AUIRF7669L2TR [INFINEON]

Automotive DirectFET Power MOSFET; 汽车的DirectFET功率MOSFET
AUIRF7669L2TR
型号: AUIRF7669L2TR
厂家: Infineon    Infineon
描述:

Automotive DirectFET Power MOSFET
汽车的DirectFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总11页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97536  
AUIRF7669L2TR  
AUIRF7669L2TR1  
Automotive DirectFET™ Power MOSFET ‚  
AUTOMOTIVE GRADE  
Advanced Process Technology  
Optimized for Automotive Motor Drive, DC-DC and  
other Heavy Load Applications  
Exceptionally Small Footprint and Low Profile  
High Power Density  
V(BR)DSS  
100V  
RDS(on) typ.  
3.5m  
4.4m  
max.  
ID (Silicon Limited)  
Qg  
114A  
Low Parasitic Parameters  
Dual Sided Cooling  
81nC  
175°C Operating Temperature  
Repetitive Avalanche Capability for Robustness and  
Reliability  
Lead free, RoHS and Halogen free  
DirectFET™ ISOMETRIC  
L8  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The AUIRF7669L2TR(1) combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM  
packaging to achieve the lowest on-state resistance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The  
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,  
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and pro-  
cesses. The DirectFET package allows dual sided cooling to maximize thermal transfer in automotive power systems.  
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are essential. The advanced DirectFET  
packaging platform coupled with the latest silicon technology allows the AUIRF7669L2TR(1) to offer substantial system level savings and  
performance improvement specifically in motor drive, high frequency DC-DC and other heavy load applications on ICE, HEV and EV plat-  
forms. This MOSFET utilizes the latest processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of  
this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this  
MOSFET a highly efficient, robust and reliable device for high current automotive applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
100  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
V
V
DS  
GS  
± 20  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
114  
I
I
I
@ T = 25°C  
C
D
D
D
81  
@ T = 100°C  
C
A
19  
@ TA = 25°C  
ID @ TC = 25°C  
375  
460  
I
DM  
100  
Power Dissipation  
P
P
@TC = 25°C  
@TA = 25°C  
D
W
3.3  
Power Dissipation  
D
EAS  
260  
850  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
E
AS (tested)  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
Repetitive Avalanche Energy  
mJ  
260  
T
T
T
Peak Soldering Temperature  
P
-55 to + 175  
°C  
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
RθJA  
–––  
–––  
1.2  
RθJA  
RθJCan  
RθJ-PCB  
–––  
–––  
Junction-to-PCB Mounted  
Linear Derating Factor  
0.5  
0.83  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
07/13/2010  
AUIRF7669L2TR/TR1  
Static Characteristics @ TJ = 25°C (unless otherwise stated)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
100  
–––  
–––  
3.0  
–––  
0.08  
3.5  
–––  
–––  
4.4  
5.0  
V
∆ ∆  
V(BR)DSS/ TJ  
V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
VGS = 10V, ID = 68A  
mΩ  
V
VDS = VGS, ID = 250µA  
4.0  
V
GS(th)/ TJ  
Gate Threshold Voltage Coefficient  
–––  
90  
-13  
––– mV/°C  
V
DS = 25V, ID = 68A  
–––  
1.5  
–––  
–––  
20  
S
gfs  
RG  
IDSS  
Forward Transconductance  
Gate Resistance  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
µA  
VDS = 100V, VGS = 0V  
–––  
–––  
–––  
–––  
VDS = 100V, VGS = 0V, TJ = 125°C  
250  
100  
-100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
V
GS = 20V  
nA  
VGS = -20V  
Dynamic Characteristics @ TJ = 25°C (unless otherwise stated)  
Parameter  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, VGS = 10V  
Qg  
Qgs1  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
81  
23  
120  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 68A  
Pre-Vth Gate-to-Source Charge  
Qgs2  
Qgd  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
6.8  
nC See Fig. 11  
34  
Qgodr  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
17.2  
40.8  
46  
Qsw  
VDS = 16V, VGS = 0V  
VDD = 50V, VGS = 10V  
ID = 68A  
Qoss  
td(on)  
Output Charge  
Turn-On Delay Time  
nC  
ns  
15  
tr  
Rise Time  
30  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 1.8Ω  
27  
14  
Ciss  
Coss  
Crss  
Coss  
Coss  
Coss eff.  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
Output Capacitance  
Effective Output Capacitance  
V
GS = 0V  
5660  
1140  
240  
9250  
660  
1040  
VDS = 25V  
pF  
ƒ = 1.0MHz  
VGS = 0V, VDS = 1.0V, f=1.0MHz  
VGS = 0V, VDS = 80V, f=1.0MHz  
VGS = 0V, VDS = 0V to 80V  
Diode Characteristics @ TJ = 25°C (unless otherwise stated)  
