LS8293 [LSI]

MICRO-STEPPING MOTOR CONTROLLER; 微步进电机控制器
LS8293
型号: LS8293
厂家: LSI COMPUTER SYSTEMS    LSI COMPUTER SYSTEMS
描述:

MICRO-STEPPING MOTOR CONTROLLER
微步进电机控制器

电动机控制 电机 控制器
文件: 总13页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LS8292  
LS8293  
LSI/CSI  
LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405  
PRELIMINARY MICRO-STEPPING MOTOR CONTROLLER June 2013  
FEATURES:  
simultaneously but terminated separately per individual DAC  
references.  
Controls Bipolar and Unipolar stepper motors  
Step modes: Full, 1/2, 1/4, 1/8, 1/16 and 1/32  
PWM outputs for external H-bridge drivers  
Precision DAC reference for PWM sense comparators  
Fast, Slow and mixed decay modes  
Power saving holding torque for idling motor  
Automatic switching to holding torque with  
programmable delay when motor idles  
Programmable delay for sense input blanking  
Programmable delay for mixed decay cycles  
Input for Step command  
An input is provided for the holding torque state at lower winding  
current in the motor idle state. The holding-torque current level is  
adjusted with a separate reference voltage applied at the Vrefh  
input. The Vrefh is automatically switched in if the motor idles for  
a programmable specified delay following a micro-step.  
PWM chopping can be applied either to the PHASE or to the  
INHIBIT outputs. The chopping mode affects the manner in  
which the winding current decays during a PWM cycle.  
Input for Direction control  
There are four selectable decay modes: Fast-decay, Slow-  
decay, Single-mixed-decay and Dual-mixed-decay.  
Input for Reset to HOME  
Input for disabling PWM outputs  
Input/output for external clock or built-in oscillator  
Supply current < 400uA  
In the Fast-decay mode the diagonal high side and low side  
transistors of the H-bridge are both turned off during the PWM off  
period. This causes the inductive current to be dissipated  
through the bypass diodes in a direction opposing the motor  
supply voltage resulting in fast decay.  
Supply voltage 4.5V to 5.5V  
LS8292 (DIP), LS8292-S (SOIC), LS8292-TS  
(TSSOP)  
LS8293 (DIP), LS8293-S (SOIC), LS8293-TS  
(TSSOP)  
In the Slow-decay mode the low side transistor of the H-bridge is  
turned off keeping the high side transistor on during the PWM off  
period. This causes the inductive current to re-circulate through  
the high side transistor and diode loop. The current decays  
slowly because of the low loop voltage. The Slow-decay can be  
useful for motors that do not store enough energy in the windings  
leading to an average current too low for any useful torque.  
DESCRIPTION:  
LS8292 and LS8293 are stepper motor controllers with  
selectable resolutions from Full to 1/32 step. There are four  
phase drive outputs and two inhibit outputs for controlling 2-  
phase bipolar or 4-phase unipolar motors. These outputs are  
designed to drive two external H-bridge drivers for bipolar motor  
windings or four external transistors for center-tapped unipolar  
motor windings. These outputs can also be configured to drive  
discrete external transistors for bipolar motor windings. A lookup  
table sources the PWM duty cycle digital data for the two motor  
windings corresponding to the step sequence. Two internal  
