ML13150-B9P [LANSDALE]

Narrowband FM Coilless Detector IF Subsystem; 窄带FM Coilless检测IF子系统
ML13150-B9P
型号: ML13150-B9P
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

Narrowband FM Coilless Detector IF Subsystem
窄带FM Coilless检测IF子系统

文件: 总20页 (文件大小:1596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML13150  
Narrowband FM Coilless  
Detector IF Subsystem  
NARROWBAND FM COILLESS DETECTOR IF SUBSYSTEM FOR CELLULAR AND ANALOG APPLICATIONS  
SEMICONDUCTOR TECHNICAL DATA  
Legacy Device: Motorola MC13150  
ML13150-A9P  
PLASTIC PACKAGE  
(LQFP-24)  
The ML13150 is a narrowband FM IF subsystem targeted at  
cellular and other analog applications. The ML13150 has an  
onboard Colpitts VCO that can be crystal controlled or phased  
lock for second LO in dual conversion receivers. The mixer is a  
double balanced configuration with excellent third order inter-  
cept. It is useful to beyond 200 MHz. The IF amplifier is split to  
accommodate two low cost cascaded filters. RSSI output is  
derived by summing the output of both IF sections., The quadra-  
ture detector is a unique design eliminating the conventional  
tunable quadrature coil.  
24  
1
32  
ML13150-B9P  
PLASTIC PACKAGE  
(LQFP-32)  
1
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
LQFP-24  
LQFP-32  
MC13150FTA  
MC13150FTB  
ML13150-A9P  
ML13150-B9P  
Applications for the ML13150 include cellular, CT-1, 900 MHz  
cordless telephone, data links and other radio systems utilizing  
narrowband FM modulation.  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Linear Coilless Detector  
• RSSI Range of Greater Than 100 dB  
• Adjustable Demodulator Bandwidth  
• 2.5 to 6.0 Vdc Operation  
• Internal 1.4 kTerminations for 455 kHz Filters  
• Split IF for Improved filtering and Extended RSSI Range  
• Low Drain Current <2.0 mA  
• Operating Temperature Range - T = -40° to +85°C  
A
Typical Sensitivity of 2.0 µV for 12 dB SINAD  
• IIP3, Input Third Order Intercept Point of 0 dBm  
PIN CONNECTIONS  
LQFP-24  
LQFP-32  
32  
31  
30  
29  
28  
27 26  
25  
24  
23  
22  
21  
20  
19  
Mix  
V
24  
23  
22  
21  
20  
19  
RSSI  
Out  
1
2
Mix  
b
Mixer  
out  
RSSI  
18  
1
2
3
4
b
Mixer  
CC1  
DET  
out  
V
CC1  
17 DET  
out  
V
V
(N/C)  
V
V
(N/C)  
3
CC  
EE  
IF  
in  
16  
15  
V
EE2  
IF  
in  
4
5
EE2  
IF  
DET  
IF  
IF  
Gain  
d1  
DET  
d1  
Gain  
IF  
V
(N/C)  
6
7
8
EE  
(N/C)  
CC  
14  
13  
IF  
AFT  
5
6
d2  
Filt  
Limiter  
18 AFT  
IF  
Filt  
d2  
IF  
Limiter  
out  
AFT  
out  
AFT  
17  
IF  
out  
out  
7
8
9
10  
11  
12  
9
10  
11  
12  
13  
14  
16  
15  
Page 1 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
MAXIMUM RATINGS  
Rating  
Pin  
Symbol  
V (max)  
CC  
Value  
6.5  
Unit  
Vdc  
C
Power Supply Voltage  
Junction Temperature  
Storage Temperature Range  
2, 9  
-
-
T
Jmax  
+150  
T
stg  
-65 to +150  
C
NOTE: 1. Devices should not be operated at or outside these values. The “Recommended Operating  
Limits” provide for actual device operation.  
2. ESD data available upon request.  
RECOMMENDED OPERATING CONDITIONS  
Rating  
Power Supply Voltage  
Pin  
Symbol  
Value  
Unit  
T
T
A
= 25 C  
2, 9  
21, 31  
V
V
EE  
2.5 to 6.0  
0
Vdc  
A
CC  
–40 C  
85  
C
(See Figure 22)  
Input Frequency  
32  
-
f
in  
10 to 500  
-40 to +85  
0
MHz  
C
Ambient Temperature Range  
Input Signal Level  
T
A
32  
V
in  
dBm  
DC ELECTRICAL CHARACTERISTICS (T = 25 C, V  
= V = 3.0 Vdc, No Input Signal.)  
CC2  
A
CC1  
Pin  
Characteristics  
Condition  
Symbol  
Min  
Ty p  
Max  
Unit  
Total Drain Current  
(See Figure 2)  
V
S
= 3.0 Vdc  
2 + 9  
I
-
1.7  
3.0  
mA  
TOTAL  
Supply Current, Power Down  
(See Figure 3)  
-
2 + 9  
-
-
40  
-
nA  
AC ELECTRICAL CHARACTERISTICS (T = 25 C, V = 3.0 Vdc, f  
LO Level = –10 dBm, see Figure 1 Test Circuit*, unless otherwise specified.)  
= 50 MHz, f  
= 50.455 MHz,  
LO  
A
S
RF  
Characteristics  
Condition  
= 1.0 kHz;  
Pin  
Symbol  
Min  
Ty p  
Max  
Unit  
12 dB SINAD Sensitivity  
(See Figure 15)  
f
f
32  
-
-
–100  
-
dBm  
mod  
=
5.0 kHz  
dev  
RSSI Dynamic Range  
(See Figure 7)  
-
