ML13155-5P [LANSDALE]

Wideband FM IF; WIDEBAND FM IF
ML13155-5P
型号: ML13155-5P
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

Wideband FM IF
WIDEBAND FM IF

文件: 总16页 (文件大小:1017K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML13155  
Wideband FM IF  
SEMICONDUCTOR TECHNICAL DATA  
Legacy Device: Motorola MC13155  
The ML13155 is a complete wideband FM detector designed for  
satellite TV and other wideband data and analog FM applica-  
tions. This device may be cascaded for higher IF gain and  
extended Receive Signal Strength Indicator (RSSI) range.  
16  
1
• 12 MHz Video/Baseband Demodulator  
• Ideal for Wideband Data and Analog FM Systems  
• Limiter Output for Cascade Operation  
• Low Drain Current: 7.0 mA  
SO–16 = -5P  
PLASTIC PACKAGE  
CASE 751B  
(SO–16)  
• Low Supply Voltage: 3.0 to 6.0 V  
• Operates to 300 Mhz  
• Operating Temperature Range T = –40 to +85°C  
A
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
SO 16  
MOTOROLA  
MC13155D  
LANSDALE  
ML13155-5P  
MAXIMUM RATINGS  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
Rating  
Pin  
11, 14  
1, 16  
Symbol  
V (max)  
EE  
Value  
6.5  
Unit  
Vdc  
Vrms  
°C  
Power Supply Voltage  
Input Voltage  
V
in  
1.0  
Junction Temperature  
Storage Temperature Range  
T
J
+150  
T
stg  
– 65 to +150  
°C  
NOTE: Devices should not be operated at or outside these values. The “Recommended  
PIN CONNECTIONS  
Operating Conditions” provide for actual device operation.  
Input  
1
2
3
4
5
6
7
8
Input  
16  
15  
14  
13  
12  
11  
10  
9
Figure 1. Representative Block Diagram  
Decouple  
Decouple  
Buffered  
RSSI  
Output  
V
1
V
1
EE  
CC  
RSSI  
Output  
Limiter  
Output  
Decouple  
15  
Output  
Output  
RSSI Buffer  
RSSI  
13  
12  
10  
16  
1
V
2
V
2
9
8
CC  
EE  
Input  
Input  
Three Stage  
Amplifier  
Quad  
Coil  
Limiter Out  
Quad Coil  
Limiter Out  
Quad Coil  
Detector  
(Top View)  
2
Decouple  
4
5
7
Balanced  
Outputs  
Limiter  
Output  
NOTE: This device requires careful layout and decoupling to ensure stable operation.  
Page 1 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
RECOMMENDED OPERATING CONDITIONS  
Rating  
Pin  
Symbol  
Value  
Unit  
Power Supply Voltage (T = 25°C)  
11, 14  
3, 6  
V
V
– 3.0 to – 6.0  
Grounded  
Vdc  
A
EE  
CC  
– 40C  
T
A
85°C  
Maximum Input Frequency  
Ambient Temperature Range  
1, 16  
f
300  
MHz  
°C  
in  
T
– 40 to + 85  
J
DC ELECTRICAL CHARACTERISTICS (T = 25°C, no input signal.)  
A
Characteristic  
Pin  
Symbol  
Min  
Ty p  
Max  
Unit  
Drain Current  
11  
14  
14  
I
I
I
2.0  
3.0  
3.0  
2.8  
4.3  
4.3  
4.0  
6.0  
6.0  
mA  
11  
14  
14  
(V  
EE  
(V  
EE  
= – 5.0 Vdc)  
= – 5.0 Vdc)  
Drain Current Total (see Figure 3)  
11, 14  
I
5.0  
5.0  
5.0  
4.7  
7.1  
7.5  
7.5  
6.6  
10  
mA  
To t a l  
(V  
EE  
(V  
EE  
(V  
EE  
= – 5.0 Vdc)  
= – 6.0 Vdc)  
= – 3.0 Vdc)  
10.5  
10.5  
9.5  
AC ELECTRICAL CHARACTERISTICS (T = 25°C, f = 70 MHz, V  
IF  
= – 5.0 Vdc Figure 2, unless otherwise noted.)  
EE  
A
Characteristic  
Input for – 3 dB Limiting Sensitivity  
Differential Detector Output Voltage (V = 10 mVrms)  
Pin  
1, 16  
4, 5  
Min  
Ty p  
Max  
Unit  
1.0  
2.0  
mVrms  
mV  
p–p  
in  
(f  
dev  
=
3.0 MHz) (V  
= – 6.0 Vdc)  
= – 5.0 Vdc)  
= – 3.0 Vdc)  
470  
450  
380  
590  
570  
500  
700  
680  
620  
EE  
EE  
EE  
(V  
(V  
Detector DC Offset Voltage  
RSSI Slope  
4, 5  
13  
– 250  
1.4  
250  
2.8  
39  
mVdc  
µA/dB  
dB  
2.1  
35  
RSSI Dynamic Range  
RSSI Output  
13  
31  
12  
µA  
(V = 100 µVrms)  
in  
16  
2.1  
2.4  
24  
65  
75  
36  
(V = 1.0 mVrms)  
in  
(V = 10 mVrms)  
in  
(V = 100 mVrms)  
in  
(V = 500 mVrms)  
in  
RSSI Buffer Maximum Output Current (V = 10 mVrms)  
in  
13  
2.3  
mAdc  
Differential Limiter Output  
mVrms  
(V = 1.0 mVrms)  
(V = 10 mVrms)  
in  
7, 10  
100  
140  
180  
in  
Demodulator Video 3.0 dB Bandwidth  
4, 5  
12  
MHz  
Input Impedance (Figure 14)  
1, 16  
@ 70 MHz Rp (V  
= – 5.0 Vdc)  
450  
4.8  
pF  
EE  
@ 70 MHz Cp (C =C = 100 p)  
2
15  
Differential IF Power Gain  
1, 7, 10, 16  
46  
dB  
NOTE: Positive currents are out of the pins of the device.  
Page 2 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
CIRCUIT DESCRIPTION  
The ML13155 consists of a wideband three–stage limiting  
amplifier, a wideband quadrature detector which may be  
operated up to 200 MHz, and a received signal strength  
indicator (RSSI) circuit which provides a current output lin-  
early proportional to the IF input signal level for approxi-  
mately 35 dB range of input level.  
Figure 2. Test Circuit  
1.0n  
1.0n  
27  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
in  
10n  
49.9  
DEC1  
DEC2  
V
1
V
1
CC  
EE  
V
EE  
1.0n  
100n  
1.0k  
10  
µ
µ
+
+
RSSI  
Buffer  
DETO1  
DETO2  
Video  
Output  
RSSI  
V
V
EE  
1.0n  
1.0n  
V
2
V
2
CC  
EE  
EE  
10  
100n  
Limiter 1  
Output  
Limiter 2  
Output  
LIMO1  
LIMO2  
1.0n  
1.0n  
330  
330  
QUAD1  
QUAD2  
499  
20p  
L1 – Coilcraft part number 146–09J08S  
L1  
260n  
APPLICATIONS INFORMATION  
EVALUATION PC BOARD  
The evaluation PCB shown in Figures 19 and 20 is very ver-  
satile and is designed to cascade two ICs. The center section  
of the board provides an area for attaching all surface mount  
components to the circuit side and radial leaded components  
feedback network at Pins 2 and 15.  
Scattering parameter (S–parameter) characterization of the IF  
as a two port linear amplifier is useful to implement maxi-  
to the component ground side of the PCB (see Figures 17 and mum stable power gain, input matching, and stability over a  
18). Additionally, the peripheral area surrounding the RF  
core provides pads to add supporting and interface circuitry  
desired bandpass response and to ensure stable operation out-  
side the bandpass as well. The ML13155 is unconditionally  
as a particular application dictates. This evaluation board will stable over most of its useful operating frequency range; how-  
be discussed and referenced in this section.  
ever, it can be made unconditionally stable over its entire  
operating range with the proper decoupling of Pins 2 and 15.  
Relatively small decoupling capacitors of about 100 pF have a  
significant effect on the wideband response and stability.  
LIMITING AMPLIFIER  
Differential input and output ports interfacing the three stage  
limiting amplifier provide a differential power gain of typical- This is shown in the scattering parameter tables where  
ly 46 dB and useable frequency range of 300 MHz. The IF  
gain flatness may be controlled by decoupling of the internal  
S–parameters are shown for various values of C2 and C15  
and at V of –3.0 and –5.0 V DC.  
EE  
Page 3 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
TYPICAL PERFORMANCE AT TEMPERATURE  
(See Figure 2. Test Circuit)  
Figure 4. RSSI Output versus Frequency and  
Input Signal Level  
Figure 3. Drain Current versus Supply Voltage  
10  
100  
80  
T
= 25°C  
V
= – 5.0Vdc  
A
EE  
0 dBm  
8.0  
I
= I + I  
Total 14 11  
–10 dBm  
60  
6.0  
4.0  
2.0  
0.0  
I
14  
– 20 dBm  
40  
20  
0
– 30 dBm  
– 40 dBm  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
10  
100  
f, FREQUENCY (MHz)  
1000  
V
, SUPPLY VOLTAGE (–Vdc)  
EE  
Figure 5. Total Drain Current versus Ambient  
Temperature and Supply Voltage  
Figure 6. Detector Drain Current and Limiter  
Drain Current versus Ambient Temperature  
9.0  
8.5  
8.0  
5.5  
5.0  
f = 70 MHz  
V
= – 5.0 Vdc  
– 5.0 Vdc  
EE  
V
= – 6.0 Vdc  
– 3.0 Vdc  
EE  
I
14  
4.5  
4.0  
3.5  
3.0  
2.5  
7.5  
7.0  
6.5  
I
11  
6.0  
5.5  
5.0  
2.0  
– 50  
– 30  
–10  
10  
30  
50  
70  
90  
110  
– 50  
– 30  
–10  
10  
30  
50  
70  
90  
110  
T
AMBIENT TEMPERATURE (°C)  
T
A,  
AMBIENT TEMPERATURE (°C)  
A,  
Figure 7. RSSI Output versus Ambient  
Temperature and Supply Voltage  
Figure 8. RSSI Output versus Input Signal  
Voltage (V at Temperature)  
in  
25.0  
24.5  
100  
80  
V
= – 6.0 Vdc  
EE  
T
= + 85°C  
A
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
+ 25°C  
– 40°C  
60  
V
= – 5.0 Vdc  
EE  
40  
20  
0
V
= – 3.0 Vdc  
EE  
– 50  
– 30  
– 10  
10  
30  
50  
70  
90  
110  
0.1  
1.0  
10  
V , INPUT VOLTAGE (mVrms)  
in  
100  
1000  
T
AMBIENT TEMPERATURE (°C)  
A,  
Page 4 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
Figure 9. Differential Detector Output  
Voltage versus Ambient Temperature  
and Supply Voltage  
Figure 10. Differential Limiter Output Voltage  
versus Ambient Temperature  
(V = 1 and 10 mVrms)  
in  
750  
700  
650  
600  
220  
200  
180  
V
= – 6.0 Vdc  
f = 70 MHz  
= – 5.0 Vdc  
EE  
V
= 10 mVrms  
in  
V
EE  
– 5.0 Vdc  
– 3.0 Vdc  
550  
500  
450  
400  
350  
160  
140  
120  
V
= 1.0 mVrms  
in  
– 50  
– 30  
–10  
10  
30  
50  
70  
90  
110  
– 50  
– 30  
–10  
T AMBIENT TEMPERATURE (C)  
A,  
10  
30  
50  
70  
90  
T
AMBIENT TEMPERATURE (C)  
A,  
Figure 11A. Differential Detector Output Voltage  
versus Q of Quadrature LC Tank  
Figure 11B. Differential Detector Output Voltage  
versus Q of Quadrature LC Tank  
1600  
1400  
2400  
2000  
1600  
1200  
800  
V
V
f
= – 30 dBm  
= – 5.0 Vdc  
= 70 MHz  
V
V
f
= – 30 dBm  
= – 5.0 Vdc  
= 70 MHz  
in  
EE  
c
in  
EE  
c
f
=
6.0 MHz  
dev  
f
=
6.0 MHz  
5.0 MHz  
4.0 MHz  
dev  
f
= 1.0 MHz  
f
= 1.0 MHz  
1200 mod  
mod  
5.0 MHz  
4.0 MHz  
(Figure 16 no external capacitors  
1000 between Pins 7, 8 and 9, 10)  
(Figure 16 no external capacitors  
between Pins 7, 8 and 9, 10)  
3.0 MHz  
2.0 MHz  
800  
600  
400  
200  
0
3.0 MHz  
2.0 MHz  
1.0 MHz  
1.0 MHz  
5.5  
400  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Q OF QUADRATURE LC TANK  
Q OF QUADRATURE LC TANK  
Figure 12. RSSI Output Voltage versus IF Input  
Figure 13. S+N, N versus IF Input  
10  
0
0
V
f
= – 5.0 Vdc  
= 70 MHz  
EE  
c
S+N  
Capacitively coupled  
interstage: no attenuation  
1.0  
(See Figure 16)  
–10  
– 20  
– 30  
– 40  
– 50  
– 60  
– 70  
2.0  
3.0  
15 dB Interstage  
Attenuator  
4.0  
5.0  
f
f
f
= 70 MHz  
c
N
= 1.0 MHz  
mod  
dev  
EE  
=
5.0 MHz  
V
= – 5.0 Vdc  
– 80  
– 60  
– 40  
– 20  
0
20  
– 90  
– 70  
– 50  
– 30  
– 10  
10  
IF INPUT, (dBm)  
IF INPUT (dBm)  
Page 5 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
In the S–parameters measurements, the IF is treated as a  
two–port linear class A amplifier. The IF amplifier is meas-  
ured with a single–ended input and output configuration in  
which the Pins 16 and 7 are terminated in the series combina-  
values for the stability and factor (K) and the Maximum  
Available Gain (MAG). These terms are related in the follow-  
ing equations:  
2
2
2
K = (1–IS I –IS I + II )/(2 I S I)  
S
11 22 12 21  
tion of a 47 resistor and a 10 nF capacitor to V  
(see Figure 14. S–Parameter Test Circuit).  
ground  
where: I I = I S S –S I.  
S
CC  
11 22 12 21  
2
1/2  
I
MAG = 10 log I S I/I S I + 10 log I K–(K –1)  
21 12  
where: K >1. The necessary and sufficient conditions for  
unconditional stability are given as K>1:  
The S–parameters are in polar form a the magnitude (MAG)  
and angle (ANG). Also listed in the tables are the calculated  
2
2
2
B1 = 1 + I S I – I S I – I I > 0  
11 22  
Figure 14. S–Parameter Test Circuit  
1.0n  
C15  
SMA  
1.0n  
47  
IF  
Input  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
C2  
DEC1  
DEC2  
V
V
1
V
1
EE  
CC  
EE  
1.0n  
100n  
10µ  
+
RSSI  
Buffer  
DETO1  
DETO2  
RSSI  
V
2
V
2
CC  
EE  
SMA  
IF  
Output  
LIMO1  
LIMO2  
1.0n  
1.0n  
47  
QUAD1  
QUAD2  
Page 6 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 0 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
MAG  
K
MAG  
dB  
32  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.94  
0.78  
0.48  
0.59  
0.75  
0.95  
0.98  
0.95  
0.93  
0.91  
0.87  
0.89  
0.61  
0.56  
0.54  
ANG  
–13  
–2 3  
1.0  
MAG  
ANG  
143  
109  
51  
MAG  
ANG  
7.0  
ANG  
– 22  
– 31  
–17  
–13  
–1.0  
0
MAG  
2.2  
8.2  
23.5  
39.2  
40.3  
40.9  
42.9  
42.2  
39.8  
44.2  
39.5  
34.9  
11.1  
3.5  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.022  
0.03  
0.87  
0.64  
0.34  
0.33  
0.41  
0.45  
0.52  
0.54  
0.53  
0.50  
0.42  
0.40  
0.52  
0.47  
0.44  
– 40  
– 97  
– 41  
– 82  
– 42  
– 9.0  
112  
80  
4.2  
33.5  
33.7  
34.6  
36.7  
46.4  
8.7  
15  
34  
10.6  
5.7  
17  
19  
20  
7.0  
– 6.0  
– 48  
– 68  
– 93  
–139  
–179  
– 58  
–164  
92  
1.05  
0.29  
1.05  
0.76  
0.94  
0.97  
0.75  
2.6  
50  
–10  
–16  
–2 3  
–3 4  
–4 7  
–103  
–156  
162  
131  
– 3.0  
–16  
– 22  
– 34  
– 44  
–117  
179  
112  
70  
46.4  
100  
150  
200  
500  
700  
900  
1000  
106  
77  
57  
0
13.7  
4.5  
0.4  
1.2  
0.048  
0.072  
– 44  
– 48  
4.7  
0.8  
42  
76  
5.1  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 100 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
K
MAG  
1.2  
6.0  
4.2  
3.1  
2.4  
2.4  
2.3  
2.2  
1.3  
1.4  
1.3  
1.7  
6.3  
13.3  
12.5  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.98  
0.50  
0.87  
0.90  
0.92  
0.92  
0.91  
0.91  
0.91  
0.90  
0.86  
0.80  
0.62  
0.56  
0.54  
ANG  
–15  
MAG  
ANG  
174  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.012  
0.013  
0.020  
0.034  
ANG  
–14  
–108  
100  
– 40  
– 40  
– 87  
85  
MAG  
0.84  
0.62  
0.47  
0.45  
0.44  
0.49  
0.50  
0.52  
0.50  
0.43  
0.43  
0.57  
0.49  
0.44  
0.44  
ANG  
– 27  
– 35  
– 9.0  
– 8.0  
– 5.0  
– 6.0  
– 5.0  
– 4.0  
–11  
11.7  
39.2  
39.9  
40.4  
41  
37.4  
35.5  
39.2  
40.3  
41.8  
41.9  
42  
– 2.0  
8.0  
85.5  
19  
5.0  
9.0  
3.0  
1.0  
20  
– 2.0  
– 8.0  
–11  
42.4  
41.2  
39.1  
43.4  
38.2  
35.5  
8.3  
–14  
50  
– 45  
– 63  
– 84  
–126  
–160  
– 9.0  
– 95  
–171  
154  
70  
76  
41.6  
43.6  
41.8  
39.4  
23.5  
12.5  
2.8  
100  
150  
200  
500  
700  
900  
1000  
–15  
85  
– 22  
– 33  
– 66  
– 96  
–120  
–136  
96  
– 22  
– 21  
– 63  
–111  
–150  
–179  
78  
75  
2.9  
50  
1.0  
53  
0.69  
65  
– 0.8  
Page 7 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 680 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
MAG  
Output S22  
MAG  
K
MAG  
0.58  
1.4  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.74  
0.90  
0.91  
0.91  
0.91  
0.91  
0.90  
0.90  
0.91  
0.94  
0.95  
0.82  
0.66  
0.56  
0.54  
ANG  
4.0  
MAG  
ANG  
110  
55  
ANG  
101  
60  
ANG  
– 35  
– 34  
– 60  
– 67  
– 67  
–15  
53.6  
70.8  
87.1  
90.3  
92.4  
95.5  
89.7  
82.6  
77.12  
62.0  
56.9  
12.3  
3.8  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.007  
0.014  
0.028  
0.048  
0.97  
0.68  
0.33  
0.25  
0.14  
0.12  
0.24  
0.33  
0.42  
0.42  
0.33  
0.44  
0.40  
0.39  
0.41  
3.0  
45.6  
49  
0
21  
–121  
–18  
33  
1.1  
0
11  
1.2  
48.4  
47.5  
48.2  
46.5  
47.4  
49  
– 2.0  
– 4.0  
– 8.0  
–10  
–14  
– 20  
– 33  
– 63  
– 98  
–122  
–139  
2.0  
1.5  
20  
–16  
– 50  
–70  
–93  
–122  
–148  
–12  
–107  
177  
141  
63  
1.3  
50  
– 43  
92  
26  
1.8  
70  
21  
1.4  
100  
150  
200  
500  
700  
900  
1000  
23  
–1.0  
– 22  
– 62  
– 67  
–115  
–166  
165  
1.05  
0.54  
0.75  
1.8  
96  
146  
79  
26.9  
14.6  
4.7  
84  
4.8  
1.3  
78  
8.0  
0.87  
76  
7.4  
0.96  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 0 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
K
MAG  
3.2  
3.5  
10.6  
9.1  
5.7  
0.94  
1.4  
2.2  
3.0  
1.7  
2.4  
2.4  
3.0  
5.1  
7.5  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.89  
0.76  
0.52  
0.59  
0.78  
0.95  
0.96  
0.93  
0.91  
0.86  
0.81  
0.70  
0.62  
0.39  
0.44  
ANG  
–14  
– 22  
5.0  
MAG  
ANG  
136  
105  
46  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.015  
0.049  
0.11  
ANG  
2.0  
MAG  
0.84  
0.67  
0.40  
0.40  
0.40  
0.51  
0.48  
0.52  
0.51  
0.49  
0.55  
0.40  
0.40  
0.25  
0.33  
ANG  
– 27  
– 37  
–13  
9.3  
30.7  
34.3  
33.3  
34.6  
36.3  
24.2  
35.7  
38.1  
37.2  
38.2  
39.1  
36.8  
34.7  
33.8  
27.8  
6.2  
– 90  
– 32  
– 41  
– 92  
47  
12  
34  
–10  
15  
16  
–1.0  
– 4.0  
– 6.0  
–13  
20  
5.0  
– 9.0  
– 50  
– 71  
– 99  
–143  
86  
50  
–11  
–17  
– 25  
– 37  
– 49  
– 93  
–144  
–176  
166  
–103  
– 76  
–152  
53  
43.7  
41.4  
39.0  
39.1  
35.1  
19.5  
8.25  
–1.9  
– 4.8  
70  
100  
150  
200  
500  
700  
900  
1000  
–19  
– 34  
– 56  
–110  
–150  
163  
76  
– 41  
–133  
125  
80  
93  
1.9  
56  
0.72  
0.49  
–18  
– 52  
0.10  
127  
Page 8 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 100 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
MAG  
Output S22  
MAG  
K
MAG  
1.4  
6.0  
3.4  
2.3  
2.0  
1.9  
2.3  
2.3  
1.7  
1.6  
1.7  
1.9  
4.1  
10.0  
15.4  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.97  
0.53  
0.88  
0.90  
0.92  
0.92  
0.91  
0.91  
0.91  
0.89  
0.86  
0.78  
0.64  
0.54  
0.53  
ANG  
–15  
MAG  
ANG  
171  
80  
ANG  
– 4.0  
– 91  
– 9.0  
–11  
– 59  
29  
ANG  
– 27  
– 31  
– 7.0  
– 7.0  
– 9.0  
– 3.0  
– 7.0  
– 8.0  
–13  
11.7  
37.1  
37.7  
37.7  
38.3  
39.6  
38.5  
36.1  
39.6  
34.4  
32  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.013  
0.027  
0.040  
0.043  
0.84  
0.57  
0.48  
0.49  
0.51  
0.48  
0.51  
0.50  
0.52  
0.48  
0.40  
0.46  
0.42  
0.35  
0.38  
36.8  
34.8  
39.7  
41  
2.0  
7.0  
18  
5.0  
8.0  
2.0  
1.0  
41.8  
42.5  
41.4  
40.8  
37.8  
40.1  
37.8  
22.1  
10.1  
– 0.14  
– 4.52  
20  
– 2.0  
– 8.0  
–11  
–15  
– 46  
– 64  
– 85  
–128  
–163  
–12  
–102  
179  
144  
50  
– 21  
49  
70  
100  
150  
200  
500  
700  
900  
1000  
–15  
114  
120  
86  
– 22  
– 33  
– 64  
– 98  
–122  
–136  
– 23  
– 26  
– 71  
–109  
–147  
–171  
7.6  
94  
2.3  
58  
0.78  
0.47  
38.6  
23  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 680 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
MAG ANG  
Rev S12  
Output S22  
K
MAG  
1.1  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.81  
0.90  
0.91  
0.90  
0.91  
0.91  
0.90  
0.90  
0.91  
0.93  
0.90  
0.79  
0.65  
0.56  
0.55  
ANG  
3.0  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.008  
0.016  
0.031  
0.50  
ANG  
–19  
– 82  
104  
– 76  
105  
59  
MAG  
0.90  
0.66  
0.37  
0.26  
0.18  
0.11  
0.22  
0.29  
0.36  
0.35  
0.17  
0.44  
0.38  
0.38  
0.41  
ANG  
– 32  
– 39  
– 56  
– 55  
– 52  
–13  
33  
37  
101  
52.7  
20  
43.5  
2.0  
47.8  
58.9  
60.3  
61.8  
63.8  
60.0  
56.5  
52.7  
44.5  
41.2  
7.3  
0.72  
2.3  
0
44  
–1  
11  
2.04  
2.2  
44  
– 2.0  
– 4.0  
– 8.0  
–11  
3.0  
43.9  
44.1  
43.7  
43.2  
43  
20  
– 15  
– 48  
– 67  
– 91  
–126  
–162  
–13  
–107  
174  
137  
2.0  
50  
96  
2.3  
70  
113  
177  
155  
144  
80  
15  
2.3  
100  
150  
200  
500  
700  
900  
1000  
–14  
– 21  
– 43  
– 65  
– 97  
–122  
–139  
5.0  
2.0  
–17  
– 31  
– 75  
–124  
–174  
157  
1.8  
42.7  
34.1  
22  
1.6  
3.0  
2.3  
86  
7.1  
10.2  
0.37  
– 3.4  
0.80  
0.52  
73  
12  
71  
11.3  
Page 9 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
DC BIASING CONSIDERATIONS  
and its output voltage swing is adjusted by selection of the resistor  
The DC biasing scheme utilizes two VCC connections (Pins 3 and  
6) and two V connections (Pins 14 and 11). V 1 (Pin 14) is  
from Pin 12 to V . The RSSI slope is typically 2.1 µA/dB; thus,  
EE  
for a dynamic range of 35 dB, the current output is approximately  
74 µA. A 47 k resistor will yield an RSSI output voltage swing of  
3.5 Vdc. The RSSI buffer output at Pin 13 is an emitter–follower  
EE  
EE  
connected internally to the IF and RSSI circuits’ negative supply bus  
while the V 2 (Pin 11) is connected internally to the quadrature  
EE  
detectors negative bus. Under positive ground operation, this  
unique configuration offers the ability to bias the RSSI and IF sepa-  
rately from the quadrature detector. When two ICs are cascaded as  
shown in the 70 MHz application circuit and provided by the PCB  
(see Figures 17 and 18), the first ML13155 is used without biasing  
its quadrature detector, thereby saving approximately 3.0 mA. A  
total current of 7.0 mA is used to fully bias each IC, thus the total  
and needs an external emitter resistor of 10 k to V  
.
EE  
In a cascaded configuration (see circuit application in Figure 16),  
only one of the RSSI Buffer outputs (Pin 13) is used; the RSSI out-  
puts (Pin 12 of each IC) are tied together and the one closest to the  
V
supply trace is decoupled to VCC ground. The two pins are  
EE  
connected to V through a 47 k resistor. This resistor sources a  
EE  
current in the application circuit is approximately 11 mA. Both V  
pins are biased by the same supply. V 1 (Pin 3) is connected inter-  
CC  
nally to the positive bus of the first half of the IF limiting amplifier,  
RSSI current which is proportional to the signal level at the IF input;  
typically 1.0 mVms (–47 dBm) is required to place the ML13155  
into limiting. The measured RSSI output voltage response of the  
application circuit is shown in Figure 12. Since the RSSI current  
output is dependent upon the input signal level at the IF input, a  
careful accounting of filter losses, matching and other losses and  
gains must be made in the entire receiver system. In the block dia-  
gram of the application circuit shown below, an accounting of the  
signal levels at points throughout the system shows how the RSSI  
response in Figure 12 is justified.  
CC  
while V 2 is internally connected to the positive bus of the RSSI,  
CC  
the quadrature detector circuit, and the second half of the IF limiting  
amplifier (see Figure 15). This distribution of the V  
stability of the IC.  
enhances the  
CC  
RSSI CIRCUITRY  
The RSSI circuitry provides typically 35 dB of linear dynamic range  
Block Diagram of 70 MHz Video Receiver Application Circuit  
Input  
Level:  
– 45 dBm  
1.26 mVrms  
– 70 dBm  
71 Vrms  
– 72 dBm  
57 Vrms  
– 32 dBm  
57 Vrms  
– 47 dBm  
1.0 mVrms  
Minimum Input to Acquire  
Limiting in ML13155  
µ
µ
µ
IF  
Input  
16  
1
16  
1
10  
7
Saw  
Filter  
ML13155  
ML13155  
1:4  
Transformer  
2.0 dB  
(Insertion Loss)  
– 25 dB  
(Insertion Loss)  
40 dB Gain  
–15 dB  
(Attenuator)  
40 dB Gain  
CASCADING STAGES  
selecting the insertion loss. A network topology shown below may  
The limiting IF output is pinned–out differentially, cascading is easi- be used to provide a bandpass response with the desired insertion loss.  
ly achieved by AC coupling stage to stage. In the evaluation PCB,  
AC coupling is shown, however interstage filtering may be desirable  
in some application. In which case, the S–parameters provide a  
means to implement a low loss interstage match and better receiver  
Network Topology  
1.0n  
sensitivity.  
10  
7
16  
1
Where a linear response of the RSSI output is desired when cascad-  
ing the ICs, it is necessary to provide at least 10 dB of interstage  
loss. Figure 12 shows the RSSI response with and without interstage  
loss. A 15 dB resistive attenuator is an inexpensive way to linearize  
the RSSI response. This has its drawbacks since it is a wideband  
noise source that is dependent upon the source and load impedance  
and the amount of attenuation that it provides. A better, although  
more costly, solution would be a bandpass filter designed to the  
desired center frequency and bandpass response while carefully  
0.22µ  
1.0n  
Page 10 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
The value of the total damping resistor to obtain the required  
loaded Q of 5 can be calculated by rearranging Equation 1:  
RT = Q(2πfl)  
QUADRATURE DETECTOR  
The quadrature detector is coupled to the IF with internal 2.0  
pF. capacitors between Pins 7 and 8 and Pins 9 and 10. For  
wideband data applications, such as FM video and satellite  
receivers, the drive to the the detector can be increased with  
additional external capacitors between these pins, thus, the  
recovered video signal level output is increased for a given  
bandwidth (see Figure 11A and Figure 11B).  
RT = 5(2π)(70)(0.22) - 483.8 Ω  
The internal resistance, Rint between the quadrature tank Pins  
8 and 9 is approximately 3200 and is considered in deter-  
mining the external resistance, Rext which is calculated from:  
Rext = ((R )(Rint))/(Rint–R )  
T
T
Rext = 570, thus, choose the standard value  
Rext = 560 Ω  
The wideband performance of the detector is controlled by  
the loaded Q of the LC tank circuit. The following equation  
defines the components which set the detector circuit's band-  
width:  
SAW FILTER  
In wideband video data applications, the IF occupied band-  
(1) width may be several MHz wide. A good rule of thumb is to  
choose the IF frequency about 10 or more times greater than  
Q=R /X  
T L  
where: R is the equivalent shunt resistance across the LC  
T
Tank and X is the reactance of the quadrature inductor at the the IF occupied bandwidth. The IF bandpass filter is a SAW  
L
IF frequency (X = 2πfL).  
filter in video data applications where a very selective  
response is needed (i.e., very sharp bandpass response). The  
L
The inductor and capacitor are chosen to form a resonant LC evaluation PCB is laid out to accommodate two SAW filter  
Tank with the PCB and parasitic device capacitance at the  
package types: 1) A five–leaded plastic SIP package.  
desired IF center frequency as predicted by:  
–1  
Recommended part numbers are Siemens X6950M which  
operates at 70 MHz; 10.4 Mhz 3 dB passband, X6951M  
(X252.8) which operates at 70 Mhz; 9.2 MHz 3 dB passband;  
and X6958M which operates at 70 MHz, 6.3 MHz 3 dB pass-  
band, and 2) A four–leaded TO–39 metal can package.  
Typical insertion loss in a wide bandpass SAW filter is 25 dB.  
(2)  
fc = (2π (LC ))  
p
where: L is the parallel tank inductor and C is the equivalent  
p
parallel capacitance of the parallel resonant tank circuit.  
The following is a design example for a wideband detector at  
70 MHz and a loaded Q of 5. The loaded Q of the quadrature  
detector is chosen somewhat less than the Q of the IF band-  
