ISL97646_07 [INTERSIL]

Boost + LDO + VON Slice + VCOM; 升压+ LDO + VON片+ VCOM
ISL97646_07
型号: ISL97646_07
厂家: Intersil    Intersil
描述:

Boost + LDO + VON Slice + VCOM
升压+ LDO + VON片+ VCOM

文件: 总15页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97646  
®
Data Sheet  
December 14, 2007  
FN6265.1  
Boost + LDO + V Slice + V  
Features  
ON  
COM  
The ISL97646 represents an integrated DC/DC regulator for  
monitor and notebook applications with screen sizes up to  
20”. The device integrates a boost converter for generating  
• 2.7V to 5.5V Input  
• 2.6A Integrated Boost for Up to 20V AVDD  
• Integrated VON Slice  
AVDD, a VON slice circuit, an integrated logic LDO and a high  
performance VCOM amplifier.  
• 350mA VLOGIC LDO  
The boost converter features a 2.6A FET and has user  
programmable soft-start and compensation. With efficiencies  
up to 92%, the AVDD is user selectable from 7V to 20V.  
- 2.5V, 2.85V, 3.3V Output Voltage Selectable  
• 600kHz/1.2MHz fS  
• VCOM Amplifier  
- 30MHz BW  
The logic LDO includes a 350mA FET for driving the low  
voltage needed by the external digital circuitry.  
- 50V/µs SR  
The VON slice circuit can control gate voltages up to 30V.  
High and low levels are programmable, as well as discharge  
rate and timing.  
- 400mA Peak Output Current  
• UV and OT Protection  
• 24 Ld 4x4 QFN  
The integrated VCOM features high speed and drive  
• Pb-Free (RoHS Compliant)  
capability. With 30MHz bandwidth and 50V/µs slew rate, the  
V
COM amplifier is capable of driving 400mA peaks, and  
Applications  
100mA continuous output current.  
• LCD Monitors (15”+)  
• Notebook Display (up to 16”)  
Pinout  
ISL97646  
(24 LD 4x4 QFN)  
TOP VIEW  
Ordering Information  
TEMP.  
PART NUMBER  
(Note)  
PART  
MARKING  
RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
24 23 22 21 20 19  
ISL97646IRZ-T* 976 46IRZ -40 to +85 24 Ld 4x4 QFN L24.4x4D  
Tape & Reel  
GND  
1
LX  
18  
17  
16  
15  
14  
13  
ISL97646IRZ-TK* 976 46IRZ -40 to +85 24 Ld 4x4 QFN L24.4x4D  
Tape & Reel  
VGH_M  
2
VIN_2  
FREQ  
COMP  
SS  
VFLK  
VDPM  
VDD_1  
VDD_2  
3
4
5
6
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach  
materials and 100% matte tin plate PLUS ANNEAL - e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the  
Pb-free requirements of IPC/JEDEC J STD-020.  
VIN_1  
7
8
9
10 11  
12  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006, 2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL97646  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
GND  
FUNCTION  
1
2
Ground  
VGH_M  
VFLK  
Gate Pulse Modulation Output  
Gate Pulse Modulation Control Input  
Gate Pulse Modulation Enable  
3
4
VDPM  
VDD_1  
VDD_2  
OUT  
5
Gate Pulse Modulation Lower Voltage Input  
6
V
V
V
COM Amplifier Supply  
7
COM Amplifier Output  
8
NEG  
COM Amplifier Inverting Input  
9
POS  
VCOM Amplifier Noninverting Input  
VCOM Amplifier Ground  
10  
11  
12  
13  
14  
AGND  
ADJ  
LDO Output Adjust Pin  
LDO Output  
LDO_OUT  
VIN_1  
SS  
LDO power supply  
Boost Converter Soft-start. Connect a capacitor between this pin and GND to set the soft-start  
time.  
15  
COMP  
Boost Converter Compensation Pin. Connect a series resistor and capacitor between this pin and  
GND to optimize transient response.  
16  
17  
18  
19  
20  
21  
22  
FREQ  
VIN_2  
LX  
Boost Converter Frequency Select.  
Boost Converter Power Supply  
Boost Converter Switching Node  
ENABLE  
FB  
Chip Enable Pin. Connect to VIN1 for normal operation, GND for shutdown.  
Boost Converter Feedback  
PGND  
CE  
Boost Converter Power Ground  
Gate Pulse Modulator Delay Control. Connect a capacitor between this pin and GND to set the  