DACs convert the PWM data to analog voltages as percentages  
of the reference voltage applied at the Vref input. Currents  
through the motor windings are monitored at the SENSE inputs  
as voltage drops across fractional-Ohm resistors in series with  
the H-bridge drivers. Upon turning on a PWM drive, when the  
voltage at the SENSE input reaches the DAC reference level, the  
PWM output is switched off for remainder of the cycle. The PWM  
cycle is fixed at Tpwm = 256/fc, where fc is the clock frequency  
at the XTLI input. The PWM cycles for the two drives are started  
In the Single-mixed-decay mode, slow and fast decays are  
combined in the following way:  
When the motor is idle, slow decay is applied to both windings  
to guarantee lowest current ripple in a holding state.  
When the motor is stepping, if the step requires the current in a  
winding to decrease, fast decay is applied to the winding for a  
programmable duration followed by slow decay. If the step  
requires the current in a winding to increase, slow decay is  
applied to the winding.  
In Dual-mixed-decay mode, mixed decay is applied to both  
windings for every step with fast decay being followed by slow  
decay.  
8292-061413-1  
One of six stepping modes can be selected by two input pins: Full, 1/2, where, Imax is the maximum motor winding current and Rs1 and  
1/4, 1/8, 1/16 and 1/32. An internal oscillator generates the system  
clock and sets the PWM period. The oscillator pin can also be driven  
by an external clock. Other available inputs are for step command,  
direction control, resetting to home position, disabling the H-bridge  
drives, SENSE input blanking delay control and fast to slow switching  
delay control in the mixed decay modes.  
Rs2 are the fractional-Ohm sense resistors in series with each  
phase of the H-bridge driver transistors.  
Vrefh  
Input for the holding torque reference voltage when the holding  
torque mode is enabled. The holding torque reference voltage  
should satisfy the relation:  
Vrefh = 7 x Rs1 x Imaxh = 7 x Rs2 x Imaxh,  
Where, Imaxh is the maximum winding current intended in the  
holding state and Rs1 and Rs2 are the fractional Ohm sense  
resistors in series with each phase of the H-bridge driver  
transistors.  
INPUT/OUTPUT DESCRIPTION:  
XTLI, XTLO  
A crystal connected between these two pins sets the system clock  
frequency. Alternatively, XTLI pin can be driven by an external clock for  
providing the system clock. The PWM period Tpwm, is related to the  
system clock frequency as follows: Tpwm = 256/fc, where,  
fc is the system clock frequency applied at the XTLI input.  
SENSE1, SENSE2  
Inputs for motor winding current sense. A fractional-Ohm resistor  
connected in series with each of the H-bridge drivers produce  
SENSE1 and SENSE2 voltages. These voltages are compared  
with the DAC modulated reference voltages for generating the  
PWM phase or inhibit outputs.  
M0, M1  
M0 is a 3-state input amd M1 is a 2-state input; together they select the  
step mode as follows:  
Table 1  
M0 Step Mode  
PHA, PHB, PHC, PHD  
M1  
0
1
0
1
Phase drive outputs for power stages. In a bipolar motor, PHA  
and PHB are used for one H-bridge while PHC and PHD are  