25  
-
-
100  
-
dB  
Input 1.0 dB Compression Point  
Input 3rd Order Intercept Point  
(See Figure 18)  
-
-
-
-
1.0 dB C. Pt.  
IIP3  
-
-
-11  
-1.0  
-
-
dBm  
Coilless Detector Bandwidth  
Adjust (See Figure 11)  
Measured with No IF Filters  
-
BW adj  
-
-
26  
10  
-
-
kHz/µA  
MIXER  
Conversion Voltage Gain  
(See Figure 5)  
P
in  
= -30 dBm;  
32  
-
dB  
PLO = -10 dBm  
Mixer Input Impedance  
Mixer Output Impedance  
LOCAL OSCILLATOR  
Single-Ended  
-
32  
1
-
-
-
-
200  
1.5  
-
-
kΩ  
LO Emitter Current  
(See Figure 26)  
-
29  
-
30  
63  
100  
µA  
IF & LIMITING AMPLIFIERS SECTION  
IF and Limiter RSSI Slope  
Figure 7  
25  
4, 8  
4, 8  
10  
-
-
-
-
-
-
-
-
-
-
0.4  
42  
-
-
-
-
-
µA/dB  
dB  
IF Gain  
Figure 8  
IF Input & Output Impedance  
Limiter Input Impedance  
Limiter Gain  
-
-
-
1.5  
1.5  
96  
kΩ  
kΩ  
-
dB  
* Figure 1 Test Circuit uses positive (V ) Ground.  
CC  
Page 2 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
AC ELECTRICAL CHARACTERISTICS (continued) (T = 25°C, V = 3.0 Vdc, f  
LO Level = -10 dBm, see Figure 1 Test Circuit*, unless otherwise specified.)  
= 50 MHz, f  
= 50.455 MHz,  
LO  
A
S
RF  
Characteristics  
DETECTOR  
Condition  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency Adjust Current  
Frequency Adjust Voltage  
Bandwidth Adjust Voltage  
Figure 9,  
16  
16  
15  
23  
23  
-
-
-
-
-
41  
600  
-
49  
56  
700  
-
µA  
f
f
= 455 kHz  
IF  
Figure 10,  
= 455 kHz  
650  
570  
1.36  
122  
mVdc  
mVdc  
Vdc  
IF  
Figure 12,  
I
= 1.0 µA  
15  
Detector DC Output Voltage  
(See Figure 25)  
-
-
-
Recovered Audio Voltage  
f
=
3.0 kHz  
85  
175  
mVrms  
dev  
* Figure 1 Test Circuit uses positive (V ) Ground.  
CC  
Figure 1. Test Circuit  
LO Input  
V
EE1  
10  
1:4  
µ
220 n  
+
100 n  
Enable  
RSSI  
Z Xformer  
Mixer  
In  
49.9  
100 n  
32  
31  
30  
29  
28  
27  
26  
25  
V
EE1  
220 n  
1.5 k  
RSSI  
Buffer  
Mixer  
Out  
24  
23  
22  
21  
20  
19  
18  
17  
1
Mixer  
Detector  
Output  
2
3
4
5
6
7
8
V
CC1  
Local  
Oscillator  
RSSI  
Buffer  
100 p  
R
100 k  
L
IF  
In  
220 n  
V
EE2  
49.9  
220 n  
R
100 k  
S
220 n  
(6)  
V
IF  
EE2  
220 n  
10 µ  
+
220 n  
V18–V17 = 0;  
100 k  
Limiter  
220 n  
f
= 455 kHz  
IF  
IF Amp  
Out  
V
CC2  
10  
9
11  
12  
13  
14  
15  
16  
1.5 k  
220 n  
220 n  
Limiter  
In  
I15  
I16  
220 n  
220 n  
49.9  
This device contains 292 active transistors.  
Page 3 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
ML13150 CIRCUIT DESCRIPTION  
The buffered output of the mixer is internally loaded,  
GENERAL DESCRIPTION  
The ML13150 is a very low power single conversion nar- resulting in an output impedance of 1.5k.  
rowband FM receiver incorporating a split IF. This device  
LOCAL OSCILLATOR  
can be used as a single conversion or as the backend in  
analog narrowband FM systems such as 900 MHz cord- The on–chip transistor operates with crystal and LC  
less phones, and narrowband data links with data rates up resonant elements up to 220 MHz. Series resonant,  
to 9.6 k baud. It contains a mixer, oscillator, extended  
range received signal strength indicator (RSSI), RSSI  
overtone crystals are used to achieve excellent local  
oscillator stability. 3rd overtone crystals are used through  
buffer, IF amplifier, limiting IF, a unique coilless quadra- about 65 to 70 MHz. Operation for 70 MHz up to 200  
ture detector and a device enabler function (see Package  
Pin Outs/Block Diagram).  
MHz is feasible using the on–chip transistor with a 5th or  
7th overtone crystal. To enhance operation using an  
overtone crystal, the internal transistor's bias is increased  
by adding an external resistor from Pin 29 (in 32 pin QFP  
LOW CURRENT OPERATION  
The ML13150 is designed for battery and portable  
applications. Supply current is typically 1.7 mAdc at 3.0  
Vdc. Figure 2 shows the supply current versus supply  
voltage.  
package) to V to keep the oscillator on continuously or  
EE  
it may be taken to the enable pin to shut is off when the  
receiver is disabled. –10 dBm of local oscillator drive is  
