LS8297CT [LSI]

STEPPER MOTOR CONTROLLER; 步进电机控制器
LS8297CT
型号: LS8297CT
厂家: LSI COMPUTER SYSTEMS    LSI COMPUTER SYSTEMS
描述:

STEPPER MOTOR CONTROLLER
步进电机控制器

电动机控制 电机 控制器
文件: 总8页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LS8297  
LS8297CT  
LSI/CSI  
U
® L  
LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405  
A3800  
April 2009  
STEPPER MOTOR CONTROLLER  
FEATURES:  
PIN ASSIGNMENT  
TOP VIEW  
• Controls Bipolar and Unipolar Motors  
• Cost-effective, low current, pin compatible replacement for L297  
• Torque ripple compensated half-steps - LS8297CT  
• Half and full step modes  
20  
19  
SYNC  
1
RESET  
• Normal/wave drive  
• Direction control  
• Reset input  
• Step control input  
V
SS  
2
3
HALF/FULL  
HOME  
18  
17  
STEP  
• Enable input  
FWD/REV  
• PWM chopper circuit for current control  
• Two over current sensor comparators with external references input  
• All inputs and outputs TTL/CMOS compatible (TTL for 5V operation)  
Supply current < 400uA  
• 4.75 to 7V Operation (VDD – VSS).  
LS8297 (DIP), LS8297-S (SOIC), LS8297-TS (TSSOP)  
LS8297CT (DIP), LS8297CT-S (SOIC), LS8297CT-TS (TSSOP)  
– See Figure 1 –  
4
5
6
PHA  
INH1  
OSC  
16  
15  
VREF  
PHB  
PHC  
7
8
14 SENSE1  
INH2  
13  
12  
SENSE2  
DESCRIPTION:  
9
VDD  
PHD  
The LS8297 Stepper Motor Controller generates four phase drive signal  
outputs for controlling two phase Bipolar and four phase Unipolar mo-  
tors. The outputs are used to drive two H-bridges for the two motor  
windings in the Bipolar motor or the four driver transistors for the two  
center- tapped windings in the Unipolar motor. The motor can be driven  
in full step mode either in normal drive (two-phase-on) or wave drive  
(one-phase-on) and half step mode. The LS8297 provides two inhibit  
outputs which are used to control the driver stages of each of the motor  
phases. The circuit uses STEP, FRD/REV and HALF/FULL inputs in a  
translator to generate controls for the output stages.  
10  
11 CONTROL  
ENABLE  
FIGURE 1  
current in either half of the center tapped motor winding recir-  
culates through the diode across it.  
LS8297CT is the torque ripple compensated version of the  
LS8297. Torque imbalance resulting from alternating “one-  
phase on”, “two-phase on” sequence of the half-step mode  
(see Figure 4) is eliminated in the LS8297CT by switching the  
sense reference voltage between 100% and 70.7% in alter-  
nate steps.  
A dual PWM chopper circuit using an on-chip oscillator, latches and volt-  
age comparators are used to regulate the current in the motor windings.  
For each pair of phase driver outputs (PHA, PHB, and PHC, PHD) each  
pulse of the common internal oscillator sets the latch and enables the  
output. If the current in the motor winding causes the voltage across a  
sense resistor to exceed the reference voltage, VREF, at the comparator  
inputs, the latch is reset disabling the output until the next oscillator  
pulse.  
INPUT/OUTPUT DESCRIPTION:  
OSC Input  
An RC input with the resistor connected to VDD and the ca-  
pacitor connected to ground determines the oscillator chopper  
rate. When connected as an oscillator, the oscillator output  
appears as a negative-going pulse at the Sync pin. If the Os-  