used for the other. In the slow-decay mode the phase outputs  
are chopped by means of the current sense comparators. In the  
fast-decay mode the phase outputs are kept enabled while the  
inhibit outputs are chopped.  
0
0
float  
float  
1
Full Step  
1/2 Step  
1/4 Step  
1/8 Step  
1/16 Step  
1/32 Step  
0
1
1
RESET/  
INH1/, INH2/  
When low, RESET/ input clears the step pointer to HOME position per  
table 4. This input has an internal pull-up resistor.  
These outputs are active low inhibit controls for motor drive  
outputs. INH1/ controls driver stage using PHA and PHB outputs  
while INH2/ controls driver stage using PHC and PHD outputs. In  
the fast-decay mode inhibit outputs are chopped by means of the  
current sense comparators. In the slow-decay mode the inhibit  
outputs are enabled while the phase outputs are chopped.  
STEP/  
A low pulse at the STEP/ input causes the motor to advance one step  
forward or reverse. The step size is selected per Table 1.  
FWD  
SYNC/  
When high, the FWD input causes the motor to step in the forward  
direction per incremental step sequence of Table 4. When low, the  
motor steps in the reverse direction per decremental step sequence of  
Table 4.  
This open drain output produces a negative-going pulse  
occurring at the beginning of every PWM cycle which can be use  
to drive an external slope compensation circuit. Slope  
compensation may be useful at PWM duty cycle exceeding 50%,  
particularly in the fast-decay mode.  
EN/  
When high, EN/ input causes all motor drive outputs to be disabled  
bringing INH1/, INH2/, PHA, PHB, PHC and PHD low. When ENABLE/  
is low, all motor drive outputs are enabled.  
TBLNK  
A resistor-capacitor pair connected to the TBLNK input controls  
the delay for which the sense input sampling is inhibited at the  
beginning of each PWM cycle. The delay is given by:  
Tblnk = 1.2 x RbCb  
Where, Rb and Cb are the resistor and the capacitor connected  
to the TBLNK pin.  
HOME/  
HOME/ is an open drain output to indicate step0 per Table 4 with an  
active low.  
Vref  
THLD  
Input for the chopper circuit DAC reference voltage. It regulates the  
peak motor winding current by regulating the PWM duty cycle. The  
DAC modifies the Vref input voltage for the current sensing  
comparators at every sequential motor step which can be estimated  
with the following equations:  
Vsens1 = | (Vref/7) x cos((90/32) x (n + 16))º |  
Vsens2 = | (Vref/7) x sin((90/32) x (n + 16))º |  
Where, n is the 1/32 column step number in Table 6. The sense  
resistors should satisfy the relation: Rs1 = Rs2 = Vref/(7 x Imax)  
A resistor-capacitor pair connected to this pin produces the  
holding torque initiation delay following a step command. Upon  
delay timeout the normal torque reference voltage Vref is  
switched out from the sense comparators, being replaced with  
the holding torque reference voltage Vrefh. The holding torque at  
lower dissipation prevails as long as the motor remains idle. The  
delay is given by:  
Thld = 1.4 x RhCh  
8292-021811-2  
Where, Rh and Ch are the resistor and the capacitor connected to the  
THLD pin. If the pin is tied low, holding torque mode is disabled and  
normal torque prevails in both dynamic and idle motor states.  
PIN ASSIGNMENT  