delay time.  
23  
24  
RE  
Gate Pulse Modulator Slew Control. Connect a resistor between this pin and GND to set the falling  
slew rate.  
VGH  
Gate Pulse Modulator High Voltage Input  
FN6265.1  
December 14, 2007  
2
ISL97646  
Absolute Maximum Ratings  
Thermal Information  
Lx to GND, AGND and PGND . . . . . . . . . . . . . . . . . . . . -0.5 to +25V  
VDD2, OUT, NEG and POS  
Thermal Resistance  
θ
JA (°C/W)  
39  
θ
JC (°C/W)  
2.5  
4x4 QFN Package (Notes 1, 2) . . . . . .  
to GND, AGND and PGND . . . . . . . . . . . . . . . . . . . . . -0.5 to +25V  
VDD1, VGH and VGH_M  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Maximum Continuous Junction Temperature . . . . . . . . . . . +125°C  
Power Dissipation  
TA ≤ +25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.44W  
TA = +70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.34W  
TA = +85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.98W  
TA = +100°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.61W  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
to GND, AGND and PGND . . . . . . . . . . . . . . . . . . . . . -0.5 to +32V  
Differential Voltage Between POS and NEG . . . . . . . . . . . . . . . ±6V  
Voltage Between GND, AGND and PGND . . . . . . . . . . . . . . . ±0.5V  
All Other Pins to GND, AGND and PGND . . . . . . . . . . -0.5 to +6.5V  
Input, Output, or I/O Voltage . . . . . . . . . . .GND -0.3V to VIN + 0.3V  
Recommended Operating Conditions  
Input Voltage Range, VS . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.5V  
Boost Output Voltage Range, AVDD . . . . . . . . . . . . . . . . . 8V to 20V  
Input Capacitance, CIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22µF  
Boost Inductor, L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3µH to 10µH  
LDO Output Capacitance. . . . . . . . . . . . . . . . . . . . . . .2.2µF to 10µF  
Output Capacitance, COUT. . . . . . . . . . . . . . . . . . . . . . . . . .2x22µF  
Operating Ambient Temperature Range . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . .-40°C to +125°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
1. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
2. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.  
Electrical Specifications VIN1 = VIN2 = ENABLE = 5V, VDD1 = VDD2 = 14V, VGH = 25V, AVDD = 10V, TA = -40°C to +85°C  
Unless Otherwise Noted.  
SYMBOL  
GENERAL  
VS  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VIN1, VIN2 Input Voltage Range  
See separate LDO specifications on  
page 4  
2.7  
5.0  
0.2  
1
5.5  
2
V
IS_DIS  
Sum of VIN1, VIN2 Supply Currents ENABLE = 0V  
when Disabled  
µA  
mA  
IS  
Sum of VIN1, VIN2 Supply Currents ENABLE = 5V, LX not switching, LDO  
not loaded  
UVLO  
Undervoltage Lockout Threshold  
VIN2 Rising  
2.3  
2.2  
2.45  
2.35  
140  
100  
2.6  
2.5  
V
V
VIN2 Falling  
OTR  
OTF  
Thermal Shutdown Temperature  
Temperature Rising  
Temperature Falling  
°C  
°C  
LOGIC INPUT CHARACTERISTICS - ENABLE, VFLK, FREQ, VDPM  
VIL  
VIH  
RIL  
Low Voltage Threshold  
High Voltage Threshold  
Pull-Down Resistor  
0.8  
400  
20  
V
V
2.2  
Enabled, Input at VIN2  
150  
250  
kΩ  
STEP-UP SWITCHING REGULATOR  
AVDD  
Output Voltage Range  
Load Regulation  
VIN*1.25  
V
%
ΔAVDD/ΔIOUT  
ΔAVDD/ΔVIN  
ACCAVDD  
50mA < ILOAD < 250mA  
0.2  
Line Regulation  
ILOAD = 150mA, 3.0 < VIN1 < 5.5V  
0.15  
0.25  
3
%/V  
%
Overall Accuracy (Line, Load,  
Temperature)  
10mA < ILOAD < 300mA, 3.0 < VIN1  
< 5.5V, 0°C < TA < +85°C  
-3  
FN6265.1  
December 14, 2007  
3
ISL97646  
Electrical Specifications VIN1 = VIN2 = ENABLE = 5V, VDD1 = VDD2 = 14V, VGH = 25V, AVDD = 10V, TA = -40°C to +85°C  