cillator pin is tied to ground, the Sync pin becomes an input.  
Osc frequency, fosc = 1/0.69RC  
The CONTROL input determines whether the chopper acts on the  
phase driver outputs or the inhibit outputs. When the phase lines are  
chopped, the non-active phase line of each pair (PHA, PHB or PHC,  
PHD) is activated rather than de-activating the active line to reduce dis-  
sipation in the load sensing resistors. Refer to Figure 5B for Bipolar mo-  
tors. If PHA is high and PHB is low, current flows through Q1, motor  
winding, Q4 and sense resistor Rs. When chopping occurs, PHB is  
brought high and circulating current flows through Q1 and D3 and not  
through Rs resulting in less power dissipation in Rs. Current decay is  
slow using this method. When the Control input is brought low, chopping  
occurs by bringing INH1 low. In this case circulating current flows  
through D2, motor winding and D3 and through the power supply to  
ground causing the current to decay rapidly. For Unipolar motors, only  
inhibit chopping is used. Refer to Figure 6. When INH1 is brought low  
SYNC  
As an output the Sync can be used to drive Sync pins of other  
LS8297s. This eliminates the need for RC components for  
any other LS8297 controllers used in the system. As an input  
the Sync can be driven by the LS8297 that has the RC oscilla-  
tor components or by any other system external clock.  
8297-042009-1  
PHA/PHB/PHC/PHD  
STEP Input  
Phase drive output signals for power stages. In a Bipolar motor An active low pulse on this input causes the motor to ad-  
PHA and PHB are used for one H-bridge while PHC and PHD vance one step. The step occurs on the rising edge of the  
are used for the other.  
step signal.  
INH1/INH2 Outputs  
FRD/REV Input  
These outputs are active low inhibit controls for motor drive A logic 1 on this input causes the motor to advance through  
outputs. INH1 controls driver stage using PHA and PHB sig- the stepping sequence of Fig. 4. A logic 0 on this input cause  
nals while INH2 control driver stage using PHC and PHD sig- the motor to reverse the sequence.  
nals. When the Control input is low, these outputs are chopped  
using the internal oscillator for current regulating.  
RESET Input  
An active low on this input cause the motor to be restored to  
the home position (0101).  
CONTROL Input  
When high, the phase outputs, PHA, PHB, PHC and PHD are  
chopped. When low, INH1 and INH2 are chopped. Normally, HALF/FULL Input  
inhibit outputs are chopped. Phase chopping might be used When high, half-step operation is selected. When low, full-  
with a Bipolar motor that does not store much energy to pre- step operation is selected. One-phase on full step is selected  
vent fast current decay and a low useful torque.  
by selecting full when stepping sequence is at an even state.  
Two-phase on full step operation is selected when stepping  
sequence is at an odd state. Refer to Figure 4.  
ENABLE Input  
When Enable input is low, INH1, INH2, PHA, PHB, PHC and  
PHD are brought low.  
SENSE1/ SENSE2 Inputs  
Inputs for load current sense voltages from power stages us-  
ing PHA and PHB drive signals or PHC and PHD drive sig-  
HOME Output  
An open drain output that indicates when the LS8297 is in its nals, respectively.  
