 1 to Pin 4) ..............30V  
Differential Input Voltage......................................... 36V  
Voltage at STROBE Pin (Pin 6 to Pin ꢀ) ......................5V  
PACKAGE/ORDER INFORMATION  
ORDER PART NUMBER  
ORDER PART NUMBER  
TOP VIEW  
LT1011ACH  
LT1011ACN8  
TOP VIEW  
+
V
LT1011CH  
LT1011CN8  
GND  
INPUT  
INPUT  
1
2
3
4
V+  
7
6
5
GND  
INPUT  
INPUT  
1
3
7
5
OUTPUT  
BALANCE/  
LT1011AMH  
LT1011MH  
LT1011CS8  
LT1011AIS8  
LT1011IS8  
OUTPUT  
BALANCE/  
STROBE  
+
+
2
6
STROBE  
V
BALANCE  
BALANCE  
4
Nꢀ PACKAGE  
ꢀ-LEAD PDIP  
Sꢀ PACKAGE  
ꢀ-LEAD PLASTIC SO  
S8 PART MARKING  
V
H PACKAGE  
ꢀ-LEAD TO-5 METAL CAN  
= 150°C, θ = 150°C/W, θ = 45°C/W  
T
= 150°C, θ = 130°C/W(Nꢀ)  
JA  
= 150°C, θ = 150°C/W(Sꢀ)  
JA  
JMAX  
1011  
1011AI  
1011I  
T
JMAX  
T
JMAX  
JA  
JC  
Jꢀ PACKAGE ꢀ-LEAD CERDIP  
= 150°C, θ = 100°C/W(Jꢀ)  
ORDER PART NUMBER  
T
JMAX  
JA  
LT1011ACJ8 LT1011AMJ8  
LT1011CJ8 LT1011MJ8  
OBSOLETE PACKAGES  
Consider the Nꢀ or Sꢀ Packages for Alternate Source  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, RS = 0Ω, VGND = –15V, output at pin 7 unless  
otherwise noted.  
LT1011AC/AI/AM  
LT1011C/I/M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX UNITS  
V
Input Offset Voltage  
(Note 4)  
0.3  
0.5  
1
0.6  
1.5  
3
mV  
mV  
OS  
*Input Offset Voltage  
R ≤ 50k (Note 5)  
S
0.75  
1.5  
2
3
mV  
mV  
*Indicates parameters which are guaranteed for all supply voltages, including a single 5V supply. See Note 5.  
1011afc  
2
LT1011/LT1011A  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VS = 15V, VCM = 0V, RS = 0Ω, VGND = –15V, output at pin 7 unless  
otherwise noted.  
LT1011AC/AI/AM  
LT1011C/I/M  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX UNITS  
I
*Input Offset Current  
(Note 5)  
0.2  
3
5
0.2  
4
6
nA  
nA  
OS  
I
Input Bias Current  
*Input Bias Current  
(Note 4)  
(Note 5)  
15  
20  
25  
20  
25  
50  
nA  
B
35  
50  
65  
ꢀ0  
nA  
nA  
ΔV  
Input Offset Voltage Drift  
(Note 6)  
T
MIN  
≤ T ≤ T  
MAX  
4
15  
4
25  
μV/°C  
V/mV  
V/mV  
OS  
ΔT  
A
*Large-Signal Voltage Gain  
R = 1k Connected to 15V,  
200  
50  
500  
300  
200  
50  
500  
300  
VOL  
L
–10V ≤ V  
≤ 14.5V  
OUT  
R = 500Ω Connected to 5V,  
L
V = Single 5V, V  
= 0V,  
S
GND  
≤ 4.5V  
0.5V ≤ V  
OUT  
CMRR  
Common Mode Rejection Ratio  
*Input Voltage Range (Note 9)  
94  
115  
90  
115  
dB  
V = 15V  
S
–14.5  
0.5  
13  
3
–14.5  
0.5  
13  
3
V
V
S
V = Single 5V  
t
D
*Response Time  
(Note 7)  
150  
250  
150  
250  
ns  
V
*Output Saturation Voltage,  
GND  
V
V
V
= –5mV, I  
= –5mV, I  
= –5mV, I  
= ꢀmA, T ≤ 100°C  
0.25  
0.25  
0.7  
0.4  
0.45  
1.5  
0.25  
0.25  
0.7  
0.4  
0.45  
1.5  
V
V
V
OL  
IN  
IN  
IN  
SINK  
SINK  
SINK  
J
V
= 0  
= ꢀmA  
= 50mA  
*Output Leakage Current  
V
V
= 5mV, V  
OUT  
= –15V,  
0.2  
10  
500  
0.2  
10  
500  
nA  
nA  
IN  
GND  
= 20V  
*Positive Supply Current  
*Negative Supply Current  
*Strobe Current (Note ꢀ)  
V
V
= 0  
3.2  
1.7  
4
3.2  
1.7  
4
mA  
mA  
μA  
GND  
GND  
= 0  
2.5  
2.5  
Minimum to Ensure Output Transistor is Off,  
= 0  
500  
500  
V
GND  
Input Capacitance  
6
6
pF  
*Indicates parameters which are guaranteed for all supply voltages, including a single 5V supply. See Note 5.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
defines a worst-case error band that includes effects due to common  
mode signals, voltage gain and output load.  
Note 6: Drift is calculated by dividing the offset voltage difference  
measured at min and max temperatures by the temperature difference.  
Note 2: Inputs may be clamped to supplies with diodes so that  
maximum input voltage actually exceeds supply voltage by one diode  
drop. See Input Protection in the Applications Information section.  
Note 7: Response time is measured with a 100mV step and 5mV  