Unless Otherwise Noted. (Continued)  
SYMBOL  
VFB  
PARAMETER  
TEST CONDITION  
MIN  
1.20  
1.19  
TYP  
1.21  
1.21  
250  
150  
92  
MAX  
1.22  
1.23  
500  
UNIT  
V
Feedback Voltage (VFB  
)
ILOAD = 100mA, TA = +25°C  
I
LOAD = 100mA, TA = -40°C to +85°C  
V
IFB  
FB Input Bias Current  
Switch On Resistance  
Peak Efficiency  
nA  
mΩ  
%
rDS(ON)  
EFF  
ILIM  
300  
Switch Current Limit  
Max Duty Cycle  
2.1  
85  
2.6  
A
DMAX  
fOSC  
90  
%
Oscillator Frequency  
FREQ = 0V  
550  
1.0  
650  
1.2  
800  
1.4  
kHz  
MHz  
µA  
FREQ = VIN2  
ISS  
Soft-Start Slew Current  
SS < 1V, TA = +25°C  
2.75  
LDO REGULATOR  
VSL  
Input Voltage Range VIN1  
ADJ = LDO_OUT  
3.0  
3.35  
3.8  
5.5  
5.5  
5.5  
V
V
ADJ OPEN  
ADJ = 0V  
V
VLDO  
Output Voltage  
ADJ = GND, ILDO = 1mA  
ADJ = GND, ILDO = 350mA  
ADJ OPEN, ILDO = 1mA  
ADJ OPEN, ILDO = 350mA  
ADJ = LDO_OUT, ILDO = 1mA  
ADJ = LDO_OUT, ILDO = 350mA  
1mA < ILDO < 350mA  
ILDO = 1mA, 3.0V < VIN1 < 5.5V  
1mA < ILDO < 350mA  
Output drops by 2%, ILDO = 350mA  
Output drops by 2%  
3.31  
3.29  
2.86  
2.84  
2.51  
2.49  
V
V
V
V
V
V
ACCLDO  
ΔVLDO/ΔVIN  
ΔVLDO/ΔIOUT  
VDO  
Overall Accuracy  
Line Regulation  
Load Regulation  
Dropout Voltage  
Current Limit  
-4  
4
%
2
mV/V  
%
0.75  
300  
400  
500  
20  
mV  
mA  
ILIML  
350  
4.5  
VCOM AMPLIFIER RLOAD = 10k, CLOAD = 10pF, Unless Otherwise Stated  
VSAMP  
ISAMP  
VOS  
Supply Voltage  
V
mA  
mV  
nA  
V
Supply Current  
3
3
0
Offset Voltage  
20  
100  
IB  
Noninverting Input Bias Current  
CMIR  
Common Mode Input Voltage  
Range  
0
VDD2  
CMRR  
PSRR  
VOH  
VOH  
VOL  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing High  
Output Voltage Swing High  
Output Voltage Swing Low  
Output Voltage Swing Low  
50  
70  
70  
85  
dB  
dB  
IOUT(SOURCE) = 5mA  
OUT(SOURCE) = 50mA  
VDD2 - 50  
VDD2 - 450  
50  
mV  
mV  
mV  
mV  
I
IOUT(SINK) = 5mA  
IOUT(SINK) = 50mA  
VOL  
450  
FN6265.1  
December 14, 2007  
4
ISL97646  
Electrical Specifications VIN1 = VIN2 = ENABLE = 5V, VDD1 = VDD2 = 14V, VGH = 25V, AVDD = 10V, TA = -40°C to +85°C  
Unless Otherwise Noted. (Continued)  
SYMBOL  
PARAMETER  
Output Short Circuit Current  
Slew Rate  
TEST CONDITION  
MIN  
TYP  
400  
50  
MAX  
UNIT  
mA  
ISC  
SR  
250  
V/µs  
MHz  
BW  
Gain Bandwidth  
-3dB gain point  
30  
GATE PULSE MODULATOR  
VGH  
IVGH  
VGH Voltage  
7
30  
V
µA  
µA  
V
VGH Input Current  
VFLK = 0  
260  
40  
RE = 33kΩ, VFLK = VDD1  
VDD1  
VDD1 Voltage  
3
VGH - 2  
2
IVDD1  
VDD1 Input Current  
-2  
0.1  
70  
8
µA  
Ω
RONVGH  
IDIS_VGH  
TDEL  
VGH to VGH_M On Resistance  
VGH_M Discharge Current (Note 3) RE = 33kΩ  
DELAY Time (Note 4) CE = 470pF, RE = 33kΩ  
mA  
µs  
1.9  
NOTES:  
3. Nominal discharge current = 300/(RE + 5kΩ).  
4. Nominal delay time = 4000*CE.  
FN6265.1  
December 14, 2007  
5
ISL97646  
I
Typical Performance Curves  
100  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
f
= 650kHz  
OSC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 1.2MHz  
OSC  
f
= 650kHz  
= 1.2MHz  
OSC  
f
OSC  
0
200  
400  
600  
(mA)  
800  
1000  
1200  
0
200  
400  
600  
IA (mA)  
VDD  
800  
1000  
1200  
IA  
VDD  
FIGURE 1. AVDD EFFICIENCY vs IAVDD  
FIGURE 2. AVDD LOAD REGULATION vs IAVDD  
10.50  
10.45  
10.40  
10.35  
10.30  
10.25  
10.20  
10.15  
L = 10µH, C  
= 40µF, C  
= 2.2nF, R  
= 10k  
COMP  
OUT  
COMP  
A
150mA  
VDD  
IA  
VDD  
A
500mA  
VDD  
A
(AC COUPLED)  
VDD  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
6.0  
V
IN  
FIGURE 3. LINE REGULATION AVDD vs VIN  
FIGURE 4. BOOST CONVERTER TRANSIENT RESPONSE  
0
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
3.3V OUTPUT, 100mA  
3.3V OUTPUT, 350mA  
-0.2  
ADJ = 0  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
2.85V OUTPUT, 100mA  
2.85V OUTPUT, 350mA  
ADJ = LDO_OUT  
ADJ = OPEN  
2.5V OUTPUT, 350mA  
2.5V OUTPUT, 100mA  
0
100  
200  
300  
400  
3
4
5
6
V
(V)  
I
(mA)  
IN  
O
FIGURE 5. LINE REGULATION LDO_OUT vs VIN  
FIGURE 6. LDO LOAD REGULATION vs IO  
FN6265.1  
December 14, 2007  
6
ISL97646  
Typical Performance Curves (Continued)  
CE = 1pF, RE = 100k  
CE = 1000pF, RE = 100k  
VGH_M  
VFLK  
VGH_M  
VFLK  
FIGURE 7. GPM CIRCUIT WAVEFORM  
FIGURE 8. GPM CIRCUIT WAVEFORM  
CE = 10pF, RE = 100k  
CE = 10pF, RE = 150k  
VGH_M  
VGH_M  
VFLK  
VFLK  
FIGURE 9. GPM CIRCUIT WAVEFORM  
FIGURE 10. GPM CIRCUIT WAVEFORM  
INPUT  
SIGNAL  
INPUT SIGNAL  
OUTPUT SIGNAL  
OUTPUT  
SIGNAL  
(-3dB ATTENUATION  
FROM INPUT SIGNAL)  
FIGURE 11. VCOM RISING SLEW RATE  
FIGURE 12. VCOM BANDWIDTH MEASUREMENT  
FN6265.1  
December 14, 2007  
7
ISL97646  
Block Diagram  
FREQ  
LX  
OSCILLATION  
GENERATOR  
SLOPE  
COMPENSATION  
COMP  
SUMMING  
AMPLIFIER  
FB  
-
PWM  
LOGIC  
+
2.5µA  
-
+
PGND  
SS  
VIN2  
REFERENCE  
GENERATOR  
START-UP AND  
FAULT CONTROL  
VDPM  
ENABLE  
LDO  
CONTROLLER  
ADJ  
V
LDO_OUT  
VDD2  
IN1  
POS  
NEG  
GND  
+
-
OUT  
GPM  
CIRCUIT  
VDD1  
VFLK VGH VGH_M CE  
RE  
FIGURE 13. ISL97646 BLOCK DIAGRAM  
FN6265.1  
December 14, 2007  
8
ISL97646  
Typical Application Diagram  
L1  
10µH  
D1  
A
V
VDD  
IN  
VIN2  
C2  
47µF  
R1  
10k  
LX  
C1  
22µF  
C3  
2.2nF  
C9 (OPTIONAL)  
COMP  
BOOST  
FB  
R5  
10k  
C4  
10nF  
R2  
1.3k  
PGND  
SS  
ENABLE  
FREQ-  
VDPM  
V
ON  
VGH  
VDD_1  
VFLK  
C5  
GPM  
CIRCUIT  
470P  
VGH_M  
VDD2  
CE  
TO ROW DRIVER  
RE  
R6  
130k  
C10  
2.2µF  
R3  
2k  
POS  
A
VDD  
C11  
1µF  
NEG-  
OUT  
VIN1  
R7  
80k  
V
+4.0V  
COM  
V
LOGIC  
LDO_OUT  
ADJ  
C6  
0.1µF  
C7  
4.7µF  
AGND  
GND  
LDO  
CONTROLLER  
FIGURE 14. TYPICAL APPLICATION DIAGRAM  
Applications Information  
Boost Converter  
The ISL97646 provides a complete power solution for TFT  
LCD applications. The system consists of one boost  
converter to generate AVDD voltage for column drivers, one  
logic LDO regulator to provide voltage to logic circuit in the  
LCD panel, one integrated VCOM buffer which can provide  
up to 400mA peak current. This part also integrates a Gate  
Pulse Modulator circuit that can help to optimize the picture  
quality.  
Frequency Selection  
The ISL97646 switching frequency can be user selected to  
operate at either constant 650kHz or 1.2MHz. Lower  
switching frequency can save power dissipation, while  
higher switching frequency can allow smaller external  
components like inductor and output capacitors, etc.  
Connecting FREQ pin to ground sets the PWM switching  
frequency to 650MHz, or connecting FREQ pin to VIN for  
1.2MHz.  
Enable Control  
Soft-Start  
When enable pin is pulling down, the ISL97646 is shut down  
reducing the supply current to <10µA. When the voltage at  
enable pin reaches 2.2V, the ISL97646 is on.  
The soft-start is provided by an internal 2.5µA current source  
to charge the external soft start capacitor. The ISL97646  
ramps up current limit from 0A up to full value, as the voltage  
at SS pin ramps from 0V to 1.2V. Hence the soft-start time is  
4.8ms when the soft-start capacitor is 10nF, 22.6ms for 47nF  
and 48ms for 100nF.  
FN6265.1  
December 14, 2007  
9
ISL97646  
The current through the MOSFET is limited to 2.6APEAK  
.
Operation  
The boost converter is a current mode PWM converter  
operating at either a 650kHz or 1.2MHz. It can operate in  
both discontinuous conduction mode (DCM) at light load and  
continuous mode (CCM). In continuous current mode,  
current flows continuously in the inductor during the entire  
switching cycle in steady state operation. The voltage  
conversion ratio in continuous current mode is given by:  
This restricts the maximum output current (average) based  
on the Equation 3:  
ΔI  
V
IN  
V
O
L
--------  
---------  
I
=
I
LMT  
×
(EQ. 3)  
OMAX  
2
Where ΔIL is peak to peak inductor ripple current, and is set  
by:  
V
1
BOOST  
-----------------------  
-------------  
=
(EQ. 1)  
V
1 D  
V
D
f
s
IN  
IN  
--------- ---  
ΔI  
=
×
(EQ. 4)  
L
L
Where D is the duty cycle of the switching MOSFET.  
where fS is the switching frequency (650kHz or 1.2MHz).  
Figure 13 shows the block diagram of the boost regulator. It  
uses a summing amplifier architecture consisting of gm  
stages for voltage feedback, current feedback and slope  
compensation. A comparator looks at the peak inductor  
current cycle by cycle and terminates the PWM cycle if the  
current limit is reached.  
Table 2 gives typical values (margins are considered 10%,  
3%, 20%, 10% and 15% on VIN, VO, L, fS and IOMAX).  
Capacitor  
An input capacitor is used to suppress the voltage ripple  
injected into the boost converter. The ceramic capacitor with  
capacitance larger than 10µF is recommended. The voltage  
rating of input capacitor should be larger than the maximum  
input voltage. Some capacitors are recommended in Table 1  
for input capacitor.  
An external resistor divider is required to divide the output  
voltage down to the nominal reference voltage. Current  
drawn by the resistor network should be limited to maintain  
the overall converter efficiency. The maximum value of the  
resistor network is limited by the feedback input bias current  
and the potential for noise being coupled into the feedback  
pin. A resistor network in the order of 60kΩ is recommended.  
The boost converter output voltage is determined by  
Equation 2:  
TABLE 1. BOOST CONVERTER INPUT CAPACITOR  
RECOMMENDATION  
CAPACITOR  
10µF/16V  
SIZE  
1206  
0805  
1210  
MFG  
TDK  
PART NUMBER  
C3216X7R1C106M  
R
+ R  
2
R
2
1
10µF/10V  
22µF/10V  
Murata GRM21BR61A106K  
Murata GRB32ER61A226K  
--------------------  
V
=
× V  
(EQ. 2)  
BOOST  
FB  
TABLE 2. MAXIMUM OUTPUT CURRENT CALCULATION  
VIN (V)  
VO (V)  
9
L (µH)  
10  
fs (MHz)  
0.65  
0.65  
0.65  
0.65  
0.65  
0.65  
0.65  
1.2  
IOMAX (mA)  
636  
3
3
3
5
5
5
5
3
3
3
5
5
5
5
12  
15  
9
10  
419  
10  
289  
10  
1060  
699  
12  
15  
18  
9
10  
10  
482  
10  
338  
10  
742  
12  
15  
9
10  
1.2  
525  
10  
1.2  
395  
10  
1.2  
1236  
875  
12  
15  
18  
10  
1.2  
10  
1.2  
658  
10  
1.2  
514  
FN6265.1  
December 14, 2007  
10  
ISL97646  
NOTE: Capacitors have a voltage coefficient that makes their  
effective capacitance drop as the voltage across then increases.  
OUT in Equation 6 above assumes the effective value of the  
capacitor at a particular voltage and not the manufacturer’s stated  
value, measured at zero volts.  
Inductor  
The boost inductor is a critical part which influences the  
output voltage ripple, transient response, and efficiency.  
Values of 3.3µH to 10µH are used to match the internal  
slope compensation. The inductor must be able to handle  
the following average and peak current:  
C
Table 5 lists some selections of output capacitors.  
TABLE 5. BOOST OUTPUT CAPACITOR RECOMMENDATION  
I
O
-------------  
I
I
=
LAVG  
CAPACITOR  
10µF/25V  
SIZE  
1210  
1210  
MFG  
TDK  
Murata  
PART NUMBER  
C3225X7R1E106M  
GRM32DR61E106K  
(EQ. 5)  
1 D  
ΔI  
L
--------  
+
= I  
LPK  
LAVG  
2
10µF/25V  
Some inductors are recommended in Table 3.  
Compensation  
TABLE 3. BOOST INDUCTOR RECOMMENDATION  
The boost converter of ISL97646 can be compensated by a  
RC network connected from the CM1 pin to ground. 4.7nF  
and 10k RC network is used in the demo board. The larger  
value resistor and lower value capacitor can lower the  
transient overshoot, however, at the expense of stability of  
the loop.  
DIMENSIONS  
INDUCTOR  
6.8µH/3APEAK  
10µH/4APEAK  
(mm)  
MFG  
TDK  
Sumida  
PART NUMBER  
RLF7030T-6R8N3R0  
CDR8D43-100NC  
CD1-5R2  
7.3x6.8x3.2  
8.3x8.3x4.5  
5.2µH/4.55APEAK 10x10.1x3.8 Cooper  
Bussmann  
Cascaded MOSFET Application  
A 20V N-Channel MOSFET is integrated in the boost  
regulator. For the applications where the output voltage is  
greater than 20V, an external cascaded MOSFET is needed,  
as shown in Figure 15. The voltage rating of the external  
Rectifier Diode  
A high-speed diode is necessary due to the high switching  
frequency. Schottky diodes are recommended because of their  
fast recovery time and low forward voltage. The reverse voltage  
rating of this diode should be higher than the maximum output  
voltage. The rectifier diode must meet the output current and  
peak inductor current requirements. Table 4 lists some  
recommendations for boost converter diode.  
MOSFET should be greater than AVDD  
.
A
V
VDD  
IN  
TABLE 4. BOOST CONVERTER RECTIFIER DIODE  
RECOMMENDATION  
LX  
DIODE  
SS23  
VR/IAVG RATING  
PACKAGE  
MFG  
FB  
INTERSIL  
ISL97646  
30V/2A  
SMB  
Fairchild  
Semiconductor  
MBRS340  
SL23  
40V/3A  
30V/2A  
SMC  
SMB  
International  
Rectifier  
Vishay  
Semiconductor  
FIGURE 15. CASCADED MOSFET TOPOLOGY FOR HIGH  
OUTPUT VOLTAGE APPLICATIONS  
Output Capacitor  
The output capacitor supplies the load directly and reduces  
the ripple voltage at the output. Output ripple voltage  
consists of two components: the voltage drop due to the  
inductor ripple current flowing through the ESR of output  
capacitor, and the charging and discharging of the output  
capacitor.  
Linear-Regulator (LDO)  
The ISL97646 includes a LDO with adjustable output, and it  
can supply current up to 350mA. The output voltage is  
adjusted by connection of ADJ pin. When ADJ pin is  
connected to ground, the output voltage is set to 3.3V; when  
ADJ pin is floating, the output voltage is set to 2.85V, and  
when ADJ pin is connected to LDO_OUT pin, the output  
voltage is set to 2.5V.  
V
V  
I
O
1
f
s
O
IN  
----------------------- --------------- ---  
V
= I  
× ESR +  
LPK  
×
×
(EQ. 6)  
RIPPLE  
V
C
O
OUT  
For low ESR ceramic capacitors, the output ripple is  
dominated by the charging and discharging of the output  
capacitor. The voltage rating of the output capacitor should  
be greater than the maximum output voltage.  
FN6265.1  
December 14, 2007  
11  
ISL97646  
The efficiency of LDO is depended on the difference  
between input voltage and output voltage, as well as the  
output current:  
Gate Pulse Modulator Circuit  
The gate pulse modulator circuit functions as a three way  
multiplexer, switching VGHM between ground, VDD1 and  
VGH. Voltage selection is provided by digital inputs VDPM  
(enable) and VFLK (control). High to low delay and slew  
control is provided by external components on pins CE and  
RE, respectively. A block diagram of the gate pulse  
modulator circuit is shown in Figure 16.  
η(%) = (V  
V  
) × I  
× 100%  
LDO_OUT  
(EQ. 7)  
IN1  
LDO_OUT  
The less difference between input and output voltage, the  
higher efficiency it is. The minimum dropout voltage of LDO  
of ISL97646 is 300mV.  
When VDPM is LOW, the block is disabled and VGHM is  
grounded. When VDPM is HIGH, the output is determined  
by VFLK. When VFLK goes high, VGHM is pulled to VGH by  
a 70Ω switch. When VFLK goes low, there is a delay  
controlled by capacitor CE, following which VGHM is driven  
to VDD1, with a slew rate controlled by resistor RE. Note  
that VDD1 is used only as a reference voltage for an  
amplifier, thus does not have to source or sink a significant  
DC current.  
The ceramic capacitors are recommended for the LDO input  
and output capacitor. Larger capacitors help reduce noise  
and deviation during transient load change.  
VGH  
VGH_M  
EnGPM1  
+
-
VDD1  
x240  
VREF  
+
-
RE  
CE  
200µA  
-
CONTROL AND  
TIMING  
VFLK  
FIGURE 16. GATE PULSE MODULATOR CIRCUIT BLOCK DIAGRAM  
FN6265.1  
December 14, 2007  
12  
ISL97646  
Low to high transition is determined primarily by the switch  
resistance and the external capacitive load. High to low  
INPUT  
TO INDUCTOR  
transition is more complex. Take the case where the block is  
already enabled (VDPM is H). When VFLK is H, pin CE is  
grounded. On the falling edge of VFLK, a current is passed  
into pin CE, to charge an external capacitor to 1.2V. This  
creates a delay, equal to CE*4200. At this point, the output  
begins to pull down from VGH to VDD1. The slew current is  
equal to 300/(RE + 5000)*Load Capacitance.  
ENABLE  
FIGURE 19. CIRCUIT TO DISCONNECT THE DC PATH OF  
BOOST CONVERTER  
VDPM  
0
V
Amplifier  
COM  
The VCOM amplifier is designed to control the voltage on the  
back plate of an LCD display. This plate is capacitively  
coupled to the pixel drive voltage which alternately cycles  
positive and negative at the line rate for the display. Thus,  
the amplifier must be capable of sourcing and sinking  
capacitive pulses of current, which can occasionally be quite  
large (a few 100mA for typical applications).  
VFLK  
SLOPE CONTROLLED  
BY RE AND LOAD  
CAPACITANCE  
0
VGH  
VGH_M  
VDD_1  
0
The ISL97646 VCOM amplifier's output current is limited to  
400mA. This limit level, which is roughly the same for  
sourcing and sinking, is included to maintain reliable  
operation of the part. It does not necessarily prevent a large  
temperature rise if the current is maintained. (In this case the  
whole chip may be shut down by the thermal trip to protect  
functionality). If the display occasionally demands current  
pulses higher than this limit, the reservoir capacitor will  
provide the excess and the amplifier will top the reservoir  
capacitor back up once the pulse has stopped. This will  
happen on the µs time scale in practical systems and for  
pulses 2 or 3 times the current limit, the VCOM voltage will  
have settled again before the next line is processed.  
DELAY TIME  
CONTROLLED BY CE  
FIGURE 17. GATE PULSE MODULATOR TIMING DIAGRAM  
Start-Up Sequence  
Figure 18 shows a detailed start-up sequence waveform.  
V
IN  
0
ENABLE  
0
VIN THRESHOLD  
Fault Protection  
VDPM  
0
ISL97646 provides the overall fault protections including  
overcurrent protection and over-temperature protection.  
An internal temperature sensor continuously monitors the  
die temperature. In the event that die temperature exceeds  
the thermal trip point, the device will shut down and disable  
itself. The upper and lower trip points are typically set to  
+140°C and +100°C, respectively.  
AVDD  
VGH_M  
LDO OUTPUT  
0
FIGURE 18. START-UP SEQUENCE  
When VIN exceeds 2.5V and ENABLE reaches the VIH  
threshold value, Boost converter and LDO start-up, and gate  
pulse modulator circuit output holds until VDPM goes to  
high. Note that there is a DC path in the boost converter from  
the input to the output through the inductor and diode, hence  
the input voltage will be seen at output with a forward voltage  
drop of diode before the part is enabled. If this voltage is not  
desired, the following circuit can be inserted between input  
and inductor to disconnect the DC path when the part is  
disabled.  
FN6265.1  
December 14, 2007  
13  
ISL97646  
Layout Recommendation  
The device’s performance including efficiency, output noise,  
transient response and control loop stability is dramatically  
affected by the PCB layout. PCB layout is critical, especially  
at high switching frequency.  
There are some general guidelines for layout:  
1. Place the external power components (the input  
capacitors, output capacitors, boost inductor and output  
diodes, etc.) in close proximity to the device. Traces to  
these components should be kept as short and wide as  
possible to minimize parasitic inductance and resistance.  
2. Place VIN and VDD bypass capacitors close to the pins.  
3. Reduce the loop area with large AC amplitudes and fast  
slew rate.  
4. The feedback network should sense the output voltage  
directly from the point of load, and be as far away from LX  
node as possible.  
5. The power ground (PGND) and signal ground (SGND)  
pins should be connected at only one point.  
6. The exposed die plate, on the underneath of the  
package, should be soldered to an equivalent area of  
metal on the PCB. This contact area should have multiple  
via connections to the back of the PCB as well as  
connections to intermediate PCB layers, if available, to  
maximize thermal dissipation away from the IC.  
7. To minimize the thermal resistance of the package when  
soldered to a multi-layer PCB, the amount of copper track  
and ground plane area connected to the exposed die  
plate should be maximized and spread out as far as  
possible from the IC. The bottom and top PCB areas  
especially should be maximized to allow thermal  
dissipation to the surrounding air.  
8. A signal ground plane, separate from the power ground  
plane and connected to the power ground pins only at the  
exposed die plate, should be used for ground return  
connections for control circuit.  
9. Minimize feedback input track lengths to avoid switching  
noise pick-up.  
A demo board is available to illustrate the proper layout  
implementation.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6265.1  
December 14, 2007  
14  
ISL97646  
Package Outline Drawing  
L24.4x4D  
24 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 10/06  
4X  
2.5  
4.00  
A
20X  
0.50  
PIN #1 CORNER  
(C 0 . 25)  
B
19  
24  
PIN 1  
INDEX AREA  
1
18  
2 . 50 ± 0 . 15  
13  
0.15  
(4X)  
12  
24X 0 . 4 ± 0 . 1  
7
0.10 M C  
A B  
TOP VIEW  
+ 0 . 07  
24X 0 . 23  
4
- 0 . 05  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0.10  
0 . 90 ± 0 . 1  
C
BASE PLANE  
( 3 . 8 TYP )  
SEATING PLANE  
0.08  
SIDE VIEW  
C
(
2 . 50 )  
( 20X 0 . 5 )  
5
C
0 . 2 REF  
( 24X 0 . 25 )  
0 . 00 MIN.  
0 . 05 MAX.  
( 24X 0 . 6 )  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6265.1  
December 14, 2007  
15  

相关型号:

ISL97648IRTZ

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97648IRTZ-T

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97648IRTZ-TK

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97649A

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRZ-TR5566

TFT-LCD Supply DCP VCOM Amplifier Gate Pulse Modulator RESET
INTERSIL

ISL97649B

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97650

4-Channel Integrated LCD Supply
INTERSIL

ISL97650ARTZ-T

4-Channel Integrated LCD Supply
INTERSIL