needed to adequately drive the mixer (Figure 6). The  
oscillator configurations specified above are described in  
the application section.  
ENABLE  
The enable function is provided for battery powered  
operation. The enabled pin is pulled down to enable the  
regulators. Figure 3 shows the supply current versus  
RSSI  
The received signal strength indicator (RSSI) output is a  
current proportional to the log of the received signal  
enable voltage, V  
enable  
(relative to V ) needed to  
CC  
enable the device. Note that the device is fully enabled at amplitude. The RSSI current output is derived by  
V
- 1.3 Vdc. Figure 4 shows the relationship of the  
summing the currents from the IF and limiting amplifier  
stages. An external resistor at Pin 25 (in 32 pin QFP  
package) sets the voltage range or swing of the RSSI  
output voltage. Linearity of the RSSI is optimized by  
using external ceramic bandpass filters which have an  
insertions loss of 4.0 dB. The RSSI circuit is designed to  
CC  
enable current, I  
to enable voltage, V .  
enable  
enable,  
MIXER  
The mixer is a double-balanced four quadrant multiplier  
and is designed to work up to 500 MHz. It has a single  
ended input. Figure 5 shows the mixer gain and saturated provide 100+ dB of dynamic range with temperature  
output response as a function of input signal drive and for compensation (see Figures 7 and 23 which show the RSSI  
–10 dBm LO drive level. This is measured in the applica- response of the applications circuit).  
tion circuit shown in Figure 15 in which a single LC  
RSSI BUFFER  
matching network is used. Since the single–ended input  
impedance of the mixer is 200 , and alternate solution  
uses a 1:4 impedance transformer to match the mixer to  
50 input impedance. The linear voltage gain of the  
mixer alone is approximately 4.0 dB (plus an additional  
6.0 dB for the transformer). Figure 6 shows the mixer  
gain versus the LO input level for various mixer input  
levels at 50 MHz RF input.  
The RSSI buffer has limitations in what loads it can  
drive. It can pull loads well towards the positive and  
negative supplies, but has problems pulling the load away  
from the supplies. The load should be biased at half  
supply to overcome this situation.  
Page 4 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
Figure 2. Supply Current  
versus Supply Voltage  
Figure 3. Supply Current  
versus Enable Voltage  
–2  
–3  
–4  
2.0  
1.6  
1.2  
0.8  
10  
10  
10  
V
= 3.0 Vdc  
CC  
T
= 25°C  
A
V
Measured  
CC  
ENABLE  
Relative to V  
–5  
–6  
–7  
10  
10  
10  
–8  
–9  
10  
0.4  
0
T
= 25°C  
A
10  
–10  
10  
1.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
V
, SUPPLY VOLTAGE (Vdc)  
V
ENABLE  
, ENABLE VOLTAGE (Vdc)  
ENABLE  
Figure 4. Enable Current  
versus Enable Voltage  
Figure 5. Mixer IF Output Level versus  
RF Input Level  
70  
60  
50  
40  
30  
20  
10  
V
= 3.0 Vdc  
V
T
= –3.0 Vdc  
= 25°C  
CC  
= 25°C  
EE  
T
A
A
0
–10  
–20  
–30  
20  
10  
f
= 50 MHz; f  
= 50.455 MHz  
RF  
LO  
LO Input Level = –10 dBm  
(100 mVrms)  
–40  
–50  
0
(R = 50  
; R  
= 1.4 kΩ  
in  
out  
–10  
0
0.4  
0.8  
1.2  
1.6  
2.0  
–50  
–40  
–30  
–20  
–10  
0
10  
20  
V
, ENABLE VOLTAGE (Vdc)  
RF INPUT LEVEL (dBm)  
ENABLE  
Figure 6. Mixer IF Output Level versus  
Local Oscillator Input Level  
Figure 7. RSSI Output Current  
versus Input Signal Level  
20  
0
50  
RF In = 0 dBm  
= –3.0 Vdc  
V
= 3.0 Vdc  
V
T
CC  
f = 50 MHz  
= 50.455 MHz  
EE  
= 25°C  
40  
30  
20  
A
–20 dBm  
f
LO  
455 kHz  
Ceramic Filter  
See Figure 15  
–20  
–40  
–40 dBm  
–60  
–80  
10  
0
f
R
= 50 MHz; f  
LO  
= 50.455 MHz  
= 1.4 kΩ  
RF  
in  
= 50  
; R  
out  
–60  
–50  
–40  
–30  
LO DRIVE (dBm)  
–20  
–10  
0
–120  
–100  
–80  
–60  
–40  
–20  
0
SIGNAL INPUT LEVEL (dBm)  
Page 5 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
IF AMPLIFIER  
Overall RSSI linearity is dependent on having total midband  
The first IF amplifier section is composed of three differential attenuation of 10 dB (4.0 insertion loss plus 6.0 dB  
stages. This section has internal dc feedback and external  
input decoupling for improved symmetry and stability. The  
total gain of the IF amplifier block is approximately 42 dB at  
455 kHz. Figure 8 shows the gain of the IF amplifier as a  
function of the IF frequency.  
impedance matching loss) for the filter. The output of the IF  
amplifier is buffered and the impedance if 1.5kΩ.  
LIMITER  
The limiter section is similar to the IF amplifier section  
except that six stages are used. The fixed internal input  
The fixed internal input impedance is 1.5 k; it is designed impedance is 1.5 k. The total gain of the limiting  
for applications where a 455 kHz ceramic filter is used and  
no external output matching is necessary since the filter  
requires a 1.5 ksource and load impedance.  
amplifier sections is approximately 96 dB. This IF limiting  
amplifier section internally drives the quadrature detector  
section.  
Figure 8. IF Amplifier Gain  
Figure 9. F  
Current  
adj  
versus IF Frequency  
versus IF Frequency  
50  
120  
100  
80  
V
= 3.0 Vdc  
CC  
Slope at 455 kHz = 9.26 kHz/  
45  
40  
35  
µA  
60  
V
R
R
= 100 µV  
in  
in  
30  
25  
20  
= 50  
40  
20  
0
= 1.4 k  
out  
BW (3.0 dB) = 2.4 MHz  
= 25°C  
T
A
0.01  
0.1  
1.0  
10  
0
200  
400  
600  
800  
1000  
f, FREQUENCY (MHz)  
f, IF FREQUENCY (kHz)  
Figure 10. F  
Voltage  
Current  
Figure 11. BW  
versus IF Frequency  
Current  
adj  
adj  
versus F  
adj  
800  
750  
3.5  
3.0  
2.5  
2.0  
V
= 3.0 Vdc  
CC  
= 25°C  
V
= 3.0 Vdc  
26 kHz/  
CC  
BW  
T
A
µ
A
700  
650  
600  
1.5  
1.0  
0.5  
0
0
20  
40  
60  
CURRENT ( A)  
80  
100  
400  
420  
440  
460  
480  
500  
F
µ
f, IF FREQUENCY (kHz)  
adj  
Page 6 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
COILLESS DETECTOR  
For example, 1.0 µA would give a band width of 13 kHz.  
The quadrature detector is similar to a PLL. There is an inter- The voltage across the bandwidth resistor, RB from Figure 12  
nal oscillator running at the IF frequency and two detector  
outputs. One is used to deliver the audio signal and the other  
one is filtered and used to tune the oscillator.  
is V  
CC  
– 2.44 Vdc = 0.56 Vdc for V = 3.0 Vdc, so R =  
CC B  
0.56V/1.0 µA = 560 k. Actually the locking range will be  
13 kHz while the audio bandwidth wil be approximately  
8.4 kHz due to an internal filter capacitor. This is verified in  
Figure 13. For some applications it may be desireable that the  
The oscillator frequency is set by and external resistor at the  
F
pin. Figure 9 shows the control current required for a  
audio bandwidth is increased; this is done by reducing R .  
B
adj  
particular frequency; Figure 10 shows the pin voltage at that  
current. From this the value of RF is chosen. For example,  
455 kHz would require a current of around 50 µA. The pin  
Reducing R widens the detector bandwidth and improves  
B
the distortion at high input levels at the expense of 12 dB  
SINAD sensitivity. The low frequency 3.0dB point is set by  
voltage (Pin 16 in the 32 pin QFP package) is around 655mV the tuning circuit such that the product  
giving a resistor of 13.1 k. Choosing 12 kas the nearest  
standard value gives a current of approximately 55 µA. The  
R C = 0.68/f  
.
3dB  
T T  
5.0 µA difference can be taken up by the tuning resistor, R .  
T
So, for example, 150 kand 1.0 µF give a 3.0 dB point of  
The best nominal frequency for the AFTout pin (Pin 17)  
would be half supply. A supply voltage of 3.0 Vdc suggests a  
resistor value of (1.5 – 0.655) V/5.0 µA = 169 k. Choosing  
150 kwould give a tuning current of 3/150 k= 20 µA.  
From Figure 9 this would give a tuning range of roughly 10  
kHz/µA or 100 kHz which should be adequate.  
4.5 kHz. The recovered audio is set by R to give roughly  
50mV per kHz deviation per 100 k of resistance. The dc  
level can be shifted by R from the nominal 0.68 V by the  
S
following equation:  
L
Detector DC Output = ((R + R )/R ) 0.68 Vdc  
L
S
S
The bandwidth can be adjusted with the help of Figure 11.  
Thus R = R sets the output at 2 x 0.68 = 1.36 V; R =  
S
L
L