initial state with PHA, PHB, PHC, PHD = logic states 0101 re-  
spectively. Refer to Figure 4. In the active state the open drain VREF  
device is off.  
Reference voltage for chopper circuit which determines the  
peak load current.  
VDD  
V
SS  
PHA INH1 PHB PHC INH2 PHD  
12  
2
4
5
6
7
8
9
+ V  
19  
20  
HALF/FULL  
RESET  
10  
11  
ENABLE  
TRANSLATOR  
OUTPUT LOGIC  
CONTROL  
FWD/REV  
17  
Q
S
S
Q
FF1  
FF2  
R
R
18  
3
STEP  
1
SYNC  
+
-
+
-
x0.707  
HOME  
OSC  
16  
MUX  
15  
14  
SENSE1  
13  
V
REF  
SENSE2 OSC  
FIGURE 2. LS8297/LS8297CT BLOCK DIAGRAM  
8297-091608-2  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
VS  
Vi  
Supply Voltage  
Input Signals  
10  
7
V
V
TSTG, TJ  
Storage and Junction Temperatures  
-40 to +150  
°C  
ELECTRICAL CHARACTERISTICS: (Refer to Block Diagram, Figure 2, and Timing Diagram, Figure 3)  
TA = +25°C, VDD = +5V unless otherwise specified.  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Condition  
(Pin 12)  
Supply Voltage  
Quiscent Supply Current  
VDD  
IDD  
4.75  
-
-
7
400  
V
uA  
-
300  
Outputs floating  
(Pins 11, 17, 18, 19, 20)  
Input Voltage Low  
Input Voltage High  
Input Current  
VIL  
VIH  
II  
0
2
-
-
-
-
-
0.75  
VDD  
50  
V
V
nA  
nA  
-
-
VI = VIL  
VI = VIH  
Input Current  
II  
-
50  
(Pin 10)  
Enable Input Voltage Low  
Enable Input Voltage High VENH  
Enable Input Current  
Enable Input Current  
VENL  
0
2
-
-
-
-
-
1.3  
VDD  
50  
V
V
nA  
nA  
-
-
IEN  
IEN  
VEN = VENL  
VEN = VENH  
-
50  
(Pins 4, 6, 7, 9)  
Phase Output Voltage Low VOL  
Phase Output Voltage High VOH  
-
-
-
0.5  
-
V
V
IO = -10mA  
IO = 5mA  
4.0  
(Pins 5, 8)  
Inhibit Output Voltage Low VInhL  
Inhibit Output Voltage High VInhH  
-
-
-
0.5  
-
V
V
IO = -10mA  
IO = 5mA  
4.0  
(Pin 3)  
Leakage Current  
Saturation Voltage  
ILeak  
VSat  
-
-
-
-
1
0.4  
uA  
V
VO = VDO = 7V  
I = 5mA  
(Pins 13, 14, 15)  
Comparators Offset Voltage VOff  
-
5
-
-
10  
mV  
uA  
VREF = 1V  
-
Comparator Bias Current  
IO  
100  
(Pin 15)  
Input Reference Voltage  
Input Current  
VREF  
IREF  
0
-
-
-
3
8
V
uA  
-
VREF = 3V  
Clock Time Step  
Pulse Width  
tstp  
0.5  
-
-
us  
-
Set up time  
tS  
1
4
1
1
-
-
-
-
-
-
-
-
us  
us  
us  
us  
-
-
-
-
Hold time  
tH  
Reset time  
tR  
Reset to Step delay  
tRStp  
(Pin 16)  
Oscillator:  
Sawtooth Low  
VSOL  
VSOH  
fOSC  
-
-
-
2.1  
3.65  
30  
-
-
-
V
-
Sawtooth High  
Frequency  
V
-
kHz  
R = 22kW, C = 3.3nF  
8297-040109-3  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Condition  
(Pin 1)  
Sync:  
Sync Output Voltage Low  
Sync Output Voltage High  
VSyncL  
VSyncH  
-
-
-
0.8  
-
V
V
IO = -5mA  
IO = 5mA  
3.0  
Sync Input Pulse Width  
TSPW  
-
-
-
3.3  
-
-
-
us  
V
R = 22kW, C = 3.3nF  
<
Sync Input Switching Point TSSP  
2.0  
Pin 16 1.0V  
<
Sync Input Current  
IIS  
-425  
uA  
Pin 16 1.0V, VIN = VDD  
STEP  
tSTP  
FWD/REV  
HALF/FULL  
tS  
tH  
RESET  
tR  
tRSTP  
FIGURE 3. Input Timing Diagram  
8297-040109-4  
1
2
3
4
5
6
7
8
1
2
3
4
5
STEP  
1000  
4
1001  
1010  
0010  
0110  
3
2
5
A
B
6
0001  
C
D
0101  
7
1
8
INH1  
INH2  
HOME  
0100  
FIGURE 4A. HALF-STEP MODE  
1
3
5
7
1
3
5
7
1
3
5
7
STEP  
1001  
1010  
4
3
2
5
A
B
6
C
D
7
1
8
0101  
INH1  
0110  
HOME  
0
INH2  
0
FIGURE 4B. NORMAL DRIVE MODE (TWO-PHASE-ON)  
2
4
6
8
2
4
6
8
2
4
6
8
STEP  
1000  
4
3
2
5
A
B
0010  
6
0001  
C
D
7
1
8
INH1  
INH2  
0100  
FIGURE 4C. WAVE DRIVE MODE (ONE-PHASE-ON)  
FIGURE 4. MOTOR DRIVING SEQUENCES  
The LS8297 generates phase sequences for half-step mode, normal drive mode and wave drive mode. Advancing occurs on the positive  
edge of the STEP input signal. HOME is defined as PHA, PHB, PHC, PHD being 0101, respectively. The State Diagrams showing the  
phase output polarities for all states are shown above for clockwise rotation. For counter clockwise rotation, the sequences are reversed.  
RESET restores the phases to 0101 and State 1.  
7297-081208-5  
5V  
VM  
VS  
4
9
12  
V
DD  
V
DD  
19  
5
8
6
INH1  
INH2  
PHA  
HALF/FULL  
CONTROL  
2
INH1  
INH2  
PHA  
PHB  
OUT1  
11  
20  
11  
5
RESET  
4
6
3
OUT2  
OUT3  
18  
17  
STEPPER  
MOTOR  
WINDINGS  
MCU  
STEP  
7
13  
PHB  
PHC  
FRD/REV  
ENABLE  
10  
7
9
10  
12  
PHC  
PHD  
14  
OUT4  
PHD  
LS8297  
LS8297CT  
L298  
16  
22k  
OSC  
VDD  
3.3nF  
V
SS  
14  
SENSE1  
SENSE2  
1
15  
8
2
V
SS  
13  
15  
VREF  
R
R
Note: The SENSE resistors on L298 should be chosen so that  
MAX = V REF/R, where IMAX is the maximum motor winding current.  
See Note  
I
FIGURE 5A. Typical Application Schematic for a Two-Phase Bipolar Motor Using a Single Motor Driver IC  
VM  
PHA  
INH1  
PHB  
Q1  
Q2  
Q3  
Q4  
D1  
D2  
D3  
D4  
SENSE1  
R
FIGURE 5B. One half of L298 Drive Stage  
8297-040309-6  
5V  
VM  
12  
Q1  
4
1
2
3
VDD  
PHA  
6
19  
11  
HALF/FULL  
CONTROL  
PHB  
INH1  
5
74HC08  
6
4
5
20  
18  
RESET  
MCU  
STEP  
Q2  
17  
10  
14  
FRD/REV  
SENSE1  
ENABLE  
R
LS8297  
LS8297CT  
22k  
16  
VDD  
OSC  
3.3nF  
VM  
Q3  
7
9
8
PHC  
PHD  
10  
9
8
74HC08  
11  
INH2  
12  
13  
Q4  
13  
15  
SENSE2  
VREF  
2
VSS  
R
NOTE: Q1, Q2, Q3, Q4 are MOSFET Power Transistors suitable for 5V Gate Drive  
Typical P/Ns = IRLZ44N and IRF3708  
FIGURE 6. TYPICAL APPLICATION SCHEMATIC FOR A FOUR-PHASE  
UNIPOLAR MOTOR USING DISCRETE MOSFET TRANSISTORS  
7297-090908-7  
+V  
1
1
1
SYNC  
SYNC  
SYNC  
R
C
LS8297  
LS8297CT  
LS8297  
LS8297CT  
LS8297  
LS8297CT  
16  
16  
16  
OSC  
OSC  
OSC  
FIGURE 7. Synchronizing Multiple LS8297s  
The information included herein is believed to be  
accurate and reliable. However, LSI Computer Systems,  
Inc. assumes no responsibilities for inaccuracies, nor for  
any infringements of patent rights of others which may  
result from its use.  
7297-041309-8  

相关型号:

LS830

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET
Linear System

LS830

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET
MICROSS

LS830-3

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET
Linear System

LS830-PDIP-8L

Small Signal Field-Effect Transistor, N-Channel, Junction FET,
Linear

LS830-TO-71-6L

Transistor,
Linear

LS8307M

Analog IC
ETC

LS830_PDIP

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET
MICROSS

LS830_SOT-23

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS

LS830_TO-71

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS

LS830_TO-78

MONOLITHIC DUAL NPN TRANSISTOR
MICROSS

LS831

ULTRA LOW LEAKAGE LOW DRIFT MONOLITHIC DUAL N-CHANNEL JFET
Linear System

LS831

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET
MICROSS