TOP VIEW  
DCYM, TDCYD, TDCYU  
DCYM and TDCYD inputs control the PWM decay modes for the  
LS8292 as follows:  
VDD  
INH1/  
INH2/  
PHA  
M0  
1
24  
M1  
DCYM  
2
3
4
5
23  
22  
21  
20  
Table 2  
DCYM TDCYD  
Decay Mode  
Fast  
Slow  
Single-Mixed  
1
1
0
0
1
RESET/  
STEP/  
RdCd  
PHB  
PHC  
DCYM, TDCYD and TDCYU inputs control the PWM decay modes for  
the LS8293 as follows:  
FWD  
EN/  
6
7
19  
18  
LS8292  
PHD  
Table3  
TBLNK  
TDCYD  
SENSE1  
SENSE2  
AGND  
DCYM TDCYD TDCYU  
Decay Mode  
Fast  
Slow  
Single-Mixed  
Dual-Mixed  
HOME/  
XTLO  
8
9
17  
16  
1
1
0
0
0
1
x
x
0
RdCd  
RdCd  
RuCu  
XTLI  
DGND  
Vref  
10  
11  
12  
15  
14  
13  
Fast-Decay. Phase output are enabled while inhibit outputs are  
chopped in both dynamic and idle motor states.  
Slow-Decay. Inhibit output are enabled while phase outputs are  
chopped in both dynamic and idle motor states.  
Single-Mixed-Decay. Following a stepping event, if the step requires  
the current in a winding to decrease, fast decay is applied to the winding  
for a programmable duration followed by slow decay. The duration is  
given by: Tdcyd = 1.2 x RdCd, where Rd and Cd are the resistor and the  
capacitor connected to the TDCYD pin.  
M0  
M1  
VDD  
INH1/  
INH2/  
1
28  
27  
26  
2
3
4
DCYM  
If the step requires the current in a winding to increase, slow decay is  
applied to the winding. If motor is idle, slow decay is applied to both  
windings.  
RESET/  
PHA  
25  
STEP/  
FWD  
PHB  
PHC  
5
6
24  
23  
Dual-Mixed-Deacy. Following a stepping event fast decay is applied to  
both windings for programmable durations followed by slow decay. The  
duration of the fast decay for the winding requiring lower current  
following a stepping event is given by: Tdcyd = 1.2 x RdCd and the  
duration of the fast decay for the winding requiring higher current  
following a stepping event is given by: Tdcyu = 1.2 x RuCu. Ru and Cu  
are the resistor and the capacitor connected to the TDCYU pin.  
EN/  
PHD  
7
22  
LS8293  
HOME/  
XTLO  
TBLNK  
TDCYD  
8
9
21  
20  
If motor is idle, slow decay is applied to both windings.  
XTLI  
SENSE1  
SENSE2  
10  
11  
19  
18  
VDD  
Supply voltage positive terminal.  
DGND  
DGND  
SYNC/  
TDCYU  
THLD  
AGND  
Vref  
12  
13  
14  
17  
16  
15  
Supply negative terminal for digital ground.  
AGND  
Analog ground; must be connected together with DGND on the PCB.  
Vrefh  
8292-021811-3  
VDD  
EN/  
DCYM  
M0  
MODE  
Vr  
INH1/  
INH2/  
PHA  
SELECT  
M1  
VDD  
DAC  
Vr  
-
OUTPUT  
CONTROL  
+
STEP  
CONTROL  
&
LOOK-UP  
TABLE  
RESET/  
STEP/  
PHB  
PHC  
PHD  
FWD  
DAC  
-
HOME/  
+
THLD  
TBLNK  
TDCYD  
TDCYU  
XTLI  
Vr  
XTLO  
SENSE1  
MUX  
SENSE2  
AGND  
DGND  
Vref  
Vrefh  
FIG 2. LS8292/LS8293 BLOCK DIAGRAM  
8292-021811-4  
TABLE 4  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
VALUE  
UNIT  
DC Supply Voltage  
VDD  
Vin  
TA  
+7  
V
V
ºC  
ºC  
Input Voltage (all inputs)  
Operating Temperature  
Storage Temperature  
GND – 0.3 to VDD + 0.3  
-25 to +85  
TSTG  
-65 to +125  
TABLE 5  
ELECTRICAL AND TRANSIENT CHARACTERISTICS ( VDD = 5V, TA = -25 ºC TO +85 ºC )  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
CONDITION  
Supply Voltage  
Supply Current  