2R sets the output at 3 x .068 = 2.0V.  
S
Figure 12. BW  
Current  
Figure 13. Demodulator Output  
adj  
Voltage  
versus BW  
versus Frequency  
adj  
–3  
10  
10  
V
= 3.0 Vdc  
CC  
= 25 C  
0
T
A
–4  
–5  
–6  
–7  
R
= 560 k  
10  
10  
10  
10  
B
–10  
–20  
–30  
–40  
–50  
V
= 3.0 Vdc  
= 25 C  
= 50 MHz  
= 50.455 MHz  
R
= 1.0 M  
CC  
B
T
A
RF  
LO  
f
f
LO Level =–10 dBm  
No IF Bandpass Filters  
f
= 4.0 kHz  
dev  
2.3  
2.5  
BW  
2.7  
0.1  
1.0  
10  
100  
VOLTAGE (Vdc)  
f, FREQUENCY (kHz)  
adj  
Page 7 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
EVALUATION PC BOARD  
INPUT MATCHING COMPONENTS  
The evaluation PCB is very versatile and is intended to be  
used across the entire useful frequency range of this device.  
The input matching circuit shown in the application circuit  
schematic (Figure 15) is a series L, shunt C single L section  
The center section of the board provides an area for attaching which is used to match the mixer input to 50 . An alterna-  
all SMT components to the circuit side and radial leaded  
components to the component ground side (see Figures 29  
and 30). Additionally, the peripheral area surrounding the RF  
core provides pads to add supporting and interface circuitry  
tive input network may use 1:4 surface mount transformers or  
BALUNs. The 12 dB SINAD sensitivity using the 1:4 imped-  
ance transformer is typically –100 dBm for f  
= 1.0 kHz  
mod  
= 50.455  
and f  
dev  
= 5.0 kHz at f = 50 MHz and f  
in LO  
as a particular application requires. There is an area dedicated MHz (see Figure 14).  
for a LNA preamp. This evaluation board will be discussed  
and referenced in this section.  
It is desirable to use a SAW filter before the mixer to provide  
additional selectivity an adjacent channel rejection and  
improved sensitivity. SAW filters sourced from Toko (Part  
COMPONENT SELECTION  
The evaluation PC board is designed to accommodate specif- #SWS083GBWA) and Murata (Part # SAF83.16MA51X) are  
ic components, while also being versatile enough to use com- excellent choices to easily interface with the MC13150 mixer.  
ponents from various manufacturers and coil types. The appli- They are packaged in a 12 pin low profile surface mount  
cations circuit schematic (Figure 15) specifies particular com- ceramic package. The center frequency is 83.161 MHz and  
ponents that were used to achieve the results shown in the  
typical curves but equivalent components should give similar  
results. Component placement views are shown in Figures 27  
and 28 for the application circuit in Figure 15 and for the  
83.616 MHz crystal oscillator circuit in Figure 16.  
the 3.0 dB bandwidth is 30 kHz.  
Figure 14. S+N+D, N+D, N, 30% AMR  
versus Input Signal Level  
20  
10  
S+N+D  
0
–10  
–20  
–30  
V
= 3.0 Vdc  
= 1.0 kHz  
CC  
mod  
dev  
f
f
f
N+D  
=
5.0 kHz  
= 50 MHz  
in  
30% AMR  
N
–40  
–50  
–60  
f
= 50.455 MHz  
LO  
LO Level = –10 dBm  
See Figure 15  
–120  
–100  
–80  
–60  
–40  
INPUT SIGNAL (dBm)  
Page 8 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
Legacy Applications Information  
Figure 15. Application Circuit  
(3)  
LO Input  
(1)  
180 nH  
(4)  
Enable  
11 p  
RF/IF  
Input  
(5)  
RSSI  
100 n  
51  
100 n  
82 k  
32  
V
31  
30  
29  
28  
27  
26  
25  
V
EE1  
(2)  
RSSI  
Buffer  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
455 kHz  
IF Ceramic  
Filter  
Mixer  
Detector  
Output  
CC1  
RSSI  
Buffer  
1.0 n  
R
150 k  
Local  
Oscillator  
L
V
EE2  
R
S
150 k  
1.0 n  
1.0 n  
100 n  
(6)  
IF  
100 n  
100 n  
1.0  
µ
Limiter  
C
T
V
CC2  
10  
9
11  
12  
13  
14  
15  
16  
150 k  
R
T
100 n  
100 n  
455 kHz  
IF Ceramic  
Filter  
(6)  
560 k  
12 k  
Coilless Detector  
Circuit  
R
R
B
F
+
10  
µ
V
CC  
NOTES: 1. Alternate solution is 1:4 impedance transformer (sources include Mini Circuits, Coilcraft and Toko).  
2. 455 kHz ceramic filters (source Murata CFU455 series which are selected for various bandwidths).  
3. For external LO source, a 51 pullup resistor is used to bias the base of the on–board transistor as shown in Figure 15.  
Designer may provide local oscillator with 3rd, 5th, or 7th overtone crystal oscillator circuit. The PC board is laid out to  
accommodate external components needed for a Butler emitter coupled crystal oscillator (see Figure 16).  
4. Enable IC by switching the pin to V  
5. The resistor is chosen to set the range of RSSI voltage output swing.  
.
EE  
6. Details regarding the external components to setup the coilless detector are provided in the application section.  
Page 9 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
LOCAL OSCILLATORS  
A series LC network to ac ground (which is V ) is com-  
CC  
prised of the inductance of the base lead of on–chip transistor  
and PC board traces and tap capacitors. Parasitic oscillations  
HF & VHF APPLICATIONS  
In the application schematic, an external sourced local oscilla- often occur in the 200 to 800 MHz range. A small resistor is  
tor is utilized in which the base is biased via a 51 resistor to placed in series with the base (Pin 28) to cancel the negative  
V
. However, the on–chip grounded collector transistor may resistance associated with this undesired mode of oscillation.  
CC  
be used for HF and VHF local oscillators with higher order  
overtone crystals. Figure 16 shows a 5th overtone oscillator at  
Since the base input impedance is so large, a small resistor in  
the range of 27 to 68 has very little effect on the desired  
83.616 MHz. The circuit uses a Butler overtone oscillator con- Butler mode of oscillation.  
figuration. The amplifier is an emitter follower. The crystal is  
driven from the emitter and is coupled to the high impedance  
base through a capacitive tap network. Operation at the desired that is low enough in reactance at frequencies of 5th over-  
overtone frequency is ensured by the parallel resonant circuit tones or higher to cause trouble. C has little effect near reso-  
formed by the variable inductor and the tap capacitors and par- nance because of the low impedance of the crystal motional  
asitic capacitances of the on–chip transistor and PC board. The arm (R -L -C ). As the tunable inductor, which forms the  
The crystal parallel capacitance, C , provides a feedback path  
o
o
m m m  
variable inductor specified in the schematic could be replaced  
with a high tolerance, high Q ceramic or air wound surface  
mount component if the other components have tight enough  
tolerance. A variable inductor provides an adjustment for gain  
and frequency of the resonant tank ensuring lock up and  
resonant tank with the tap capacitors, is tuned off the crystal  
resonant frequency, it may be difficult to tell if the oscillation  
is under crystal control. Frequency jumps may occur as the  
inductor is tuned. In order to eliminate this behavior an induc-  
tor, L , is placed in parallel with the crystal. L is chosen to  
o
o
start–up of the crystal oscillator. The overtone crystal is chosen resonant with the crystal parallel capacitance, C , at the  
o
with ESR of typically 80 and 120 maximum; if the resis- desired operation frequency. This inductor provides a feed-  
tive loss in the crystal is too high the performance of oscillator back path at frequencies well below resonance; however, the  
may be impacted by lower gain margins.  
parallel tank network of the tap capacitors and tunable induc-  
tor prevent oscillation at these frequencies.  
Figure 16. ML13150 Overtone Oscillator  
= 83.16 MHz; f = 83.616 MHz  
f
RF  
LO  
5th Overtone Crystal Oscillator  
(4)  
0.135 µH  
MC13150  
+
1.0  
33  
µ
Mixer  
28  
1.0 µH  
39 p  
39 p  
10 n  
29  
31  
(3)  
5th OT  
XTAL  
27 k  
V
EE  
V
CC  
Page 10 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
RECEIVER DESIGN CONSIDERATIONS  
application circuit (Figure 15), the input 1.0 dB compression  
point is –10 dBm and the input third order intercept (IP3) per-  
formance of the system is approximately 0 dBm (see Figure  
18).  
The curves of signal levels at various portions of the applica-  
tion receiver with respect to RF input level are shown in  
Figure 17. This information helps determine the network  