pass. For an IF frequency of 70 MHz and an IF bandpass of  
10.9 MHz, the IF bandpass Q is approximately 6.4.  
The above SAW filters require source and load impedances of  
50 to assure stable operation. On the PC board layout,  
space is provided to add a matching network, such as a 1:4  
surface mount transformer between the SAW filter output and  
the input to the ML13155. A 1:4 transformer, made by  
Coilcraft and Mini Circuits, provides a suitable interface (see  
Figures 16, 17 and 18). In the circuit and layout, the SAW fil-  
ter and the ML13155 are differentially configured with inter-  
connect traces which are equal in length and symmetrical.  
This balanced feed enhances RF stability, phase linearity, and  
noise performance.  
Example:  
Let thE external Cext = 20 pF. (The minimum value here  
should be greater than 15 pF making it greater than the inter-  
nal device and PCB parasitic capacitance. Cint 3.0 pF).  
C = Cint + Cext = 23 pF  
p
Rewrite Equation 2 and solve for L:  
2
2
L = (0.159) /(C fc )  
p
L = 198 nH, thus, a standard value is chosen.  
L = 0.22 µH (tunable shielded inductor).  
Page 11 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
Page 12 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
Figure 16. 70 MHz Video Receiver Application Circuit  
If Input  
1:4  
1
5
4
SAW Filter  
2
3
220  
SAW Filter is Siemens  
Part Number X6950M  
1.0n  
1.0n  
RSSI  
Output  
ML13155  
1
2
3
4
5
6
7
8
IN1  
DEC1  
IN2 16  
DEC2 15  
10k  
100p  
100p  
10n  
V
1
V
1
14  
13  
CC  
EE  
RSSI  
Buffer  
47k  
DETO1  
DETO2  
100n  
RSSI 12  
11  
LIMO2 10  
1.0n  
10n  
V
2
V
2
CC  
EE  
LIMO1  
QUAD1  
QUAD2  
9
V
1
EE  
10µ  
+
820  
820  
820  
820  
1.0n  
1.0n  
ML13155  
1
2
3
4
5
6
7
8
IN1  
IN2 16  
DEC1  
DEC2 15  
100p  
100p  
10n  
V
1
V
1
14  
13  
CC  
EE  
100n  
RSSI  
Buffer  
DETO1  
DETO2  
Detector  
Output  
33p 1.0k  
33p  
RSSI 12  
11  
LIMO2 10  
QUAD2  
1.0k  
100n  
V
2
V
2
V
2
CC  
EE  
EE  
10µ  
10n  
+
LIMO1  
2.0p  
2.0p  
QUAD1  
9
560  
20p  
L
L– Coilcraft part number 146–08J08S  
0.22µ  
Page 13 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 17. Component Placement (Circuit Side)  
Figure 18. Component Placement (Ground Side)  
Page 14 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Figure 19. Circuit Side View  
4.0"  
4.0"  
Figure 20. Ground Side View  
Page 15 of 16  
www.lansdale.com  
Issue A  
ML13155  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
SO–16 = -5P  
(ML13155-5P)  
PLASTIC PACKAGE  
CASE 751B  
(SO–16)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. 751B–03 IS OBSOLETE, NEW STANDARD  
751B–04.  
–A  
16  
1
9
8
M
M
0.25 (0.010)  
B
–B  
P
C
8 PL  
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
0.386  
0.150  
0.054  
0.014  
0.016  
G
R X 45  
F
1.25  
1.27 BSC  
0.050 BSC  
G
J
K
M
P
R
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
–T  
J
M
F
D
16 PL  
K
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabili-  
ty, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s  
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 16 of 16  
www.lansdale.com  
Issue A  

相关型号:

ML13156

Wideband FM IF System
LANSDALE

ML13156-6P

Wideband FM IF System
LANSDALE

ML13156-8P

Wideband FM IF System
LANSDALE

ML13158

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE

ML13158-8P

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE

ML13175

UHF FM/AM Transmitter
LANSDALE

ML13175-5P

UHF FM/AM Transmitter
LANSDALE

ML13176

UHF FM/AM Transmitter
LANSDALE

ML13176-5P

UHF FM/AM Transmitter
LANSDALE

ML1350

Monolithic IF Amplifier
LANSDALE

ML1350-5P

Monolithic IF Amplifier
LANSDALE

ML1350PP

Monolithic IF Amplifier
LANSDALE