Conditions  
MOSFET symbol  
showing the  
Parameter  
Min.  
Typ.  
Max. Units  
IS  
Continuous Source Current  
(Body Diode)  
–––  
–––  
114  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
460  
p-n junction diode.  
IS = 68A, VGS = 0V  
IF = 68A, VDD = 50V  
di/dt = 100A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
61  
1.3  
92  
V
ns  
nC  
Qrr  
140  
210  
‰ Mounted to a PCB with small  
clip heatsink (still air)  
‰ Mounted on minimum footprint full size  
board with metalized back and with small  
clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
Notes  through Šare on page 10  
2
www.irf.com  
AUIRF7669L2TR/TR1  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
DFET2  
MSL1  
Machine Model  
Class M4  
AEC-Q101-002  
Class H2  
Human Body Model  
ESD  
AEC-Q101-001  
Class C4  
Charged Device  
Model  
AEC-Q101-005  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRF7669L2TR/TR1  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.8V  
5.5V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.8V  
5.5V  
100  
BOTTOM  
BOTTOM  
10  
1
5.5V  
5.5V  
0.1  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.01  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
12  
4.0  
I
= 68A  
Vgs = 10V  
D
10  
8
3.8  
3.6  
3.4  
3.2  
T
= 125°C  
J
6
4
T
= 25°C  
J
2
0
5
10  
15  
20  
0
50  
100  
150  
200  
I , Drain Current (A)  
D
V
Gate -to -Source Voltage (V)  
GS,  
Fig 4. Typical On-Resistance vs. Drain Current  
Fig 3. Typical On-Resistance vs. Gate Voltage  
1000  
2.5  
I
= 68A  
D
V
= 10V  
GS  
T = -40°C  
J
T = 25°C  
100  
10  
1
2.0  
1.5  
1.0  
0.5  
J
T
= 175°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
3
4
5
6
7
8
9
10  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 5. Typical Transfer Characteristics  
Fig 6. Normalized On-Resistance vs. Temperature  
4
www.irf.com  
AUIRF7669L2TR/TR1  
1000  
100  
10  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
V
= 0V  
GS  
T = -40°C  
J
T = 25°C  
J
T
= 175°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
1.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
-75 -50 -25  
0
25 50 75 100 125 150 175  
V
, Source-to-Drain Voltage (V)  
T , Temperature ( °C )  
SD  
J
Fig 7. Typical Threshold Voltage vs.  
Fig 8. Typical Source-Drain Diode Forward Voltage  
Junction Temperature  
100000  
250  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
T = 25°C  
J
= C  
rss  
oss  
gd  
= C + C  
200  
150  
100  
50  
ds  
gd  
10000  
1000  
100  
C
iss  
C
oss  
T
= 175°C  
= 10V  
J
C
rss  
V
DS  
20µs PULSE WIDTH  
0
0
25 50 75 100 125 150 175 200  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
I ,Drain-to-Source Current (A)  
D
DS  
Fig 10. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 9. Typical Forward Transconductance vs. Drain Current  
14.0  
120  
I = 68A  
D
12.0  
100  
80  
60  
40  
20  
0
V
V
V
= 80V  
= 50V  
= 20V  
DS  
DS  
DS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
0
20  
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Q , Total Gate Charge (nC)  
T
, Case Temperature (°C)  
G
C
Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 12. Maximum Drain Current vs. Case Temperature  
www.irf.com  
5
AUIRF7669L2TR/TR1  
10000  
1200  
1000  
800  
600  
400  
200  
0
I
D
OPERATION IN THIS AREA  
TOP  
12A  
19A  
LIMITED BY R  
(on)  
DS  
1000  
100  
10  
BOTTOM 68A  
100µsec  
1msec  
10msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1
0
1
10  
100  
1000  
25  
50  
75  
100  
125  
150  
175  
V
, Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS  
J
Fig 13. Maximum Safe Operating Area  
Fig 14. Maximum Avalanche Energy vs. Temperature  
10  
1
D = 0.50  
0.20  
0.10  
0.1  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1080  
0.6140  
0.4520  
1.47e-05  
0.000171  
0.053914  
0.006099  
0.036168  
0.02  
0.01  
0.01  
τ
τ
J τJ  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 16. Typical Avalanche Current vs.Pulsewidth  
6
www.irf.com  
AUIRF7669L2TR/TR1  
Notes on Repetitive Avalanche Curves , Figures 13, 14:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
300  
250  
200  
150  
100  
50  
TOP  
BOTTOM 1.0% Duty Cycle  
= 68A  
Single Pulse  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
I
D
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
t
av = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 17. Maximum Avalanche Energy vs. Temperature  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
20V  
0.01  
t
p
I
AS  
Fig 18b. Unclamped Inductive Waveforms  
Fig 18a. Unclamped Inductive Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
20K  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 19b. Gate Charge Waveform  
Fig 19a. Gate Charge Test Circuit  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
-
VDD  
10%  
10V  
V
GS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
AUIRF7669L2TR/TR1  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
***  
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
Automotive DirectFET™ Board Footprint, L8 (Large Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
AUIRF7669L2TR/TR1  
Automotive DirectFET™ Outline Dimension, L8 Outline (Large Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.040  
0.030  
0.017  
0.057  
0.104  
0.215  
0.029  
0.007  
0.003  
A
B
C
D
E
F
9.05 9.15 0.356  
6.85 7.10 0.270  
5.90 6.00 0.232  
0.55 0.65 0.022  
0.58 0.62 0.023  
1.18 1.22 0.046  
G
H
J
0.98 1.02  
0.73 0.77  
0.039  
0.029  
0.38 0.42 0.015  
1.35 1.45 0.053  
2.55 2.65 0.100  
K
L
5.45  
L1  
M
P
R
5.35  
0.211  
0.68 0.74 0.027  
0.09 0.17 0.003  
0.02 0.08 0.001  
Automotive DirectFET™ Part Marking  
"AU" = GATE AND  
AUTOMOTIVE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
9
AUIRF7669L2TR/TR1  
Automotive DirectFET™ Tape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4000 parts. (ordered as AUIRF7669L2TR). For 1000 parts on 7"  
reel, order AUIRF7669L2TR1  
DIMENSIONS  
METRIC  
IMPERIAL  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MIN  
MAX  
12.10  
4.10  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
TR1 OPTION (QTY 1000)  
IMPERIAL  
METRIC  
A
B
C
D
E
F
4.69  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
METRIC  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
MIN  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
MAX  
N.C  
16.30  
7.60  
7.000  
0.795  
0.331  
0.059  
2.460  
N.C  
A
B
C
D
E
F
330.00  
20.20  
12.80  
1.50  
177.80  
20.20  
12.98  
1.50  
N.C  
N.C  
N.C  
7.40  
0.520  
N.C  
13.20  
N.C  
13.50  
2.50  
N.C  
10.10  
N.C  
G
H
99.00  
N.C  
62.48  
N.C  
3.940  
0.880  
0.720  
0.760  
100.00  
22.40  
18.40  
19.40  
0.063  
1.60  
N.C  
G
H
0.650  
0.630  
N.C  
16.40  
15.90  
N.C  
N.C  
0.630  
16.00  
N.C  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Notes:  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
† Starting TJ = 25°C, L = 0.11mH, RG = 25, IAS = 68A.  
‡ Pulse width 400µs; duty cycle 2%.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Š R is measured at TJ of approximately 90°C.  
θ
10  
www.irf.com  
AUIRF7669L2TR/TR1  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to  
make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific  
requirements with regards to product discontinuance and process change notification. All products are sold subject to IR’s terms and condi-  
tions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard  
warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications  
using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and  
operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive  
business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all  
express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not  
responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in  
other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation  
where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application,  
Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against  
all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or  
death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manu-  
facture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifi-  
cally designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military specifica-  
tions. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s  
risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are desig-  
nated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge  
and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such  
requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
11  

相关型号:

AUIRF7669L2TR1

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7669L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7675M2

Advanced Process Technology
INFINEON

AUIRF7675M2TR

Advanced Process Technology
INFINEON

AUIRF7675M2TR1

DirectFETPower MOSFET
INFINEON

AUIRF7675M2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7732S2

DirectFET Power MOSFET
INFINEON

AUIRF7732S2TR

Power Field-Effect Transistor, 14A I(D), 40V, 0.00695ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

AUIRF7732S2TR1

DirectFET Power MOSFET
INFINEON

AUIRF7734M2

Advanced Process Technology
INFINEON

AUIRF7734M2TR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF7734M2TR_15

Automotive DirectFET Power MOSFET
INFINEON