M0 Input Logic High  
M0 Input Logic Low  
Input Voltage Logic High (all other inputs)  
Input Voltage Logic Low (all other inputs)  
Input Current: RESET/ logic high  
Input Current: RESET/ logic low  
Input Current: M0 logic high  
VDD  
IDD  
VMH  
VML  
VIH  
VIL  
IIRH  
IIRL  
IMH  
IML  
IIH  
IIL  
IOPIL  
IOPIH  
IOSL  
IOHL  
IOHH  
Vrf  
4.5  
-
4.0  
-
2.0  
-
-
-
-
-
-
5.0  
-
-
-
-
-
-
-
5
5
-
-
-
-
-
-
-
5.5  
500  
-
0.6  
-
0.8  
30  
40  
-
V
uA  
V
V
V
-
Outputs floating, Inputs high  
-
-
-
V
uA  
uA  
uA  
uA  
nA  
nA  
mA  
mA  
mA  
mA  
mA  
V
VIH = 2V  
VIL = 0.8V  
VIH = 5V  
Input Current: M0 logic low  
-
VIL = 0V  
Input Current: logic high (all other inputs)  
Input Current: logic low (all other inputs)  
Output Current: Sink (Phase & Inhibit outputs)  
Output Current: Source (Phase & Inhibit outputs)  
Output Current: Sink (SYNC/ output)  
Output Current: Sink (HOME/ output)  
Output Current: source (HOME/ output)  
Input Reference Voltage (Vref & Vrefh)  
Sense Comparators Offset Voltage  
50  
50  
-
-
-
Leakage Current  
Leakege Current  
Vout = 0.4V  
Vout = 4.6V  
Vout = 0.4V  
Vout = 0.4V  
Vout = 4.6V  
-
-
10  
-5  
10  
10  
-5  
2.5  
-
-
-
-
50  
4.5  
200  
Vos  
uV  
Vrf = 2V  
TDCYD Input Timing Resistpr  
TDCYU Input Timing Resistor  
THLD Input Timing Resistor  
TBLNK Input Timing Resistor  
2
2
4
6
-
-
-
-
-
-
-
-
k  
kΩ  
kΩ  
kΩ  
-
-
-
-
Rd  
Ru  
Rh  
Rb  
XTLI Input Frequency  
fc  
tfd  
Tspw  
Trpw  
Tsypw  
Tpwm  
-
0
-
-
-
5.0  
0
8/fc  
8/fc  
16/fc  
255/fc  
8.0  
0
-
-
-
MHz  
nS  
uS  
uS  
uS  
-
-
-
-
-
-
FWD Input set-up time for STEP/  
STEP/ Input Pulse Width  
RESET/ Input Pulse Width  
SYNC/ Output Pulse Width  
PWM period  
-
-
uS  
8292-021811-5  
Icoil  
Slow  
Decay  
Slow  
Decay  
Slow  
Decay  
Tdcyd  
Tdcyu  
Dual Mixed  
Decay  
Dual or Single  
Mixed Decay  
Step down  
Step up  
Tpwm  
Time  
Fig 3. SINGLE AND DUAL MIXED-DECAY MODES  
+5V  
+Vm  
4
9
24  
VDD  
VSS  
Vs  
23  
6
1
INH1/  
INH1/  
INH2/  
A
M0  
11  
22  
21  
20  
2
3
INH2/  
PHA  
PHB  
PHC  
PHD  
M1  
5
7
DCYM  
4
B
RESET/  
STEP/  
2
uC  
O1  
O2  
5
6
7
19  
18  
10  
12  
C
D
FWD  
EN/  
3
+5V  
Rb  
LS8292  
L298  
Cm  
Cm  
9
13  
17  
XTLO  
XTLI  
Vref  
TBLNK  
O3  
O4  
Cb  
10MΩ  
5MHz  
10  
14  
+5V  
Rd  
Vr  
12  
16  
TDCYD  
SNS1  
1
SNS2  
GND  
8
Cd  
15  
11  
13  
DGND  
AGND  
15  
14  
SENSE1  
SENSE2  
Rs  
Rs  
NOTE. Cm is chosen according to following relation:  
Cm = 2(Cl Cp) 10pF, where Cl = Crystal load capacitance and Cp = parasitic capacitance  
Fig 4. LS8292 DRIVING TWO-PHASE BIPOLAR MOTOR  
8292-061413-6  
+5V  
+Vm  
28  
VDD  
15nF  
15nF  
Vs  
BOOT1  
O1  
27  
1
INH1/  
EN  
M0  
L6201  
L6202  
L6203  
25  
24  
2
3
IN1  
IN2  
PHA  
PHB  
M1  
DCYM  
BOOT2  
4
VREF  
GND  
RESET/  
STEP/  
uC  
5
6
7
220nF  
O2  
FWD  
EN/  
LS8293  
+Vm  
Cm  
Cm  
9
XTLO  
XTLI  
15nF  
15nF  
Vs  
BOOT1  
O1  
26  
10MΩ  
5MHz  
10  
EN  
INH2/  
23  
22  
L6201  
L6202  
L6203  
IN1  
IN2  
PHC  
PHD  
+5V  
Ru  
BOOT2  
VREF  
13  
220nF  
TDCYU  
Cu  
GND  
O2  
+5V  
+5V  
Rb  
21  
TBLNK  
Rh  
Cb  
14  
THLD  
Ch  
+5V  
Rd  
20  
Vr  
17  
TDCYD  
Vref  
Cd  
Vrh 18  
Vrefh  
18  
19  
SENSE2  
SENSE1  
AGND  
17  
DGND  
11  