topology and gain blocks required ahead of the ML13150 to  
achieve the desired sensitivity and dynamic range of the  
receiver system. The PCB is laid out to accommodate a low  
noise preamp followed by the 83.16 MHz SAW filter. In the  
TYPICAL PERFORMANCE OVER TEMPERATURE  
Figures 19–26 show the device performance over tempera-  
ture.  
Figure 17. Signal Levels versus  
RF Input Signal Level  
10  
0
IF Output  
–10  
–20  
Limiter  
Input  
RF Input  
at Transformer  
Input  
–30  
Mixer Output  
Mixer  
Input  
–40  
–50  
IF Input  
f
f
= 50 MHz  
= 50.455 MHz; LO Level = –10 dBm  
RF  
LO  
–60  
–70  
See Figure 15  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
RF INPUT SIGNAL LEVEL (dBm)  
Page 11 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Figure 18. 1.0 dB Compression Point and Input  
Third Order Intercept Point versus Input Power  
20  
1.0 dB Compression  
Point = –11 dBm  
V
= 3.0 Vdc  
= 50 MHz  
= 50.01 MHz  
= 50.455 MHz  
CC  
RF1  
RF2  
f
f
f
0
–20  
–40  
IP3 = –0.5 dBm  
LO  
P
= –10 dBm  
LO  
See Figure 15  
–60  
–80  
–60  
–40  
–20  
0
20  
RF INPUT POWER (dBm)  
TYPICAL PERFORMANCE OVER TEMPERATURE  
Figure 19. Supply Current, I  
Figure 20. Supply Current, I  
versus Ambient Temperature  
VEE1  
versus Signal Input Level  
VEE2  
5.0  
4.5  
4.0  
0.35  
0.3  
V
f
= 3.0 Vdc  
= 50 MHz  
= 4.0 kHz  
CC  
c
V
= 3.0 Vdc  
CC  
f
dev  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 85°C  
A
0.25  
0.2  
T
= 25°C  
T
= –40°C  
A
A
–120  
–105  
–90  
–75  
–60  
–45  
–30  
–15  
0
–40  
–20  
0
20  
40  
60  
80  
SIGNAL INPUT LEVEL (dBm)  
T , AMBIENT TEMPERATURE (°C)  
A
Page 12 of 20  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML13150  
TYPICAL PERFORMANCE OVER TEMPERATURE  
Figure 21. Total Supply Current  
versus Ambient Temperature  
Figure 22. Minimum Supply Voltage  
versus Ambient Temperature  
1.8  
1.75  
1.7  
3.0  
2.5  
2.0  
V
= 3.0 Vdc  
CC  
1.65  
1.6  
1.55  
1.5  
1.5  
1.0  
1.45  
1.4  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 23. RSSI Current versus  
Ambient Temperature and Signal Level  
Figure 24. Recovered Audio versus  
Ambient Temperature  
0.7  
0.65  
0.6  
60  
50  
40  
30  
20  
V
= 3.0 Vdc  
CC  
= 50 MHz  
f
RF  
V
=
in  
0 dBm  
–20 dBm  
0.55  
0.5  
–40 dBm  
V
= 3.0 Vdc  
RF In = –50 dBm  
–60 dBm  
–80 dBm  
CC  
f
f
f
= 50 MHz  
c
= 50.455 MHz  
= 4.0 kHz  
10  
0
–100 dBm  
–120 dBm  
0.45  
0.4  
LO  
dev  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Figure 25. Demod DC Output Voltage  
versus Ambient Temperature  
Figure 26. LO Current versus  
Ambient Temperature  
1.7  
1.6  
100  
V
= 3.0 Vdc  
V
= 3.0 Vdc  
RF In = –50 dBm  
= 50 MHz  
= 50.455 MHz  
CC  
CC  
RF In = –50 dBm  
90  
80  
f
f
f
= 50 MHz  
f
f
f
1.5  
1.4  
1.3  
1.2  
c
c
LO  
dev  
= 50.455 MHz  
LO  
dev  
=
4.0 kHz  
= 4.0 kHz  
70  
60  
50  
1.1  
1.0  
0.9  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
T , AMBIENT TEMPERATURE (°C)  
T , AMBIENT TEMPERATURE (°C)  
A
A
Page 13 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 27. Component Placement View – Circuit Side  
27 k  
1 n  
150 k  
100 n  
MC13150FTB  
1 n  
1 n  
150 k  
100 n  
1 n  
GND  
V
CC  
Page 14 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 28. Component Placement View – Ground Side  
V
CC  
BW_adj  
F_adj  
DET_out  
GND  
455 kHz  
Ceramic  
Filter  
455 kHz  
Ceramic  
Filter  
RSSI  
AFT_adj  
455 kHz  
Ceramic  
Filter  
455 kHz  
Ceramic  
Filter  
1 µH  
ENABLE  
83.616 MHz  
Xtal  
135 nH  
LO  
Tuning  
SMA  
LO IN  
RF1 IN  
RF2 IN  
3.8"  
Page 15 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 29. PCB Circuit Side View  
GND  
V
CC  
Rev 0 3/95  
MC13150  
3.8"  
Page 16 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 30. PCB Ground Side View  
V
CC  
BW_adj  
F_adj  
DET_out  
GND  
455 kHz  
Ceramic  
Filter  
RSSI  
AFT_adj  
455 kHz  
Ceramic  
Filter  
ENABLE  
Xtal  
LO  
Tuning  
LO IN  
RF1 IN  
RF2 IN  
3.8"  
Page 17 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
ML13150-A9P  
PLASTIC PACKAGE  
CASE 977–01  
(LQFP–24)  
NOTES:  
1
DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
4X  
ISSUE O  
2
3
CONTROLLING DIMENSION: MILLIMETER.  
DATUM PLANE –AB– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
DATUMS –T–, –U–, AND –Z– TO BE DETERMINED  
AT DATUM PLANE –AB–.  
DIMENSIONS S AND V TO BE DETERMINED AT  
DATUM PLANE –AC–.  
DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
9
0.200 (0.008) AB T–U  
Z
A
4
5
6
A1  
DETAIL Y  
24  
19  
7
DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350 (0.014).  
1
18  
–T–  
V1  
–U–  
8
9
MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
V
B
MILLIMETERS  
MIN MAX  
4.000 BSC  
2.000 BSC  
4.000 BSC  
2.000 BSC  
INCHES  
MIN MAX  
0.157 BSC  
0.079 BSC  
0.157 BSC  
0.079 BSC  
DIM  
A
A1  
B
B1  
C
D
B1  
13  
6
1.400  
1.600  
0.270  
1.450  
0.230  
0.055  
0.063  
0.011  
0.057  
0.009  
0.170  
1.350  
0.170  
0.007  
0.053  
0.007  
E
F
7
12  
G
H
J
0.500 BSC  
0.020 BSC  
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
–Z–  
S1  
K
M
N
P
12 REF  
12 REF  
S
0.090  
0.160  
0.004  
0.006  
4X  
0.250 BSC  
0.010 BSC  
Q
R
S
1°  
0.150  
6.000 BSC  
5°  
0.250  
1°  
0.006  
0.236 BSC  
5°  
0.010  
0.200 (0.008) AB T–U  
Z
DETAIL AD  
S1  
V
V1  
W
X
3.000 BSC  
6.000 BSC  
3.000 BSC  
0.200 REF  
1.000 REF  
0.118 BSC  
0.236 BSC  
0.118 BSC  
0.008 REF  
0.039 REF  
–AB–  
–AC–  
0.080 (0.003) AC  
M
TOP & BOTTOM  
–T–, –U–, –Z–  
J
N
R
C
H
E
AE  
G
AE  
F
D
S
S
S
0.080 (0.003)  
AC T–U  
Z
W
GAUGE  
PLANE  
Q
P
K
SECTION AEAE  
0.250 (0.010)  
X
DETAIL Y  
DETAIL AD  
Page 18 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
ML13150-B9P  
PLASTIC PACKAGE  
CASE 873–01  
(LQFP–32)  
ISSUE A  
L
B
P
B
24  
17  
16  
25  
-A-,-B-,-D-  
DETAIL A  
-B-  
B
-A-  
L
V
F
BASE METAL  
DETAIL A  
J
N
32  
9
1
8
D
M
S
S
-D-  
0.20 (0.008)  
C
A–B  
D
A
SECTION B-B  
VIEW ROTATED 905 CLOCKWISE  
M
S
S
0.20 (0.008)  
0.05 (0.002)  
A–B  
A–B  
D
D
C
H
A–B  
S
M
S
S
0.20 (0.008)  
DETAIL C  
M
E
C
DATUM  
PLANE  
-H-  
-C-  
SEATING  
PLANE  
0.01 (0.004)  
H
M
MILLIMETERS  
MIN MAX  
6.95  
6.95  
1.40  
INCHES  
MIN MAX  
G
DIM  
A
B
C
D
E
7.10 0.274  
7.10 0.274  
1.60 0.055  
0.373 0.010  
1.50 0.051  
0.280  
0.280  
0.063  
0.015  
0.059  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS  
COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE  
PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.  
4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM  
PLANE -H-.  
5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE  
-C-.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.  
ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND  
ARE DETERMINED AT DATUM PLANE -H-.  
U
0.273  
1.30  
F
0.273  
0.010  
0.80 BSC  
0.031 BSC  
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
T
0.20  
0.008  
0.008  
0.022  
0.119  
0.33  
0.197 0.005  
0.57 0.013  
R
-H-  
5.6 REF  
0.220 REF  
DATUM  
PLANE  
6°  
8°  
6°  
8°  
0.119  
0.135 0.005  
0.005  
0.016 BSC  
0.40 BSC  
5°  
10°  
5°  
10°  
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON  
THE LOWER RADIUS OR THE FOOT.  
K
0.15  
8.85  
0.15  
5°  
0.25 0.006  
9.15 0.348  
0.25 0.006  
0.010  
0.360  
0.010  
11°  
Q
X
11°  
9.15 0.348  
1.0 REF  
5°  
8.85  
0.360  
0.039 REF  
DETAIL C  
X
Page 19 of 20  
www.lansdale.com  
Issue A  
ML13150  
LANSDALE Semiconductor, Inc.  
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabili-  
ty, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s  
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 20 of 20  
www.lansdale.com  
Issue A  

相关型号:

ML13155

Wideband FM IF
LANSDALE

ML13155-5P

Wideband FM IF
LANSDALE

ML13156

Wideband FM IF System
LANSDALE

ML13156-6P

Wideband FM IF System
LANSDALE

ML13156-8P

Wideband FM IF System
LANSDALE

ML13158

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE

ML13158-8P

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE

ML13175

UHF FM/AM Transmitter
LANSDALE

ML13175-5P

UHF FM/AM Transmitter
LANSDALE

ML13176

UHF FM/AM Transmitter
LANSDALE

ML13176-5P

UHF FM/AM Transmitter
LANSDALE

ML1350

Monolithic IF Amplifier
LANSDALE