overdrive. The output load is a 500Ω resistor tied to 5V. Time  
measurement is taken when the output crosses 1.4V.  
Note 3: TJMAX = 150°C.  
Note 4: Output is sinking 1.5mA with VOUT = 0V.  
Note 5: These specifications apply for all supply voltages from a single  
5V to 15V, the entire input voltage range, and for both high and low  
output states. The high state is ISINK = 100μA, VOUT = (V+ – 1V) and  
the low state is ISINK = ꢀmA, VOUT = 0.ꢀV. Therefore, this specification  
Note 8: Do not short the STROBE pin to ground. It should be current  
driven at 3mA to 5mA for the shortest strobe time. Currents as low  
as 500μA will strobe the LT1011A if speed is not important. External  
leakage on the STROBE pin in excess of 0.2μA when the strobe is “off”  
can cause offset voltage shifts.  
Note 9: See graph “Input Offset Voltage vs Common Mode Voltage.”  
1011afc  
3
LT1011/LT1011A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Bias Current  
Input Offset Current  
Worst-Case Offset Error  
100  
10  
1
0.9  
0.ꢀ  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
I
FLOWS OUT  
B
OF INPUTS  
LM311  
(FOR COMPARISON)  
LT1011M  
LT1011C  
LT1011AM  
LT1011AC  
0.1  
0
0
–50 –25  
25 50 75 100 125 150  
0
1k  
10k  
100k  
1M  
–50 –25  
25 50 75 100 125 150  
SOURCE RESISTANCE (Ω)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1011 G03  
1011 G02  
1011 G01  
Input Characteristics*  
Common Mode Limits  
Transfer Function (Gain)  
+
50  
40  
30  
20  
10  
0
5
0
V
T
= 25°C  
A
*EITHER INPUT.  
–0.5  
–1.0  
–1.5  
–2.0  
0.4  
REMAINING INPUT GROUNDED.  
CURRENT FLOWS OUT OF INPUT.  
COLLECTOR  
OUTPUT  
POSITIVE LIMIT  
–5  
V
= 15V  
S
R
= 1k  
L
–10  
–15  
–20  
–25  
–30  
–35  
–40  
REFERRED TO SUPPLIES  
NEGATIVE LIMIT  
0.3  
0.2  
EMITTER  
OUTPUT  
0.1  
R
= 600Ω  
L
V
– 0.5  
–0.3  
–0.1  
0.1  
0.3  
0.5  
–10  
0
150  
–20 –15  
–5  
0
5
10 15 20  
–50 –25  
25 50 75 100 125  
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
INPUT VOLTAGE (V)  
1011 G04  
1011 G05  
1011 G06  
Collector Output Saturation  
Voltage  
Response Time—Collector Output  
Response Time—Collector Output  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1.0  
0.9  
0.ꢀ  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
=
15V  
V
=
S
15V  
PIN 1 GROUNDED  
S
15V  
5V  
500Ω  
V
IN  
+
OVERDRIVE  
20mV  
T
= 125°C  
OVERDRIVE  
20mV  
A
15V  
5V  
5mV  
2mV  
T
= 25°C  
A
5mV  
2mV  
500Ω  
V
IN  
+
–15V  
T
= –55°C  
A
–15V  
100mV  
0
100mV  
0
INPUT = 100mV STEP  
INPUT = 100mV STEP  
0
50 100 150 200 250 300 350 400 450  
0
50 100 150 200 250 300 350 400 450  
0
5
10 15 20 25 30 35 40 45 50  
TIME (ns)  
TIME (ns)  
SINK CURRENT (mA)  
1011 G07  
1011 G0ꢀ  
1011 G09  
1011afc  
4
LT1011/LT1011A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Response Time Using GND Pin  
as Output  
Response Time Using GND Pin  
as Output  
Output Limiting Characteristics*  
140  
120  
100  
ꢀ0  
0.7  
+
V
T = 25°C  
A
15  
10  
15  
10  
20mV  
5mV  
2mV  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
IN  
+
POWER  
DISSIPATION  
V
5
5
V
V
OUT  
IN  
0
0
2k  
–5  
–5  
V
OUT  
V
–10  
–15  
0
–10  
–15  
0
2k  
=
60  
SHORT-CIRCUIT  
CURRENT  
5mV  
2mV  
20mV  
V
40  
V
=
15V  
S
A
–50  
–100  
–50  
–100  
T
= 25°C  
20  
V
15V  
S
A
*MEASURED 3 MINUTES  
AFTER SHORT  
T
= 25°C  
0
0
2
TIME (μs)  
3
4
0
2
3
4
0
10  
5
OUTPUT VOLTAGE (V)  
15  
1
1
TIME (μs)  
1011 G10  
1011 G11  
1011 G12  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Output Leakage Current  
–7  
–ꢀ  
–9  
5
4
3
2
6
5
4
3
10  
10  
10  
V
= 15V  
S
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
POSITIVE SUPPLY  
COLLECTOR OUTPUT “LO”  
V
V
= 35V  
= –15V  
OUT  
GND  
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
2
1
0
–10  
10  
10  
1
0
POSITIVE AND NEGATIVE SUPPLY  
COLLECTOR OUTPUT “HI”  
–11  
50  
TEMPERATURE (˚C)  
100 125  
0
10  
15  
20  
25  
30  
–50 –25  
0
25  
75  
5
25  
45  
65  
ꢀ5  
105  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
1011 G13  
1011 G14  
1011 G15  
Output Saturation—  
Ground Output  
Output Saturation Voltage  
Response Time vs Input Step Size  
5
4
3
2
1
0
1000  
ꢀ00  
0.6  
+
V
= 15V  
REFERRED TO V  
I
= ꢀmA  
S
+
SINK  
V
2
R = 500Ω TO 5V  
L
+
OVERDRIVE = 5mV  
0.5  
0.4  
0.3  
0.2  
0.1  
0
7
LT1011  
T = 125°C  
J
5V  
3
1
R
L
3
500Ω  
7
INPUT  
4
V
600  
OUT  
V
T = –55°C  
J
2 +  
T = 25°C  
J
1
400  
200  
0
T = 25°C  
J
RISING INPUT  
FALLING INPUT  
T = –55°C  
J
T = 125°C  
J
0
10  
20  
30  
40  
50  
5
6
0
1
2
3
4
5
6
7
9
10  
0
1
2
3
4
7
INPUT OVERDRIVE (mV)  
OUTPUT CURRENT (mA)  
INPUT STEP (V)  
1011 G16  
1011 G1ꢀ  
1011 G17  
1011afc  
5
LT1011/LT1011A  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Offset Voltage  
vs Common Mode Voltage  
Offset Pin Characteristics  
2.5  
2.0  
0.ꢀ  
0.6  
0.4  
0.2  
0
T = 25°C  
J
1.5  
CHANGE IN V FOR CURRENT  
OS  
1.0  
UPPER  
INTO PINS 5 OR 6  
COMMON MODE  
+
0.5  
LIMIT = V – (1.5V)  
0
VOLTAGE ON PINS 5 AND 6  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
+
WITH RESPECT TO V  
–150mV  
–100mV  
–50mV  
V
(OR GND WITH  
SINGLE SUPPLY)  
0
+
V
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
COMMON MODE VOLTAGE (V)  
V
25  
150  
50 75 100 125  
–50 –25  
0
TEMPERATURE (°C)  
1011 G19  
1011 G20  
APPLICATIONS INFORMATION  
Preventing Oscillation Problems  
the BALANCE pins, which are nearly as sensitive as  
the inputs.  
Oscillation problems in comparators are nearly always  
caused by stray capacitance between the output and  
inputs or between the output and other sensitive pins  
on the comparator. This is especially true with high  
gain bandwidth comparators like the LT1011, which are  
designed for fast switching with millivolt input signals.  
The gain bandwidth product of the LT1011 is over 10GHz.  
Oscillation problems tend to occur at frequencies around  
5MHz, where the LT1011 has a gain of ≈2000. This implies  
thatattenuationofoutputsignalsmustbeatleast2000:1at  
5MHz as measured at the inputs. If the source impedance  
is1kΩ, theeffectivestraycapacitancebetweenoutputand  
input must have a reactance of more than (2000)(1kΩ) =  
2MΩ, or less than 0.02pF. The actual interlead capacitance  
between input and output pins on the LT1011 is less than  
0.002pFwhencuttoprintedcircuitmountlength.Additional  
stray capacitance due to printed circuit traces must be  
minimized by routing the output trace directly away from  
input lines and, if possible, running ground traces next  
to input traces to provide shielding. Additional steps to  
ensure oscillation-free operation are:  
2. Bypass the negative supply (Pin 4) with a 0.1μF  
ceramic capacitor close to the comparator. 0.1μF can  
also be used for the positive supply (Pin ꢀ) if the  
pull-up load is tied to a separate supply. When the  
pull-up load is tied directly to Pin ꢀ, use a 2μF solid  
tantalum bypass capacitor.  
3. Bypass any slow moving or DC input with a capaci-  
tor (≥0.01μF) close to the comparator to reduce high  
frequency source impedance.  
4. Keep resistive source impedance as low as possible.  
If a resistor is added in series with one input to bal-  
ance source impedances for DC accuracy, bypass  
it with a capacitor. The low input bias current of the  
LT1011 usually eliminates any need for source resis-  
tance balancing. A 5kΩ imbalance, for instance, will  
create only 0.25mV DC offset.  
5. Use hysteresis. This consists of shifting the input  
offset voltage of the comparator when the output  
changes state. Hysteresis forces the comparator to  
move quickly through its linear region, eliminating  
oscillations by “overdriving” the comparator under all  
input conditions. Hysteresis may be either AC or DC.  
AC techniques do not shift the apparent offset voltage  
1011afc  
1. Bypass the STROBE/BALANCE pins with a 0.01μF  
capacitor connected from Pin 5 to Pin 6. This elimi-  
nates stray capacitive feedback from the output to  
6
LT1011/LT1011A  
APPLICATIONS INFORMATION  
7
6
5
of the compara tor, but require a minimum input sig-  
nal slew rate to be effective. DC hysteresis works for  
all input slew rates, but creates a shift in offset volt-  
age dependent on the previous condition of the input  
signal. The circuit shown in Figure 1 is an excellent  
compromise between AC and DC hysteresis.  
Cꢀ TO C6 = 0.003μF  
4
3
2
1
OUTPUT “LO” TO “HI”  
15V  
0
OUTPUT “HI” TO “LO”  
+
2μF  
–1  
–2  
C1  
R
TANT  
(50kHz)  
10  
(5kHz)  
100  
L
R2  
15M  
0.003μF  
1
1000  
+
3
2
6
TIME/FREQUENCY (μs)  
5
7
1011 F02  
OUTPUT  
INPUTS  
LT1011  
1
Figure 2. Input Offset Voltage vs Time to Last Transition  
4
error is created by the AC hysteresis. The high  
–15V  
0.1μF  
frequency error can be reduced by reducing C , but  
H
1011 F01  
lower values may not provide clean switching with  
very low slew rate input signals.  
Figure 1. Comparator with Hysteresis  
This circuit is especially useful for general purpose  
comparator applications because it does not force  
any signals directly back onto the input signal source.  
Instead, it takes advantage of the unique proper-  
ties of the BALANCE pins to provide extremely fast,  
clean output switching even with low frequency input  
signals in the millivolt range. The 0.003μF capacitor  
from Pin 6 to Pin ꢀ generates AC hysteresis because  
the voltage on the BALANCE pins shifts slightly,  
depending on the state of the output. Both pins move  
about 4mV. If one pin (6) is bypassed, AC hysteresis  
is created. It is only a few millivolts referred to the  
inputs, but is sufficient to switch the output at nearly  
the maximum speed of which the comparator is ca-  
pable. To prevent problems from low values of input  
slew rate, a slight amount of DC hysteresis is also  
used. The sensitivity of the BALANCE pins to current  
is about 0.5mV input referred offset for each micro-  
ampere of BALANCE pin current. The 15M resistor  
tied from OUTPUT to Pin 5 generates 0.5mV DC  
hysteresis. The combination of AC and DC hysteresis  
creates clean oscillation-free switching with very  
small input errors. Figure 2 plots input referred error  
versus switching frequency for the circuit as shown.  
Input Protection  
The inputs to the LT1011 are particularly suited to general  
purposecomparatorapplicationsbecauselargedifferential  
and/or common mode voltages can be tolerated without  
damage to the comparator. Either or both inputs can be  
raised 40V above the negative supply, independent of the  
positive supply voltage. Internal forward biased diodes  
will conduct when the inputs are taken below the negative  
supply. In this condition, input current must be limited to  
1mA. If very large (fault) input voltages must be accom-  
modated, series resistors and clamp diodes should be  
used (see Figure 3).  
+
V
R3*  
D1  
D3  
D2  
R1**  
R2**  
300Ω  
3
2
LT1011  
4
+
R4*  
300Ω  
INPUTS  
D4  
D1 TO D4: 1N414ꢀ  
*MAY BE ELIMINATED FOR I  
**SELECT ACCORDING TO ALLOWABLE  
FAULT CURRENT AND POWER DISSIPATION  
V
≤ 1mA  
FAULT  
1011 F03  
Note that at low frequencies, the error is simply the  
DC hysteresis, while at high frequencies, an additional  
Figure 3. Limiting Fault Input Currents  
1011afc  
7
LT1011/LT1011A  
APPLICATIONS INFORMATION  
15V  
5V  
Theinputresistorsshouldlimitfaultcurrenttoareasonable  
value (0.1mA to 20mA). Power dissipation in the resis-  
tors must be considered for continuous faults, especially  
when the LT1011 supplies are off. One final caution: lightly  
loaded supplies may be forced to higher voltages by large  
fault currents ꢁowing through D1-D4.  
R
L
+
7
LT1011  
OUTPUT  
1
6
4
TTL OR  
CMOS DRIVE  
(5V SUPPLY)  
–15  
R3 and R4 limit input current to the LT1011 to less than  
3k  
1mA when the input signals are held below V . They may  
1011 F04  
be eliminated if R1 and R2 are large enough to limit fault  
current to less than 1mA.  
Figure 4. Typical Strobe Circuit  
level inputs. A 1pF capacitor between the output and Pin  
5 will greatly reduce oscillation problems without reduc-  
ing strobe speed.  
Input Slew Rate Limitations  
The response time of a comparator is typically measured  
with a 100mV step and a 5mV to 10mV overdrive. Unfor-  
tunately, thisdoesnotsimulatemanyrealworldsituations  
where the step size is typically much larger and overdrive  
can be significantly less. In the case of the LT1011, step  
size is important because the slew rate of internal nodes  
will limit response time for input step sizes larger than  
1V. At 5V step size, for instance, response time increases  
from 150ns to 360ns. See the curve “Response Time vs  
Input Step Size for more detail.  
DC hysteresis can also be added by placing a resistor from  
output to Pin 5. See step 5 under “Preventing Oscillation  
Problems.”  
Thepin(6)usedforstrobingisalsooneoftheoffsetadjust  
pins. Current ꢁow into or out of Pin 6 must be kept very  
low (<0.2μA) when not strobing to prevent input offset  
voltage shifts.  
Output Transistor  
If response time is critical and large input signals are ex-  
pected,clampdiodesacrosstheinputsarerecommended.  
The slew rate limitation can also affect performance when  
differential input voltage is low, but both inputs must slew  
quickly. Maximum suggested common mode slew rate is  
10V/μs.  
The LT1011 output transistor is truly ꢁoating in the sense  
that no current ꢁows into or out of either the collector  
or emitter when the transistor is in the “off” state. The  
equivalent circuit is shown in Figure 5.  
+
V
Strobing  
I
1
The LT1011 can be strobed by pulling current out of the  
STROBE pin. The output transistor is forced to an “off”  
state, giving a “hi” output at the collector (Pin 7). Currents  
as low as 250μA will cause strobing, but at low strobe  
currents, strobe delay will be 200ns to 300ns. If strobe  
current is increased to 3mA, strobe delay drops to about  
60ns.ThevoltageattheSTROBEpinisabout150mVbelow  
0.5mA  
D1  
D2  
COLLECTOR  
(OUTPUT)  
Q1  
R1  
170Ω  
OUTPUT  
Q2  
+
+
TRANSISTOR  
V at zero strobe current and about 2V below V for 3mA  
strobe current. Do not ground the STROBE pin. It must be  
current driven. Figure 4 shows a typical strobe circuit.  
V
R2  
470Ω  
EMITTER  
(GND PIN) 1011 F05  
Figure 5. Output Transistor Circuitry  
Note that there is no bypass capacitor between Pins 5 and  
6. This maximizes strobe speed, but leaves the compara-  
tor more sensitive to oscillation problems for slow, low  
1011afc  
8
LT1011/LT1011A  
APPLICATIONS INFORMATION  
+
In the “off” state, I is switched off and both Q1 and Q2  
is tied to V , the voltage at the emitter in the “on” state is  
1
+
turn off. The collector of Q2 can be now held at any voltage  
about 2V below V (see curves).  
above V without conducting current, including voltages  
Input Signal Range  
above the positive supply level. Maximum voltage above  
V is 50V for the LT1011M and 40V for the LT1011C/I. The  
The common mode input voltage range of the LT1011 is  
about300mVabovethenegativesupplyand1.5Vbelowthe  
positive supply, independent of the actual supply voltages  
(seecurveintheTypicalPerformanceCharacteristics).This  
is the voltage range over which the output will respond  
correctly when the common mode voltage is applied to  
one input and a higher or lower signal is applied to the  
remaining input. If one input is inside the common mode  
range and one is outside, the output will be correct. If the  
inputs are outside the common mode range in opposite  