NOTE1. All functional options have been implemented in this application. If all options are not used, following components can be deleted:  
~Rd, Ru, Cd and Cu: if no mixed-decay mode id selected.  
~Rh and Ch: if holding torque is not selected. In this case Vrefh pin is tied to GND.  
NOTE2. Cm is chosen according to following relation:  
Cm = 2(Cl Cp) 10pF, where Cl = Crystal load capacitance and Cp = parasitic capacitance  
Fig.5. LS8293 APPLICATION FOR TWO PHASE MOTOR USING TWO SEPARATE DRIVERS  
8292-021811-7  
+5V  
+Vm  
D
D
24  
VDD  
1
2
M0  
M1  
74HC08  
21  
23  
Q1  
Q2  
PHA  
4
5
6
7
INH1/  
RESET/  
STEP/  
uC  
20  
15  
PHB  
+Vm  
D
FWD  
EN/  
SENSE1  
D
R
LS8292  
74HC08  
Cm  
Cm  
9
XTLO  
XTLI  
19  
22  
Q3  
Q4  
PHC  
INH2/  
PHD  
10MΩ  
5MHz  
10  
18  
14  
+5V  
SENSE2  
3
+5V  
Rb  
R
DCYM  
Vref  
Vr 12  
17  
16  
TBLNK  
TDCYD  
Cb  
DGND  
11  
AGND  
13  
NOTE 1. This design can operate in the Slow-decay mode only.  
NOTE 2. Q1, Q2, Q3 and Q4 are power MOSFETS suitable for 5V gate drive. Typical part numbers: IRLZ44N and IRF3708  
NOTE 3. For higher pre-drive capability, 74HC08 can be replaced with MIC4468  
NOTE 4. Cm is chosen according to following relation:  
Cm = 2(Cl Cp) 10pF, where Cl = Crystal load capacitance and Cp = parasitic capacitance  
Fig 6. TYPICAL APPLICATION FOR FOUR PHASE UNIPOLAR MOTOR USING DISCRETE MOSFETS  
8292-021811-8  
Vm  
2kΩ  
2kΩ  
BD679  
6A10  
6A10  
6A10  
6A10  
BD679  
1N4148  
1N4148  
PHA  
INH1/  
2N5551  
6A10 2N5551  
6A10  
BD679  
BD679  
SENSE1  
R
PHB  
Vm  
2kΩ  
LS8292  
2kΩ  
BD679  
6A10 BD679  
6A10  
6A10  
1N4148  
1N4148  
PHC  
2N5551  
6A10  
6A10 2N5551  
6A10  
INH2/  
BD679  
BD679  
SENSE2  
R
PHD  
Note. All inverters are 74HC04, all NAND gates are 74HC00 and all AND gates are 74HC08  
Fig.7. DISCRETE COMPONENT DRIVER  
8292-021811-9  
Vm  
0.1uF  
+20V  
Vcc  
Vb  
HO  
PHA  
IN  
Vs  
IR2104  
LO  
INH1/  
SD/  
COM  
SENSE1  
0.1uF  
+20V  
R
Vcc  
Vb  
HO  
PHB  
IN  
Vs  
IR2104  
LS8292  
LS8293  
SD/  
LO  
COM  
Vm  
0.1uF  
+20V  
Vcc  
Vb  
HO  
PHC  
Vs  
IR2104  
INH2/  
LO  
COM  
SENSE2  
0.1uF  
+20V  
R
Vcc  
Vb  
HO  
PHD  
Vs  
IR2104  
LO  
COM  
Notes:  
Vm ≤ 100V.  
All MOSFETs are IRF540N, all diodes are 1N4002  
Fig.8. BIPOLAR DRIVER USING N-CHANNEL MOSFETS  
8292-061512-10  
Table 6  
Step Number  
PWM Duty Cycle (%)  
Full 1/2 1/4 1/8 1/16 1/32  
INH1/  
INH2/  
PHA PHB PHC PHD  
Step Angle (º )  
0
0
1
2
3
0
1
2
3
4
5
6
7
0
0
0
1
2
3
4
5
6
7
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
100  
99.9  
99.5  
98.9  
98.1  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
HOME  
2.81  
5.63  
1
8.44  
1
2
11.25  
14.06  
16.88  
19.69  
22.50  
25.31  
28.13  
30.94  
33.75  
36.56  
39.38  
42.19  
45.00  
47.81  
50.63  
53.44  
56.25  
59.06  
61.88  
64.69  
67.50  
70.31  
73.13  
75.94  
78.75  
81.56  
84.38  
87.19  
90.00  
92.81  
95.63  
98.44  
101.25  
104.06  
106.88  
109.69  
112.50  
115.31  
118.13  
120.94  
123.75  
126.56  
129.38  
132.19  
135.00  
137.81  
140.63  
143.44  
146.25  
149.06  
151.88  
154.69  
157.50  
160.31  
163.13  
3
2
3
4
8
9
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
6
7
4.9  
0.0  
4.9  
9.8  
4
8
9
14.7  
19.5  
24.3  
29.0  
33.7  
38.3  
42.8  