directions, the output will still be correct. If both inputs are  
outside the common mode range in the same direction,  
the output will not respond to the differential input; for  
temperatures of 25°C and above, the output will remain  
unconditionally high (collector output), for temperatures  
below 25°C, the output becomes undefined.  
+
emitter can be held at any voltage between V and V as  
long as it is negative with respect to the collector.  
In the “on” state, I is connected, turning on Q1 and Q2.  
1
DiodesD1andD2preventdeepsaturationofQ2toimprove  
speed and also limit the drive current of Q1. The R1/R2  
dividersetsthesaturationvoltageofQ2andprovidesturn-  
off drive. Either the collector or emitter pin can be held at  
+
a voltage between V and V . This allows the remaining  
pin to drive the load. In typical applications, the emitter is  
connected to V or ground and the collector drives a load  
+
tied to V or a separate positive supply.  
When the emitter is used as the output, the collector is  
+
typically tied to V and the load is connected to ground  
or V . Note that the emitter output is phase reversed with  
respect to the collector output so that the “+” and “–”  
input designations must be reversed. When the collector  
TYPICAL APPLICATIONS  
Offset Balancing  
Driving Load Referenced  
to Positive Supply  
Driving Load Referenced  
to Negative Supply  
R2  
3k  
+
++  
+
V
V
V
V
3
2
R1  
2
3
R
+
LOAD  
+
+
20k  
V
7
7
LT1011  
5
INPUTS*  
LT1011  
1
2
3
6
1
+
4
7
R
LOAD  
LT1011  
4
V
V
OR  
GROUND  
1011 TA03  
V
1011 TA06  
++  
+
V
CAN BE GREATER OR LESS THAN V  
*INPUT POLARITY IS REVERSED  
WHEN USING PIN 1 AS OUTPUT  
1011 TA05  
1011afc  
9
LT1011/LT1011A  
TYPICAL APPLICATIONS  
Strobing  
Driving Ground Referred Load  
Window Detector  
++**  
+
+
V
V
V
2
+
7
2
3
R
HIGH  
L
LT1011  
2
3
+
LIMIT  
+
3
7
7
LT1011  
6
INPUTS*  
LT1011  
OUTPUT HIGH  
1
1
INSIDE “WINDOW”  
AND LOW ABOVE  
HIGH LIMIT OR  
TTL  
STROBE  
L1  
4
V
IN  
BELOW LOW LIMIT  
1k  
2
3
V
1011 TA07  
+
7
1011 TA04  
*INPUT POLARITY IS REVERSED  
WHEN USING PIN 1 AS OUTPUT  
LT1011  
LOW  
LIMIT  
NOTE: DO NOT GROUND STROBE PIN  
++  
**V MAY BE ANY VOLTAGE ABOVE V .  
1
++  
PIN 1 SWINGS TO WITHIN ≈2V OF V  
1011 TA0ꢀ  
Crystal Oscillator  
Using Clamp Diodes to Improve Frequency Response*  
CURRENT MODE  
2
3
5V  
INPUT  
+
10k  
(DAC, ETC)  
7
LT1011  
OUTPUT  
D1  
D2  
1k  
50k  
2
+
VOLTAGE  
INPUT  
7
ꢀ5kHz  
100pF  
LT1011  
OUT  
R1  
3
4
GROUND OR  
LOW IMPEDANCE  
REFERENCE  
1
10k  
*SEE CURVE, “RESPONSE TIME vs INPUT STEP SIZE”  
1011 TA09  
10k  
1011 TA10  
Noise Immune 60Hz Line Sync**  
High Efficiency** Motor Speed Controller  
5V  
15V  
R3  
1k  
R2  
75k  
+
C1  
50μF  
R1  
1k  
2V  
RMS  
Q1  
TO  
25V  
5V  
2N6667  
R1*  
RMS  
330k  
3
60Hz  
INPUT  
1N4002  
7
OUTPUT  
60Hz  
C1  
0.22μF  
MOTOR-TACH  
GLOBE 397A120-2  
LT1011  
2
1
+
R2  
R3*  
10k  
R4  
470Ω  
4
27k  
MOTOR TACH  
R6  
27k  
15V  
1011 TA11  
R6  
2k  
5V  
R5  
100k  
R5  
10k  
2
3
+
*INCREASE R1 FOR LARGER INPUT VOLTAGES  
**LT1011 SELF OSCILLATES AT ≈60Hz CAUSING  
IT TO “LOCK” ONTO INCOMING LINE SIGNAL  
7
C2*  
0.1μF  
C3  
0.1μF  
R7  
1k  
LT1011  
1
1011 TA12  
R4  
1k  
4
*R3/C2 DETERMINES OSCILLATION  
FREQUENCY OF CONTROLLER  
**Q1 OPERATES IN SWITCH MODE  
–5V TO  
–15V  
0V TO 10V  
INPUT  
1011afc  
10  
LT1011/LT1011A  
TYPICAL APPLICATIONS  
Combining Offset Adjust and Strobe  
Combining Offset Adjustment and Hystersis  
+
+
V
V
5k  
R *  
10k  
2R **  
H
H
*HYSTERESIS IS ≈0.45mV/μA OF  
CURRENT CHANGE IN R  
20k  
H
6
20k  
5
**THIS RESISTOR CAUSES HYSTERESIS  
R
L
TTL OR CMOS  
5V  
TO BE CENTERED AROUND V  
OS  
+
5
7
1011 TA15  
6
LT1011  
LT1011  
+
1k  
1
1011 TA13  
Direct Strobe Drive When CMOS* Logic  
Uses Same V+ Supply as LT1011  
Low Drift R/C Oscillator†  
+
V
**  
15V  
15V  
74HC04  
s6  
2
3
6
1k  
+
LT1011  
C1  
0.015μF  
7
BUFFERED  
OUTPUT  
+
1011 TA14  
LT1011  
4
*NOT APPLICABLE FOR TTL LOGIC  
1
Positive Peak Detector  
10k*  
10k*  
15V  
15V  
2k  
*1% METAL FILM  
3
2
10k*  
INPUT  
**TRW TYPE MTR-5/120ppm/°C, 25k ≤ R ≤ 200k  
S
7
C1: 0.015μF = POLYSTYRENE, –120ppm/°C,  
30ppm WESCO TYPE 32-P  
1011 TA16  
LT1011  
2
1
+
NOTE: COMPARATOR CONTRIBUTES ≤10ppm/°C DRIFT  
FOR FREQUENCIES BELOW 10kHz  
LOW DRIFT AND ACCURATE FREQUENCY ARE  
OBTAINED BECAUSE THIS CONFIGURATION  
REJECTS EFFECTS DUE TO INPUT OFFSET  
VOLTAGE AND BIAS CURRENT OF THE  
COMPARATOR  
6
OUTPUT  
LT100ꢀ  
4
10k  
3
1M**  
+
100pF  
C1*  
2μF  
1011 TA17  
–15V  
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
Negative Peak Detector  
15V  
2
+
1M**  
3
6
OUTPUT  
LT100ꢀ  
10k  
7
3
LT1011  
4
2k  
2
1
+
100pF  
INPUT  
+
C1*  
2μF  
1011 TA1ꢀ  
*MYLAR  
**SELECT FOR REQUIRED RESET TIME CONSTANT  
–15V  
1011afc  
11  
LT1011/LT1011A  
TYPICAL APPLICATIONS  
4-Digit (10,000 Count) A/D Converter  
15V  
INPUT  
0V TO 10V  
15V  
ZERO  
TRIM  
R1  
1k  
C4  
0.01μF  
R5  
4.7k  
5V  
R2  
1ꢀk  
C5  
0.01μF  
R6  
2
1
+
4.7K  
6
1
7
LT1011  
2
OUTPUT = 1 COUNT  
PER mV, f = 1MHz  
3
3
5
CLOCK  
1MHz  
LF39ꢀ  
4
6
R7  
5V  
4
7
22Ω  
D1  
D2  
–15V  
R3  
3.9k  
15V  
–15V  
C1*  
0.1μF  
C2**  
15pF  
C3  
0.1μF  
R11  
6.ꢀK  
R4  
5.6k  
Rꢀ  
3k  
R10  
D3  
1k  
15V  
R9  
3.65k  
FULL-SCALE  
TRIM  
R12  
6.ꢀk  
D4  
2N3904  
C6  
50pF  
LM329  
ALL DIODES: 1N414ꢀ  
*POLYSTYRENE  
**NPO  
1011 TA19  
START  
≥12ms  
Capacitance to Pulse Width Converter  
T
H
T
L
≥ [C  
(pF)][1μs/pF]  
MAX  
MAX  
≥ 10 • C  
• (1μs/pF)  
D1  
TTL OR CMOS  
(OPERATING  
ON 5V)  
GAIN ADJ  
5V  
R2  
100k  
R1  
5k  
R1 + R4  
R1  
*PW = (R2 + R3)(C)  
, INPUT CAPACITANCE OF  
R3  
ꢀ6.6k  
0.01μF  
7
R5  
4.7k  
LT1011 IS ≈6pF. THIS IS AN OFFSET TERM.  
2
3
+
+
6
1
**TYPICAL 2 SECTIONS OF 365pF VARIABLE  
CAPACITOR WHEN USED AS SHAFT ANGLE  
INDICATION  
OUTPUT  
1μs/pF  
10μF  
LT1011  
4
THESE COMPONENTS MAY BE ELIMINATED IF  
NEGATIVE SUPPLY IS AVAILABLE (–1V TO –15V)  
C**  
D3  
10μF  
D2  
+
1011 TA20  
1011afc  
12  
LT1011/LT1011A  
TYPICAL APPLICATIONS  
Fast Settling* Filter  
100pF  
1M  
15V  
7
2
3
1M  
6
OUTPUT  
LT100ꢀC  
4.7k  
V
IN  
1
4
4.7k  
1μF  
–15V 15V  
4
OFM-1A**  
1.5k  
–15V 100pF  
0.1μF  
100k  
2
3
7
1
LT1011  
5
+
6
15V  
15V  
5k  
THRESHOLD  
5k  
6
+
5
7
1
LT1011  
4
10k  
–15V 15V  
1011 TA21  
100kHz Precision Rectifier  
0.033μF  
100Ω  
5V  
5V  
5V  
5V  
2
3
1k  
AC INPUT  
+
12k  
74C04  
5k  
ꢀ20Ω  
5V  
7
LT1011  
ZERO  
CROSS  
TRIM  
HP50ꢀ2-2ꢀ00  
s4  
1
–5V  
RECTIFIED  
OUTPUT  
4
–5V  
1k  
ꢀ20Ω  
74C04  
–5V  
12k  
–5V  
1011 TA23  
1011afc  
13  
LT1011/LT1011A  
SCHEMATIC DIAGRAM  
+
OFFSET  
OFFSET/STROBE  
6
V
5
Rꢀ  
ꢀ00Ω  
R9  
ꢀ00Ω  
Q6  
Q10  
R1  
1.3k  
R2  
1.3k  
R4  
300Ω  
R3  
300Ω  
R23  
4k  
R27  
3k  
R5  
160Ω  
Q11  
Q5  
Q31  
Q12  
R10  
4k  
R6  
3.2k  
R7  
3.2k  
Q13  
D1 D2  
Q30  
R11  
170Ω  
INPUT  
(+)  
Qꢀ  
Q7  
D4  
OUTPUT  
7
D6  
Q29  
Q14  
2
Q3  
Q20  
R22  
200Ω  
Q1  
Q15  
Q9 Q19  
Q2ꢀ  
R12  
470Ω  
INPUT  
(–)  
D5  
Q4  
D7  
Q27  
R16  
ꢀ00Ω  
3
Q2  
Q24  
Q16  
R17  
200Ω  
R24  
400Ω  
R13  
4Ω  
Q26  
Q23  
Q21  
Q25  
R15  
700Ω  
R20  
940Ω  
1
Q22  
Q1ꢀ  
Q17  
GND  
R25  
1.6k  
R26  
1.6k  
R19  
500Ω  
R1ꢀ  
275Ω  
R21  
960Ω  
R14  
4.ꢀk  
D3  
4
1011 SD  
V
PACKAGE DESCRIPTION  
H Package  
8-Lead TO-5 Metal Can (.230 Inch PCD)  
(Reference LTC DWG # 05-0ꢀ-1321)  
0.335 – 0.370  
(8.509 – 9.398)  
DIA  
OBSOLETE PACKAGE  
0.027 – 0.045  
(0.686 – 1.143)  
0.305 – 0.335  
(7.747 – 8.509)  
0.040  
45°TYP  
PIN 1  
0.028 – 0.034  
(0.711 – 0.864)  
0.050  
(1.016)  
MAX  
0.165 – 0.185  
(1.270)  
MAX  
(4.191 – 4.699)  
0.230  
(5.842)  
TYP  
REFERENCE  
PLANE  
SEATING  
PLANE  
GAUGE  
PLANE  
0.500 – 0.750  
(12.700 – 19.050)  
0.010 – 0.045*  
(0.254 – 1.143)  
0.016 – 0.021**  
(0.406 – 0.533)  
H8 (TO-5) 0.230 PCD 1197  
0.110 – 0.160  
(2.794 – 4.064)  
INSULATING  
STANDOFF  
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE  
AND 0.045" BELOW THE REFERENCE PLANE  
0.016 – 0.024  
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS  
(0.406 – 0.610)  
1011afc  
14  
LT1011/LT1011A  
PACKAGE DESCRIPTION  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-0ꢀ-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
8
7
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(0.635)  
RAD TYP  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
2
3
4
0.200  
(5.080)  
MAX  
0.300 BSC  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
OBSOLETE PACKAGE  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-0ꢀ-1510)  
.400*  
(10.160)  
MAX  
.130 .005  
.045 – .065  
.300 – .325  
(3.302 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
7
6
5
4
.065  
(1.651)  
TYP  
.255 .015*  
(6.477 0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
.020  
(0.508)  
MIN  
(3.048)  
MIN  
+.035  
–.015  
1
2
3
.325  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1002  
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-0ꢀ-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.010 – .020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
.053 – .069  
(1.346 – 1.752)  
.045 .005  
.160 .005  
.050 BSC  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
0°– 8° TYP  
(0.203 – 0.254)  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.016 – .050  
(0.406 – 1.270)  
.245  
MIN  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
1
2
3
4
.030 .005  
TYP  
SO8 0303  
RECOMMENDED SOLDER PAD LAYOUT  
1011afc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT1011/LT1011A  
TYPICAL APPLICATION  
10Hz to 100kHz Voltage to Frequency Converter  
R7  
4.7k  
R4  
1M  
15V  
15V  
R1  
C1  
0.002μF  
4.7k  
POLYSTYRENE  
LT1009  
2.5V  
15V  
R2  
5k  
R5  
R6  
15V  
2k  
FULL-SCALE  
TRIM  
R3  
2k  
LINEARITY ≈0.01%  
ꢀ.06k  
3
2
INPUT  
0V TO 10V  
+
Rꢀ  
4.7k  
C2  
0.6ꢀμF  
7
LT1011  
1
15V  
–15V  
4
1.5μs  
R17  
22M  
6
R16  
50k  
10Hz TRIM  
4.4V  
–15V  
15V  
15V  
0.002μF  
10pF  
–15V  
R9  
5k  
TTL OUTPUT  
10HZ TO 100kHz  
–15V  
R11  
20k  
1.5μs  
Q2  
R10  
2.7k  
ALL DIODES 1N414ꢀ  
R15 R14  
22k 1k  
TRANSISTORS 2N3904  
USED ONLY TO GUARANTEE  
START-UP  
*
R12  
100k  
1011 TA22  
Q1*  
MAY BE INCREASED FOR BETTER  
10Hz TRIM RESOLUTION  
+
R13  
620k  
2μF  
–15V  
RELATED PARTS  
PART NUMBER  
LT1016  
DESCRIPTION  
COMMENTS  
UltraFast™ Precision Comparator  
Industry Standard 10ns Comparator  
Single Supply Version of the LT1016  
7ns, 6mA Single Supply Comparator  
450μA Single Supply Comparator  
LT1116  
12ns Single Supply Ground-Sensing Comparator  
UltraFast Single Supply Comparator  
60ns, Low Power Comparator  
LT1394  
LT1671  
UltraFast is a trademark of Linear Technology Corporation.  
1011afc  
LT 0308 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 1991  
(40ꢀ) 432-1900 FAX: (40ꢀ) 434-0507 www.linear.com  

相关型号:

LT1011ACJ8

Voltage Comparator
Linear

LT1011ACJG

Analog Comparator
ETC

LT1011ACL

Analog Comparator
ETC

LT1011ACN8

Voltage Comparator
Linear

LT1011ACN8#PBF

LT1011/LT1011A - Voltage Comparator; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT1011ACP

Analog Comparator
ETC

LT1011AIS8

Voltage Comparator
Linear

LT1011AIS8#PBF

LT1011/LT1011A - Voltage Comparator; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1011AIS8#TR

Comparator, 1 Func, 1000uV Offset-Max, 150ns Response Time, BIPolar, PDSO8
Linear

LT1011AMH

Voltage Comparator
Linear

LT1011AMH#PBF

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, LEAD FREE, TO-5, 8 PIN, Comparator
Linear

LT1011AMH#TR

IC COMPARATOR, 1000 uV OFFSET-MAX, 150 ns RESPONSE TIME, MBCY8, METAL CAN, TO-5, 8 PIN, Comparator
Linear