47.1  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
100  
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
6
7
1
8
9
10  
11  
12  
13  
14  
4.9  
0.0  
4.9  
9.8  
14.7  
19.5  
24.4  
29.0  
33.7  
38.3  
42.8  
47.1  
99.9  
99.5  
98.9  
98.1  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
Continued on next page  
8292-021811-11  
Step Number  
PWM Duty Cycle (%)  
Full 1/2 1/4 1/8 1/16 1/32  
INH1/  
INH2/  
PHA PHB PHC PHD  
Step Angle (º )  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
100  
99.9  
99.5  
98.9  
98.1  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
67.2  
63.4  
59.6  
55.6  
51.4  
47.1  
42.8  
38.3  
33.7  
29.0  
24.3  
19.5  
14.7  
9.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
165.94  
168.75  
171.56  
174.38  
177.19  
180.00  
182.81  
185.63  
188.44  
191.25  
194.06  
196.88  
199.69  
202.50  
205.31  
208.13  
210.94  
213.75  
216.56  
219.38  
222.19  
225.00  
227.81  
230.63  
233.44  
236.25  
239.06  
241.88  
244.69  
247.50  
250.31  
253.13  
255.94  
258.75  
261.56  
264.38  
267.19  
270.00  
272.81  
275.63  
278.44  
281.25  
284.06  
286.88  
289.69  
292.50  
295.31  
298.13  
300.95  
303.75  
306.56  
309.38  
312.19  
315.00  
317.81  
320.63  
323.44  
326.25  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
2
4
5
6
7
8
9
4.9  
0.0  
4.9  
9.8  
10  
11  
12  
13  
14  
14.7  
19.5  
24.4  
29.0  
33.7  
38.3  
42.8  
47.1  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
74.1  
77.3  
80.3  
83.1  
85.8  
88.2  
90.4  
92.4  
94.2  
95.7  
97.0  
98.1  
98.9  
99.5  
99.9  
100  
3
4.9  
0.0  
4.9  
9.8  
14.7  
19.5  
99.9  
99.5  
98.9  
98.1  
Continued on next page  
8292-021811-12  
Step Number  
Full 1/2 1/4 1/8 1/16 1/32  
117  
PWM Duty Cycle (%)  
INH1/  
INH2/  
PHA PHB PHC PHD  
Step Angle (º )  
97.0  
95.7  
94.2  
92.4  
90.4  
88.2  
85.8  
83.1  
80.3  
77.3  
74.1  
70.7  
24.4  
29.0  
33.7  
38.3  
42.8  
47.1  
51.4  
55.6  
59.6  
63.4  
67.2  
70.7  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
329.06  
331.88  
334.69  
337.50  
340.31  
343.13  
345.95  
348.75  
351.56  
354.38  
357.19  
HOME  
59  
60  
61  
62  
63  
0
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
0
15  
30  
31  
0
0
0
0
NOTE:  
In Table4 the PWM duty cycles are indicated for Fast Decay mode which causes INH1/ and INH2/ outputs to be chopped.  
In Slow Decay mode INH1/ and INH2/ outputs remain high while PHA, PHB, PHC and PHD outputs are chopped.  
8292-021811-13  

相关型号:

LS8297

STEPPER MOTOR CONTROLLER
LSI

LS8297CT

STEPPER MOTOR CONTROLLER
LSI

LS830

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET
Linear System

LS830

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET
MICROSS

LS830-3

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET
Linear System

LS830-PDIP-8L

Small Signal Field-Effect Transistor, N-Channel, Junction FET,
Linear

LS830-TO-71-6L

Transistor,
Linear

LS8307M

Analog IC
ETC

LS830_PDIP

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET
MICROSS

LS830_SOT-23

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS

LS830_TO-71

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS

LS830_TO-78

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS