ISL97648IRTZ-T [RENESAS]

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56;
ISL97648IRTZ-T
型号: ISL97648IRTZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56

驱动 接口集成电路
文件: 总21页 (文件大小:566K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97648  
®
Data Sheet  
April 14, 2008  
FN6684.0  
Integrated TFT LCD Supply and Logic  
Driver  
Features  
• 2.6V to 5.5V input supply  
The ISL97648 represents a high power, integrated LCD  
supply IC which is targeted at Notebook, Monitor and TV  
LCD displays. The ISL97648 integrates a level shift with  
• Integrated 2.7A Boost Converter  
• 1.4MHz Switching Frequency  
charge sharing function, boost converter for A  
VDD  
• Level Shifter  
generation of high power with HVS and temperature sensor,  
2
- Up to 332kHz Input Logic Frequency  
4 high power V  
calibrator.  
amplifiers, and I C LCD VCOM digital  
COM  
- +40V to -25V Output Swing Capability  
- 100mA Output Peak Current  
- TTL-Compatible Logic Input  
The ISL97648 integrates a high-performance boost converter  
with 2.7A FET for generating A supply up to 18V.  
VDD  
• Four High Speed V  
COM  
Amplifiers  
The ISL97648 has a high voltage TFT-LCD logic driver with  
+40V and -25V output swing capability. It is capable of  
delivering 100mA output peak current into 5nF of capacitive  
load. To simplify external circuitry, the ISL97648 integrates  
additional logic circuits.  
• ±5°C Accuracy Thermal Sensor Over the -40°C to +150°C  
Temperature Range.  
2
• I C Calibrator  
- 128-Step Adjustable Sink Current Output  
- Output Adjustment SET Pin  
The integrated HVS circuit is used to provide high voltage  
stress testing of the LCD panel for production purpose.  
• 56 Ld 8mmx8mm TQFN Package  
• Pb-Free (RoHS Compliant)  
An on-board temperature sensor is also provided for system  
thermal management control.  
Applications  
The 4 integrated amplifiers feature high slew-rate and high  
output current capability. They are permanently enabled  
• LCD-Notebook, Monitor and TV  
• Industrial/medical LCD Displays  
when A  
VDD  
is present.  
The VCOM voltage of an LCD panel needs to be adjusted to  
remove flicker. This part provides a digital interface to control  
the sink-current output that attaches to an external voltage  
divider. The increase in output sink current lowers the  
voltage on the external divider, which is applied to an  
external VCOM buffer amplifier. The desired VCOM setting  
is loaded from an external source via a standard 2 wire I C  
serial interface. At power-up the part automatically comes up  
at last programmed setting in an on-board 7-bit EEPROM.  
Ordering Information  
PART NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL97648IRTZ  
97648IRTZ 56 Ld 8x8 TQFN L56.8x8D  
2
ISL97648IRTZ-T* 97648IRTZ 56 Ld 8x8 TQFN L56.8x8D  
ISL97648IRTZ-TK* 97648IRTZ 56 Ld 8x8 TQFN L56.8x8D  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach  
materials and 100% matte tin plate PLUS ANNEAL - e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
The ISL97648 is packaged in a 56 Ld, 8mmx8mm TQFN  
package and is specified for operation over the -40°C to  
+85°C temperature range.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2008. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL97648  
Pinout  
ISL97648  
(56 LD TQFN)  
TOP VIEW  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
CKVCS1  
CKVBCS1  
CKVB1  
SW2  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SW1  
TEST  
AVDD  
CGND  
VCOM4  
3
STVP1  
4
STVP2  
5
CKVB2  
6
THERMAL PAD  
CONNECTED TO GND  
CKVBCS2  
CKVCS2  
CKV2  
IN4-  
7
IN4+  
8
VCOM3  
9
STV1  
STV2  
CPV1  
CPV2  
OE  
IN3-  
10  
11  
12  
13  
14  
IN3+  
VCOM2  
IN2-  
IN2+  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
FN6684.0  
April 14, 2008  
2
ISL97648  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
All Other Pins except the following . . . . . . . . . . . . . . -0.3V to +6.5V  
VIN to PGND, AGND, and LGND . . . . . . . . . . . . . . . . -0.3V to 6.5V  
VDD to PGND, AGND, and LGND. . . . . . . . . . . . . . . . . . . . . . . 6.5V  
SW to PGND, AGND, and LGND . . . . . . . . . . . . . . . . . -0.3V to 22V  
EN, FB, COMP, TEMP, HVS, RHVS  
to PGND, AGND, and LGND . . . . . . . . . . . . . . . . . . -0.3V to 6.5V  
IN1+, IN1-, and VCOM1 to PGND, AGND, and LGND . -0.3V to 20V  
IN2+, IN2-, and VCOM2 to PGND, AGND, and LGND . -0.3V to 20V  
IN3+, IN3-, and VCOM3 to PGND, AGND, and LGND . -0.3V to 20V  
IN4+, IN4-, and VCOM4 to PGND, AGND, and LGND . -0.3V to 20V  
AVDD to PGND, AGND, and LGND . . . . . . . . . . . . . . . -0.3V to 22V  
DISH to PGND, AGND, and LGND . . . . . . . . . . . . . . . -3.6V to 5.5V  
OECON to PGND, AGND, and LGND. . . . . . . . . . . . . -0.3V to 5.5V  
Thermal Resistance (Typical)  
θ
(°C/W)  
θ
(°C/W)  
JA  
48.33  
). . . -40°C to +125°C  
JC  
TQFN Package (Notes 1, 2). . . . . . . . .  
Functional Junction Temperature (T  
12.07  
JUNCTION  
) . . . . . . . . . . . . -65°C to +150°C  
Storage Temperature (T  
STORAGE  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Operating Conditions  
Operating Temperature (T ) . . . . . . . . . . . . . . . . . . -40°C to +85°C  
A
V
V
V
to PGND, AGND, and LGND. . . . . . . . . . . . . . . . . . . . . . . .44V  
ON  
to PGND, AGND, and LGND . . . . . . . . . . . . . . . . . . . . . . -28V  
OFF  
V
V
V
V
V
CKV1, CKV2, CKVB1, CKVB2, CKVCS1, CKVCS2,  
STVP1,STVP2 to  
V
V
CKVBCS1, CKVBCS2,  
PGND, AGND, and LGND . . . . . . . . . . . . . . . . . . . . . -28V to 44V  
SDA, SCL, SCLS-S, W , W to PGND,  
pn pp  
AGND, and LGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 4V  
OUT to PGND, AGND, and LGND. . . . . . . . . . . . . . . . . . . . . . . .20V  
Voltage between PGND, AGND, and LGND . . . . . . . . . . . . . +-0.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTES:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
2. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications VDD = V = 3.3V, A  
= 12V, V  
= 20V, V = -14V, T from -40°C to +85°C, Fcpv1 and Fcpv2 = 105kHz,  
OFF A  
IN  
VDD  
ON  
unless otherwise specified. Unless otherwise specified, parts are 100% tested at +25°C. Temperature limits  
established by characterization and are not production tested.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
2.25  
2.6  
TYP  
MAX  
3.6  
UNIT  
V
V
V
V
V
Supply Range -- Operating  
Supply Range -- EEPROM  
DD  
DD  
DD  
3.6  
V
Programming  
Analog Supply Voltage  
AVDD Output Voltage  
Positive Supply Voltage  
Negative Supply Voltage  
Input Quiescent Current  
2.2  
5
3.3  
5.5  
18  
40  
V
V
IN  
AVDD  
V
V
25  
V
ON  
OFF  
IN_Q  
-25  
-15  
V
I
Not switching (OVP active)  
Pin EN to ground  
3
1
mA  
µA  
BOOST  
r
Switch ON-resistance  
V
= 2.7V, I  
= 1A  
200  
2.9  
450  
5
mΩ  
(DS)ON  
IN SW  
ΔV /ΔV  
Feedback Voltage Line Regulation  
2.2V < V < 5.5V, I  
IN OUT  
= 200mA, V  
AVDD  
= 8V,  
mV/V  
FB  
IN  
L = 6.8µH, C = 10µF  
OUT  
ΔV  
/ΔI  
Load Regulation  
50mA < I  
OUT  
L = 6.8µH  
< 0.5A, V = 3.3V, V  
= 7.8V,  
90  
mV/A  
V
AVDD OUT  
IN AVDD  
V
Boost Feedback Voltage  
Closed loop: V  
= 8V, L = 6.8µH,  
1.205  
1.230  
130  
1.255  
FB  
AVDD  
I
= 200mA, T = +25°C  
OUT  
A
I
I
FB Pin Bias Current  
RHVS Pin Leakage Current  
HVS Pin Resistor  
0.1  
100  
155  
µA  
nA  
Ω
B
HVS pin to ground  
HVS pin to ground  
RHVS  
Res  
105  
1.5  
HVS  
V
V
HVS  
Input Voltage HIGH  
Input Voltage LOW  
V
= 2.2V  
V
IH  
IL  
IN  
HVS  
0.44  
V
FN6684.0  
April 14, 2008  
3
ISL97648  
Electrical Specifications VDD = V = 3.3V, A  
= 12V, V  
= 20V, V = -14V, T from -40°C to +85°C, Fcpv1 and Fcpv2 = 105kHz,  
OFF A  
IN  
VDD  
ON  
unless otherwise specified. Unless otherwise specified, parts are 100% tested at +25°C. Temperature limits  
established by characterization and are not production tested. (Continued)  
PARAMETER  
DESCRIPTION  
Soft-Start Time  
CONDITIONS  
MIN  
80  
TYP  
10  
MAX  
UNIT  
ms  
t
SS  
D
Max Duty Cycle  
85  
%
max  
min  
D
Min Duty Cycle  
15  
20  
%
F
Oscillator Switching Frequency  
V
= 8V, I  
= 200mA, L = 6.8µH,  
= 30µF  
1.1  
1.38  
1.5  
MHz  
OSC  
AVDD OUT  
D = ZHC750, C  
OUT  
I
Switch Leakage Current  
10  
µA  
°C  
°C  
V
L
T
Thermal Shutdown Threshold  
Activation threshold  
150  
130  
SH  
De-activation threshold  
Output High  
Th  
Enable Threshold  
Enable Pin Current  
0.7  
1.1  
0.1  
3.2  
EN  
I
I
µA  
A
EN  
OCP  
Overcurrent Protection in the Power L = 6.8µH  
MOS  
2.2  
2.7  
OVP  
Overvoltage Protection on Threshold  
Overvoltage Protection Hysteresis  
Undervoltage Protection on Threshold  
UVLO Hysteresis  
18.5  
21.5  
2.2  
V
V
OVP_HYS  
UVLO  
2
2.0  
2.1  
100  
V
UVLO_HYS  
mV  
VCOM AMPLIFIERS R  
LOAD  
= 10kΩ, C  
= 10pF, unless otherwise stated  
4 Op amps combined  
LOAD  
I
Supply Current  
Supply Voltage  
8
5
18  
mA  
V
SAMP  
V
8
18.5  
SAMP  
CMRR  
PSRR  
VOH  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing High  
50  
70  
70  
85  
dB  
dB  
V
I
I
(source) = 5mA  
(source) = 50mA  
A
-
-
OUT  
OUT  
VDD  
0.05  
A
V
VDD  
0.5  
VOL  
Output Voltage Swing Low  
Input Offset Voltage  
I
I
(sink) = 5mA  
(sink) = 50mA  
0.05  
0.5  
V
V
OUT  
OUT  
V
-15  
15  
mV  
OFFSET  
(V ) - (V ) = V  
OFFSET  
IN+  
IN-  
BW  
Bandwidth  
-3dB gain point  
30  
100  
40  
MHz  
nA  
I
INx+, INx-, (x = 1, 2, 3, 4)  
Slew Rate  
-1000  
150  
1000  
B
SR  
V/µs  
mA  
I
Output Short Circuit Current  
250  
SC  
TEMPERATURE SENSOR, T = +25°C  
A
I
Drive Current  
For +1°C additional error  
70  
µA  
V
TEMP  
V
Offset Output Voltage at T = +100°C  
J
1.600  
±5  
TEMP  
T
Temperature Accuracy  
Temperature Coefficient  
+50°C < T < +150°C  
°C  
ACCURACY  
J
T
9.5  
mV/°C  
RATIO  
LEVEL SHIFT, T = +25°C, 4.7nF in series with 50Ω loadings on CKV1, CKV2, CKVB1, CKVB2  
A
V
V
Positive Supply Voltage  
Negative Supply Voltage  
25  
-15  
105  
40  
V
V
ON  
-25  
OFF  
CPV  
F
Operating Frequency on CPV1, CPV2  
Inputs  
166  
332  
kHz  
F
Operating Frequency on OE Input  
210  
kHz  
OE  
FN6684.0  
April 14, 2008  
4
ISL97648  
Electrical Specifications VDD = V = 3.3V, A  
= 12V, V  
= 20V, V = -14V, T from -40°C to +85°C, Fcpv1 and Fcpv2 = 105kHz,  
OFF A  
IN  
VDD  
ON  
unless otherwise specified. Unless otherwise specified, parts are 100% tested at +25°C. Temperature limits  
established by characterization and are not production tested. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I
I
VDD Average Supply Current  
CPV1 = CPV2 = 0, STV = 0, OE = 105kHz  
500  
1000  
µA  
DD  
(V  
AVDD  
< 4V)  
CPV1 Input Current  
CPV2 Input Current  
STV1 Input Current  
STV2 Input Current  
OE Input Current  
CPV1 = 1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
-1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
CPV1  
CPV2  
STV1  
STV2  
OE  
CPV1 = 0  
I
I
I
I
I
I
CPV2 = 1  
CPV2 = 0  
STV1 = 1  
STV1 = 0  
STV2 = 1  
STV2 = 0  
OE = 1  
OE = 0  
OECON Input Current  
OE = 1  
OECON  
OE = 0  
-1  
1
VDD Quiescent Current (V  
< 4V) CPV1 = CPV2 = 0, STV = 0, OE = 0  
< 4V) CPV1 = CPV2 = 0, STV = 0, OE = 0  
< 4V) CPV1 = CPV2 = 0, STV = 0, OE = 0  
Activation threshold  
250  
700  
600  
500  
1100  
1000  
13  
VDD  
AVDD  
AVDD  
AVDD  
IV  
IV  
V
V
Quiescent Current (V  
Quiescent Current (V  
ON_quiescent  
OFF_quiescent  
ON  
ON  
UVLO  
UVLO on VON  
De-activation threshold  
10  
V
V
V
Level Shift  
Level Shift  
Low Input Voltage CPV1, CPV2, STV,  
OE  
0.4  
V
IL  
High Input Voltage CPV1, CPV2, STV,  
OE  
70% V  
1.6  
V
IH  
DD  
V
V
OECON Threshold Voltage  
STV = 0, OE = 3.3V  
No load  
1.7  
V
V
threshold  
Level Shift Low Output Voltage CKV1, CKV2,  
CKVB1, CKVB2, STVP  
-13.5  
OL  
V
Level Shift High Output Voltage CKV1, CKV2,  
CKVB1, CKVB2, STVP  
No load  
19.5  
V
OH  
t _CKV  
CKV Rise Time  
CKV Fall Time  
STVP Rise Time  
CKV rise time from +6V to +17V  
CKV fall time from 0V to -11V  
STVP rise time from -7V to +13V, C  
0.73  
0.73  
0.5  
µs  
µs  
µs  
r
t _CKV  
f
t _STVP  
= 4.7nF  
= 4.7nF  
r
LOAD  
and in series with R  
LOAD  
= 200Ω  
t _STVP  
STVP Fall Time  
STVP fall time from +13V to -7V, C  
and in series with R = 200Ω  
0.28  
µs  
f
LOAD  
LOAD  
t -OE-CKV+  
CKV Rising Edge Delay Time  
CKV Falling Edge Delay Time  
STVP Rising Edge Delay Time  
STVP Falling Edge Delay Time  
CKV_CS Rising Edge Delay Time  
CKV_CS Falling Edge Delay Time  
OE rising above 1.65V to CKV crossing + 11.5V  
OE rising above 1.65V to CKV crossing - 5.5V  
STV crossing 1.65V to STVP crossing + 3V,  
OE rising above 1.65V to CKV crossing - 5.5V  
CPV falling below 1.65V to CKV crossing - 11V  
CPV falling below 1.65V to CKV crossing + 17V  
0.68  
0.68  
0.48  
0.35  
2.44  
2.44  
µs  
µs  
µs  
µs  
µs  
µs  
d
t -OE-CKV-  
d
t -STVP+  
d
t -STVP-  
d
t -CKV-CS+  
1.6  
1.6  
d
t -CKV-CS-  
d
2
I C DC SPECIFICATION A  
= 10V, V  
= 5V, R  
= 24.9kΩ  
SET  
VDD  
OUT  
A
A
Supply Range  
Supply Current  
DD  
VDD range 2.6V to 3.6V  
VDD range 2.25V to 3.6V  
(Note 5)  
4.5  
4.5  
18  
13  
V
V
VDD  
VDD  
-I  
V
50  
µA  
DD_DCP  
FN6684.0  
April 14, 2008  
5
ISL97648  
Electrical Specifications VDD = V = 3.3V, A  
= 12V, V  
= 20V, V = -14V, T from -40°C to +85°C, Fcpv1 and Fcpv2 = 105kHz,  
OFF A  
IN  
VDD  
ON  
unless otherwise specified. Unless otherwise specified, parts are 100% tested at +25°C. Temperature limits  
established by characterization and are not production tested. (Continued)  
PARAMETER  
DESCRIPTION  
AVDD Supply Current  
CONDITIONS  
MIN  
TYP  
25  
7
MAX  
UNIT  
µA  
I
(Note 3)  
AVDD_DCP  
SET  
SET  
SET  
SET  
SET Voltage Resolution  
SET Differential Non-linearity  
SET Zero-Scale Error  
SET Full-Scale Error  
SET Current  
Bits  
LSB  
LSB  
LSB  
µA  
VR  
Monotonic Over-Temperature  
±1  
±2  
±8  
DN  
ZSE  
FSE  
ISET  
SET  
Through R  
SET  
(Note 6)  
= 18V  
20  
SET External Resistance  
To GND, A  
To GND, A  
(Note 4)  
10  
200  
45  
kΩ  
ER  
VDD  
VDD  
= 4.5V  
2.25  
kΩ  
A
to SET  
A
to SET Voltage Attenuation  
1:20  
8
V/V  
µs  
VDD  
VDD  
OUT  
OUT Settling Time  
OUT Voltage Range  
To ±0.5 LSB Error Band (Note 4)  
(Note 4)  
St  
OUT  
V
VSET +  
0.5V  
AVDD  
V
SET  
VD  
SET Voltage Drift  
<10  
mV  
V
VIH  
SDA, SCL, SCL_S, WPn Input Logic  
High  
0.7*  
VDD  
S
VIL  
SDA, SCL, SCL_S, WPn Input Logic  
Low  
0.3*  
VDD  
V
S
SDA, SCL, SCL_S, WPn Hysteresis (Note 4)  
WPn IL  
0.22*VDD  
30  
V
µA  
V
IL  
37  
WPN  
VOH  
SDA, SCL Output Logic High  
SDA, SCL Output Logic Low  
WPp Output Logic High  
WPp Output Logic Low  
WPp Delay  
@ 3mA  
@ 3mA  
@ 3mA  
@ 3mA  
0.4  
S
VOL  
0.4  
V
S
VOH  
VDD - 0.4  
0.4  
V
WPP  
WPP  
VOL  
V
t
100  
75  
ns  
Ω
DWPP  
R
SCL_S to SCL ON-resistance  
Delay From SCL_S to SCL  
SCL  
t
60  
ns  
S
2
I C  
F
SCL Clock Frequency  
0
0.6  
1.3  
0
400  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
SCL  
2
t
t
t
t
t
t
I C Clock High Time  
SCH  
SCL  
DSP  
SDS  
SDH  
ICR  
2
I C Clock Low Time  
2
I C Spike Rejection Filter Pulse Width  
2
I C Data Set-up Time  
100  
0
2
I C Data Hold Time  
900  
2
I C SDA, SCL Input Rise Time  
Dependent on Load (Note 4)  
(Note 4)  
20 +  
0.1*Cb  
1000  
2
t
t
I C SDA, SCL Input Fall Time  
20 +  
0.1*Cb  
300  
ns  
µs  
ICF  
2
I C Bus Free Time Between Stop and  
1.3  
BUF  
Start  
2
t
t
t
I C Repeated Start Condition Set-up  
0.6  
0.6  
0.6  
µs  
µs  
µs  
pF  
pF  
STS  
STH  
SPS  
2
I C Repeated Start Condition Hold  
2
I C Stop Condition Set-up  
2
Cb  
I C Bus Capacitive Load  
(Note 4)  
(Note 4)  
400  
10  
C
Capacitance on SDA  
SDA  
FN6684.0  
April 14, 2008  
6
ISL97648  
Electrical Specifications VDD = V = 3.3V, A  
= 12V, V  
= 20V, V = -14V, T from -40°C to +85°C, Fcpv1 and Fcpv2 = 105kHz,  
OFF A  
IN  
VDD  
ON  
unless otherwise specified. Unless otherwise specified, parts are 100% tested at +25°C. Temperature limits  
established by characterization and are not production tested. (Continued)  
PARAMETER  
DESCRIPTION  
CONDITIONS  
WPn = 0 (Note 4)  
WPn = 1 (Note 4)  
MIN  
TYP  
MAX  
10  
UNIT  
pF  
C
Capacitance on SCL, SCL_S  
S
22  
pF  
t
Write Cycle Time  
100  
ms  
W
NOTES:  
3. Tested at A  
= 18V.  
VDD  
4. Limits established by characterization and are not production tested.  
5. Simulated maximum current draw when programming EEPROM is 23mA, should be considered when designing Power Supply.  
6. A typical current of 20µA is calculated using the A  
= 10V and R  
= 24.9kΩ. The maximum suggested SET Current should be 120µA.  
SET  
VDD  
Timing Diagrams  
3.3V  
OE  
1.65V  
0V  
3.3V  
1.65V  
0V  
CPV  
17V  
11.5V  
6V  
17V  
CKV_CS-  
t
OE_CKV+  
d_  
t
OE_CKV-  
d_  
t
d_  
CKV  
0V  
t
CKV  
r_  
t
CKV_CS+  
d_  
-5.5V  
-11V  
-11V  
t
CKV  
r_  
FIGURE 1. TIMING DIAGRAM OF OE, CPV, AND CKV  
3.3V  
1.65V  
STV  
0V  
13V  
13V  
t
STVP+  
d_  
t
STVP-  
d_  
STVP  
3V  
3V  
-7V  
t
STVP  
r_  
t
STVP  
r_  
FIGURE 2. TIMING DIAGRAM OF STV AND STVP  
FN6684.0  
April 14, 2008  
7
ISL97648  
Typical Application Diagram  
µF  
µF  
µH  
2kΩ  
µF  
µF  
10Ω  
4.7µF  
100nF  
µF  
µF  
µF  
µF  
FN6684.0  
April 14, 2008  
8
ISL97648  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
CKVCS1  
CKVBCS1  
CKVB1  
STVP1  
STVP2  
CKVB2  
CKVBCS2  
CKVCS2  
CKV2  
DESCRIPTION  
1
2
Discharge switch input 1, CKV1 charge share  
Discharge switch input 1, CKVB1 charge share  
High voltage output 1 , scan clock even  
High voltage output 1, scan start pulse 1  
High voltage output 2, scan start pulse 2  
High voltage output 2, scan clock even  
Discharge switch input 2, CKVB2 charge share  
Discharge switch input 2, CKV2 charge share  
High voltage output 2, scan clock odd  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
STV1  
V
V
timing, V  
timing, V  
timing, H  
timing, H  
timing, H  
SYNC  
SYNC1  
SYNC2  
SYNC  
SYNC  
SYNC  
STV2  
SYNC  
CPV1  
H
H
H
clock 1  
clock 2  
clock 3  
SYNC  
SYNC  
SYNC  
CPV2  
OE  
OECON  
LGND  
DISH  
OE disable input, OE blank  
Logic GND  
Discharge function input, V  
discharge  
OFF  
VDD  
Logic power supply for scan driver and module calibrator  
Write Protection Active Low. CMOS Level.  
Serial Clock Input.  
WPn  
SCL_S  
SCL  
Serial Clock Input for internal and inter-IC use.  
2
SDA  
I C Serial Data Input/Output.  
WPp  
Write Protection Active High. CMOS Level.  
RSET  
Maximum Sink Current Adjustment Point. Connect a resistor from SET to GND to set the maximum  
adjustable sink current of the OUT pin. The maximum adjustable sink current is equal to (AVDD/20)  
divided by RSET.  
25  
OUT  
Adjustable Sink Current Output Pin. The current sinks into the OUT pin is equal to the DAC setting times  
the maximum adjustable sink current divided by 128. See SET pin function description for the maxim  
adjustable sink current setting.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
IN1+  
IN1-  
Op amp 1 non-inverting input  
Op amp 1 inverting input  
Op amp 1 output  
VCOM1  
IN2+  
Op amp 2 non-inverting input  
Op amp 2 inverting input  
Op amp 2 output  
IN2-  
VCOM2  
IN3+  
Op amp 3 non-inverting input  
Op amp 3 inverting input  
Op amp 3 output  
IN3-  
VCOM3  
IN4+  
Op amp 4 non-inverting input  
Op amp 4 inverting input  
Op amp 4 output  
IN4-  
VCOM4  
FN6684.0  
April 14, 2008  
9
ISL97648  
Pin Descriptions (Continued)  
PIN NUMBER  
PIN NAME  
CGND  
AVDD  
TEST  
SW1  
DESCRIPTION  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
VCOM GND  
VCOM amplifier positive supply pin  
Test Pin  
Boost switch output 1  
Boost switch output 2  
Boost ground pins  
Boost ground pins  
Boost supply voltage  
Chip Enable  
SW2  
PGND1  
PGND2  
VIN  
EN  
AGND  
COMP  
FB  
Analog GND  
Boost compensation pin  
A
boost feedback pin  
VDD  
RHVS  
HVS  
Voltage set pin for HVS test  
High-voltage stress input select pin  
Temperature sensor output voltage  
Negative supply  
TEMP  
VOFF  
SGND  
VON  
Scan driver GND  
Positive supply  
CKV1  
High voltage output 1 , scan clock odd  
Typical Performance Curves  
95  
90  
85  
95  
90  
85  
80  
75  
70  
65  
60  
5.0V V TO 15.7V V  
IN  
OUT  
5.0V V TO 10.7V V  
IN  
OUT  
80  
75  
70  
65  
60  
3.3V V TO 10.7V V  
IN OUT  
3.3V V TO 15.7V V  
IN  
OUT  
0
200  
400  
600  
(mA)  
800  
1000  
0
100  
200  
300  
(mA)  
400  
500  
I
I
OUT  
OUT  
FIGURE 3. BOOST EFFICIENCY @ VIN = 5V  
FIGURE 4. BOOST EFFICIENCY @ VIN = 3.3V  
FN6684.0  
April 14, 2008  
10  
ISL97648  
Typical Performance Curves (Continued)  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
V
= 3.3V  
IN  
V
= 5.0V  
IN  
V
= 3.3V  
IN  
0.05  
0
V
= 5.0V  
600  
IN  
-0.05  
-0.05  
0
300  
600  
900  
1200  
0
200  
400  
(mA)  
800  
I
(mA)  
I
OUT  
OUT  
FIGURE 5. BOOST LOAD REGULATION @ AVDD = 10.7V  
FIGURE 6. BOOST LOAD REGULATION @ AVDD = 15.7V  
CH4 = I  
OUT  
0.6  
0.5  
0.4  
0.3  
A
= 15.7V  
VDD  
0.2  
0.1  
0
A
= 10.7V  
VDD  
CH3 = A  
VDD  
(AC COUPLED)  
2
3
4
5
V
(V)  
IN  
FIGURE 7. BOOST LINE REGULATION @ I  
= 50mA  
FIGURE 8. BOOST TRANSIENT RESPONSE  
OUT  
2500  
2000  
1500  
1000  
500  
0
INPUT SIGNAL  
OUTPUT SIGNAL  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
TEMPERATURE(°C)  
FIGURE 10. TEMPERATURE SENSOR OUTPUT vs JUNCTION  
TEMPERATURE  
FIGURE 9. VCOM SLEW RATE  
FN6684.0  
April 14, 2008  
11  
ISL97648  
Typical Performance Curves (Continued)  
0.30  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 20V  
ON  
VDD = 3.3V  
= -14V  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
= 14V  
OFF  
V
OFF  
ALL INPUTS LOW  
0
10  
20  
30  
40  
50  
0.0  
1.0  
2.0  
3.0  
VDD (V)  
4.0  
5.0  
V
(V)  
ON  
FIGURE 11. VDD SUPPLY CURRENT vs VDD  
FIGURE 12. V  
SUPLY CURRENT vs V  
ON  
ON  
1400  
800  
600  
400  
200  
0
V
= 20V  
ON  
1200  
1000  
800  
600  
400  
200  
0
VDD = 3.3V  
= 20V  
4700pF  
V
= -14V  
OFF  
V
ON  
R
= 500Ω  
CS  
ALL INPUTS LOW  
2200pF  
0
40k  
80k  
INPUT FREQUENCY (Hz)  
120k  
160k  
-30  
-25  
-20  
-15  
-10  
-5  
0
V
(V)  
OFF  
FIGURE 14. LEVEL SHIFT POWER CONSUMPTION vs CPV  
FREQUENCY  
FIGURE 13. V  
SUPPLY CURRENT vs V  
OFF  
OFF  
5.40  
5.20  
5.00  
4.80  
3500  
V
= 35V  
ON  
3000  
2500  
2000  
1500  
1000  
500  
V
= 20V  
OFF  
= 500Ω  
4700pF  
R
CS  
R
R
R
A
= 100k  
= 90.9k  
4.60  
4.40  
4.20  
4.00  
1
2
= 24.3k  
= 10V  
SET  
2200pF  
VDD  
20  
0
0
40  
60  
80  
100  
120  
0
40k  
80k  
120k  
160k  
SETTING  
INPUT FREQUENCY (Hz)  
FIGURE 15. LEVEL SHIFT POWER CONSUMPTION vs CPV  
FREQUENCY  
FIGURE 16. V  
vs SETTING  
OUT  
FN6684.0  
April 14, 2008  
12  
ISL97648  
ripple current will be from 0 to the threshold of the current  
Application Information  
limit. In turn, the bigger ripple current will increase the output  
voltage ripple. Hence, it will need more output capacitors to  
keep the output ripple at the same level. When the input  
voltage equals, or is larger than, the output voltage, the  
boost converter will stop switching. The boost converter is  
not regulated any more, but the part will still be on and other  
channels are still regulated.  
A
Boost Converter  
VDD  
The AVDD boost converter features a fully integrated 2.7A  
boost FET. The regulator uses a current mode, PI control  
scheme which provides good line regulation and good  
transient response. A network connected to the COMP pin is  
used to compensate the device. In normal operation the  
output voltage is set using a resistor divider to the feedback  
pin FBB. The feedback reference voltage is set is to 1.23V.  
Boost Converter Input Capacitor  
An input capacitor is used to suppress the voltage ripple  
injected into the boost converter. A ceramic capacitor with  
capacitance larger than 10µF is recommended. The voltage  
rating of input capacitor should be larger than the maximum  
input voltage. Some capacitors are recommended in Table 1  
for input capacitor.  
In continuous current mode, current flows continuously in the  
inductor during the entire switching cycle in steady state  
operation. The voltage conversion ratio in continuous current  
mode is given by Equation 1:  
V
1
BOOST  
(EQ. 1)  
-----------------------  
-------------  
=
V
1 D  
IN  
TABLE 1. BOOST CONVERTER INPUT CAPACITOR  
RECOMMENDATION  
Where D is the duty cycle of the switching MOSFET.  
CAPACITOR  
10µF/25V  
SIZE  
VENDOR  
PART NUMBER  
C3225X7R1E106M  
GRM32DR61E106K  
The boost converter uses a summing amplifier architecture  
consisting of gm stages for voltage feedback, current  
feedback and slope compensation. A comparator looks at  
the peak inductor current cycle by cycle and terminates the  
PWM cycle if the current limit is reached.  
1210 TDK  
10µF/25V  
1210 Murata  
Boost Inductor  
An external resistor divider is required to divide the output  
voltage down to the nominal reference voltage. Current  
drawn by the resistor network should be limited to maintain  
the overall converter efficiency. The maximum value of the  
resistor network is limited by the feedback input bias current  
and the potential for noise being coupled into the feedback  
pin. A resistor network in the order of 60kΩ is recommended.  
The boost converter output voltage is determined by  
Equation 2:  
The boost inductor is a critical part which influences the  
output voltage ripple, transient response, and efficiency.  
Values of 3.3µH to 10µH should be selected to match the  
internal slope compensation. The inductor must be able to  
handle the following average and peak current shown in  
Equations 5 and 6:  
I
O
(EQ. 5)  
-------------  
I
I
=
LAVG  
1 D  
ΔI  
L
--------  
+
(EQ. 6)  
= I  
R
+ R  
2
LPK  
LAVG  
1
2
(EQ. 2)  
--------------------  
V
=
× V  
BOOST  
FB  
R
2
Some inductors are recommended in Table 2.  
The current through the MOSFET is limited to 2.7A  
.
TABLE 2. BOOST INDUCTOR RECOMMENDATION  
PEAK  
This restricts the maximum output current (average) based  
on Equation 3:  
DIMENSIONS  
INDUCTOR  
(mm)  
VENDOR  
PART NUMBER  
ΔI  
V
IN  
V
O
L
(EQ. 3)  
--------  
---------  
6.8µH/  
7.3x6.8x3.2 TDK  
RLF7030T-6R8N3R0  
I
=
I
LMT  
×
OMAX  
2
3A  
PEAK  
6.8µH/  
2.9A  
Where ΔIL is peak-to-peak inductor ripple current, and is set by  
7.6X7.6X3.0 Sumida  
10x10.1x3.8 Cooper  
CDR7D28MNNP-6R8NC  
CD1-5R2  
Equation 4:  
PEAK  
5.2µH/  
4.55A  
V
D
f
S
IN  
(EQ. 4)  
--------- ----  
ΔI  
=
×
L
L
Bussmann  
PEAK  
where f is the switching frequency.  
s
Rectifier Diode (Boost Converter)  
The minimum boost duty cycle of the ISL97648 is ~20% for  
1.4MHz. When the operating duty cycle is lower than the  
minimum duty cycle, the part will not switch in some cycles  
randomly, which will cause some LX pulses to be skipped. In  
this case, LX pulses are not consistent any more, but the  
A high-speed diode is necessary due to the high switching  
frequency. Schottky diodes are recommended because of  
their fast recovery time and low forward voltage. The reverse  
voltage rating of this diode should be higher than the  
maximum output voltage. The rectifier diode must meet the  
output current and peak inductor current requirements.  
output voltage (A  
) is still regulated by the ratio of R and  
VDD  
1
R . Because some LX pulses are skipped, the ripple current  
2
in the inductor will become bigger. Under the worst case, the  
FN6684.0  
April 14, 2008  
13  
ISL97648  
Table 3 shows some recommendations for boost converter  
diode.  
HVS Operation  
When the HVS input is taken high, the ISL97648 enters HVS  
test mode. In this mode, the output of A is increased by  
TABLE 3. BOOST CONVERTER RECTIFIER DIODE  
RECOMMENDATION  
VDD  
switching RSET-HVS to ground to select the test voltage.  
V /I  
R AVG  
Fault Protection  
DIODE  
SS23  
SL23  
RATING  
30V/2A  
30V/2A  
PACKAGE  
SMB  
VENDOR  
The ISL97648 integrates OVP, OCP and over-temperature  
protection.  
Fairchild Semiconductor  
Vishay Semiconductor  
SMB  
Temperature Sensor  
The ISL97648 also includes a temperature output for use in  
system thermal management control. The integrated sensor  
measures the die temperature over the 0°C to +150°C  
range. Output is in the form of an analog voltage on the  
TEMP pin in the range of 0.5V to 2.0V. Temperature  
accuracy is ±5°C.  
Output Capacitor  
The output capacitor supplies the load directly and reduces  
the ripple voltage at the output. Output ripple voltage consists  
of two components: the voltage drop due to the inductor ripple  
current flowing through the ESR of output capacitor, and the  
charging and discharging of the output capacitor, as shown in  
Equation 7.  
Soft-Start  
The ISL97648 integrates the soft-start function and the  
timing diagram is shown in the Figure 17. The boost switch  
goes through soft-start sequence after the EN pin is pulled to  
high.  
V
V  
I
O
1
f
s
O
IN  
(EQ. 7)  
----------------------- ------------------- ---  
V
= I  
× ESR +  
LPK  
×
×
RIPPLE  
V
C
O
AVDD  
For low ESR ceramic capacitors, the output ripple is  
dominated by the charging and discharging of the output  
capacitor. The voltage rating of the output capacitor should  
be greater than the maximum output voltage.  
EN  
Note: Capacitors have a voltage coefficient that makes their  
effective capacitance drop as the voltage across then  
increases. C  
of the capacitor at a particular voltage and not the  
manufacturer's stated value, measured at 0V.  
in Equation 7 assumes the effective value  
OUT  
I
OCP  
I
SWITCH  
Table 4 shows some selections of output capacitors.  
TABLE 4. BOOST OUTPUT CAPACITOR RECOMMENDATION  
t
SS  
I
/8  
CAPACITOR  
10µF/25V  
SIZE  
VENDOR  
PART NUMBER  
C3225X7R1E106M  
GRM32DR61E106K  
OCP  
1210 TDK  
FIGURE 17. BOOST SOFT-START OF CURRENT LIMIT  
10µF/25V  
1210 Murata  
High Performance VCOM Amplifiers  
Loop Compensation (Boost Converter)  
The VCOM Amplifiers are designed to control the voltage on  
the back plate of an LCD display or to drive the repaired  
column lines. The plate is capacitive coupled to the pixel  
drive voltage which alternately cycles positive and negative  
at the line rate for the display. Thus, the amplifier must be  
capable of sourcing and sinking capacitive pulses of current,  
which can occasionally be quite large (a few 100mA for  
typical applications).  
The boost converter of ISL97648 can be compensated by a  
RC network connected from VC pin to ground. C = 4.7nF  
C
and R = 10k RC network is used in the demo board. A  
C
higher resistor value can be used to lower the transient load  
change A  
overshoot (however, this may be at the  
VDD  
expense of stability to the loop).  
The stability can be examined by repeatedly changing the  
load between 100mA and a max level that is likely to be  
The ISL97648 VCOM Amplifier’s output current is limited to  
150mA. This limit level, which is roughly the same for  
sourcing and sinking, is included to maintain reliable  
operation of the part. It does not necessarily prevent a large  
temperature rise if the current is maintained (in this case the  
whole chip may be shut down by the thermal trip to protect  
functionality.) If the display occasionally demands current  
pulses higher than this limit, the reservoir capacitor will  
provide the excess and the amplifier will top the reservoir  
used in the system being used. The A  
voltage should be  
VDD  
examined with an oscilloscope set to AC 100mV/div and the  
amount of ringing observed when the load current changes.  
Reduce excessive ringing by reducing the value of the  
resistor in series with the COMP pin capacitor.  
FN6684.0  
April 14, 2008  
14  
ISL97648  
AVDD  
VCOM  
COLUMN DRIVER  
STVP1  
CKV1  
CKVCS1  
CKVB1  
CKVBCS1  
CKV2  
STV1  
STV2  
CPV1  
VIDEO  
SOURCE  
ISL97648  
CPV2  
OE  
CKVCS2  
CKVB2  
CKVBCS2  
STVP2  
FIGURE 18. SYSTEM BLOCK DIAGRAM RELATED TO LEVEL SHIFT OUTPUT  
capacitor back up once the pulse has stopped. This will  
happen on the µs time scale in practical systems and for  
Output Signals  
The output signals, CKV and CKVB are generated by  
ISL97648 internal switches. Figure 19 depicts the simplified  
schematic of the output stage and interface.  
pulses 2x or 3x the current limit, the V  
voltage will have  
COM  
settled again before the next line is processed.  
Level Shifter  
C capacitors model the capacitive loading appeared at the  
L
inputs of the TFT-LCD panel for the CKV1, CKVB1, CKV2,  
GENERAL DESCRIPTION  
and the CKVB2 signals. The C is typically between 1nF and  
L
The ISL97648 is a high performance 65V TFT-LCD level  
shifter. It level shifts TTL level timing signals from the video  
source into 65V peak-to-peak output voltage. Its output is  
capable of delivering 100mA peak current into 5nF of  
capacitive load. It also incorporates logic to control the  
output timings. The logic timing control circuit is powered  
rom VDD supply. Figure 18 shows the system block diagram  
related to level shifter part.  
5nF.  
In addition to switches SW1, SW2, SW3, SW4, SW5, SW6,  
SW7, and SW8, the ninth and tenth switches are added to  
reduce the power dissipation and shape the output  
waveform. Figure 19 shows the location of the additional  
SW9 and SW10 switches.  
Input Signals  
The device performs beside of level transformation also logic  
operation between the input signals:  
• STV1 - Vertical Sync Timing signal 1, frequency range  
from 60Hz to 120Hz  
• STV2 - Vertical Sync Timing signal 2, frequency range  
from 60Hz to 120Hz  
• CPV1- Horizontal Sync Timing signal 1, frequency range  
up to 166kHz  
• CPV2- Horizontal Sync Timing signal 2, frequency range  
up to 166kHz  
• OE- Output Enable Write Signal, frequency range up to  
332kHz  
FN6684.0  
April 14, 2008  
15  
ISL97648  
.
Step 1: Generation of internal clock from the inputs,  
CLK = CPV ⊕ (OE OECON)  
OECON = Low( STV = High)  
OECON = Hi Z( STV = Low)  
TABLE 5. CLK SIGNAL GENERATION  
CPV  
0
OE  
0
OECON  
CLK  
0
1
0
1
0
1
0
1
0
0
1
0
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
1
1
1
Step 2: The CLK clock dries a flip-flop with complementary  
output Q and Q. The flip-flop is reset by STV signal.  
FIGURE 19. SIMPLIFIED SCHEMATIC OF OUTPUT STAGE  
In reality, each switch consists of two such switches, one for  
the positive discharge and one for the negative discharge,  
see Figure 20..  
TABLE 6. INTERNAL FLIP-FLOP OUTPUTS  
CLK  
0 --> 1  
X
STV  
0
Q
Q(N-1)  
0
Q
Q(N-1)  
1
SW9  
1
CKVCS1  
CKVCS2  
SW9  
CKVBCS1  
CKVBCS2  
Step 3: The 2 complementary outputs CKV and CKVB can  
be high, low or high-impedance, as shown in Table 7:  
SW10  
TABLE 7. CKV, CKVB, CKVCS AND CKVBCS  
CLK  
Q
0
1
0
1
0
1
0
1
STV  
0
CKV  
Hi-Z  
Hi-Z  
Low  
High  
NA  
CKVB  
Hi-Z  
Hi-Z  
High  
Low  
NA  
SW10  
0
0
1
1
0
0
1
1
FIGURE 20. BI-DIRECTIONAL SWITCHES  
0
0
Due to the actual solid-state construction of the switches, the  
capacitors C does not get discharged entirely. The amount  
of left over charges depends on the value of the voltages of  
0
L
1
V
and V on the capacitors.  
OFF  
ON  
1
Low  
NA  
High  
NA  
1
Internal Logic Block Diagram  
1
High  
Low  
Figure 21 shows the internal block diagram. In order to  
reduce power dissipation, most of the logic circuitry is  
powered from VDD logic supply. The output of the VDD logic  
is level-shifted to drive the output switches.  
Hi-Z is output high impedance and charge sharing is  
enabled. NA is illegal state and cannot occur.  
Internal Logic Table  
STVP  
STVP output is controlled by STV input and the internal CLK  
signal. Table 8 shows the relationship:  
CKV, CKB, CKVCS AND CKVBCS  
The Internal logic block of CKV1 and CKV2 are identical and  
only one logic block and truth table are shown in Figure 21  
and Table 5. To generate the CKV, CKVB and charge  
sharing outputs, the internal logic goes through 3 steps as  
outlined in the following paragraphs.  
TABLE 8. STVP OUTPUT  
CLK  
STV  
STVP  
Low  
0
0
1
1
0
1
0
1
High  
Low  
Hi-Z  
FN6684.0  
April 14, 2008  
16  
ISL97648  
FIGURE 21. INTERNAL LOGIC BLOCK DIAGRAM  
FN6684.0  
April 14, 2008  
17  
ISL97648  
Output Waveforms  
Power Dissipation  
The dissipated power of chagrge sharing in R and R could  
Figure 22 shows a typical CKV and CKVB output  
1
2
waveforms. The output droop rate depends on the external  
discharge resistor value and the output capacitor load.  
be calculated as follows:  
We assume that:  
CKV  
• V  
• V  
• H  
= 40V  
ON  
= -20V  
OFF  
timing (CPV); frequency = 60kHz  
SYNC  
• C = 5nF  
L
The value of V , the left over voltage in the capacitors in that  
L
case is 23V for the positive discharge and 3.0V for the  
CKVB  
negative discharge.  
The voltage change across the capacitor is therefore 23V  
(see Figure 25).  
FIGURE 22. CKV AND CKVB OUTPUT WAVEFORMS  
The stored energy in the capacitor is shown in Equation 8:  
2
2
-9  
(EQ. 8)  
1/2 × V C = 1/2 × 23 × 5 × 10 = 1.32μW  
CKV  
CKVB  
The energy which is stored in the capacitor will be  
dissipated on the resistor (see Figure 26). The switch will  
close 60,000 in every second.  
Since the process will be repeated 2x, for the CKV and the  
CKVB. In 60,000 cycles per second the power dissipation in  
CPV  
R and R becomes Equation 9.  
1
2
(EQ. 9)  
-6  
3
2 × 1.32 × 10 × 60x10 = 160mW  
FIGURE 23. CPV TO CKV/CKVB DELAY  
The dissipated power of level shift driving in R and R  
la  
could be calculated as follows:  
Figure 23 shows the delay time between the incoming  
horizontal sync timing pulse CPV and the generated output  
lb  
pulses. Δt is dependent mainly on the value of C . Figure 24  
shows the effect of STV..  
L
The voltage change across the capacitor is 37V when the  
level shift driving the capacitor to V  
(see Figure 27).  
or V  
OFF  
ON  
CKV  
The stored energy in the capacitor is calculated in  
Equation 10:  
CKVB  
2
2
-9  
(EQ. 10)  
1/2 × V C = 1/2 × 37 × 5 × 10 = 3.42μW  
Consequently, in 60,000 cycles per second the power  
dissipation in R and R becomes Equation 11:  
STV  
la  
lb  
-6  
3
(EQ. 11)  
2 × 3.42 × 10 × 60x10 = 410mW  
CPV  
Since there are also the same power consumption at R , R ,  
3
4
FIGURE 24. EFFECT OF STV  
R
and R , the total power dissipation is Equation 12:  
ld  
lc  
2x(410 + 160)= 1140mW  
(EQ. 12)  
Auxiliary Functions  
DISH: It discharges V  
when the logic power voltage level  
OFF  
drops out, when 'DISH' is < -0.6V (V  
Figures 25, 26, 27, and 28 show the total power dissipation  
over a range of possible voltages, operating frequencies and  
system power turns  
CC  
is connected to ground level by 1kΩ.  
off), V  
OFF  
loads. The values of the R and R must be selected such  
1
2
OECON: It provides continuos polarity changes to the  
TFT-LCD panel during the vertical blanking.  
that the capacitor C is discharged via R or R resistor in  
L
1
2
one half period of the H  
timing. Care should be taken to  
SYNC  
prevent the power from exceeding the maximum rating of  
the package.  
FN6684.0  
April 14, 2008  
18  
ISL97648  
+40V  
SW  
23V  
R
1
2
+17V  
3.0V  
C
23V  
23V  
-20V  
FIGURE 25. VOLTAGE CHANGE ACROSS THE CAPACITOR  
FIGURE 26. ENERGY DISSIPATED ON THE RESISTOR WHEN  
CHARGE SHARING  
WHEN CHARGE SHARING BETWEEN CKV AND  
CKVB  
+40V  
SW  
37V  
R
1
2
+17V  
3.0V  
C
37V  
37V  
-20V  
FIGURE 27. VOLTAGE CHANGE ACROSS THE CAPACITOR  
WHEN DRIVING  
FIGURE 28. ENERGY DISSIPATED ON THE RESISTOR WHEN  
DRIVING  
2
I C LCD Module Calibrator  
Truth Table  
TABLE 9. DVR WRITE PROTECTION TRUTH TABLE  
OUTPUT  
REGISTER  
INPUT  
WPn  
SCL_S  
SCL  
WPp  
EEPROM  
LOW  
UNUSED  
INPUT  
HIGH  
Write Protect  
Write Protect  
HIGH  
CONNECTED TO CONNECTED TO  
LOW  
LOW to HIGH  
HIGH  
Writeable  
Writeable  
SCL  
SCL_S  
HIGH to LOW  
DISCONECTS  
FROM SCL  
DISCONECTS  
FROM SCL_S  
EEPROM is Read into  
Register  
EEPROM is Read into  
Register  
FLOAT  
(Pull-Down Resistor  
Included)  
UNUSED  
INPUT  
Write Protect  
Write Protect  
NOTE: When the device is not write-protected SCL_S and SCL signals should not be driven at the same time. When SCL_S signal is “Unused”  
should be left floating.  
FN6684.0  
April 14, 2008  
19  
ISL97648  
2
I C Bus Format  
W
A
START  
SLAVE ADDRESS  
DATA  
A
STOP  
R
1
0
0
1
1
1
1
D6 D5 D4 D3 D2 D1 D0  
P
P: PROGRAM  
SCL  
SDA  
0
0
RW  
D6  
D5 D4  
D3 D2 D1 D0  
P
A
START  
STOP  
When Read Operation, don’t care P.  
P = 1: Register Writing  
P = 0: EEPROM Writing (Program)  
Adjustable Sink Current Output  
Output Connection  
The device provides an output sink current which lowers the  
voltage on the external voltage divider. Equations 13 and 14  
control the output. See Figure 29.  
This device provides the ability to reduce the flicker of an  
LCD panel by adjustment of the VCOM voltage during  
production test and alignment. A 128-step resolution is  
provided under digital control, which adjusts the sink current  
of the output. The output is connected to an external voltage  
divider, so that the device will have the capability to reduce  
the voltage on the output by increasing the output sink  
current (see Figure 29).  
Setting  
128  
AVDD  
20(RSET)  
(EQ. 13)  
-------------------- ----------------------------  
IOUT =  
X
R2  
----------------------  
Setting  
128  
R1  
20(RSET)  
-------------------- ----------------------------  
VOUT =  
VAVDD 1 –  
X
(EQ. 14)  
R1 + R2  
AVDD  
AVDD  
Note: Where setting is an integer between 1 and 128.  
ISL97648  
Ramp-up of the VDD Power Supply  
R
1
-
+
It is required that the ramp-up from 10% VDD to 90% VDD  
level be achieved in less than or equal to 10ms to assure  
that the EEPROM and Power-on-reset circuits are  
synchronized and the correct value is read from the  
EEPROM Memory.  
OUT  
SET  
R
2
R
SET  
FIGURE 29. OUTPUT CONNECTION CIRCUIT EXAMPLE  
2
The adjustment of the output is provided by the 2-wire I C  
serial interface.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6684.0  
April 14, 2008  
20  
ISL97648  
Package Outline Drawing  
L56.8x8D  
56 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 04/07  
4X  
6.5  
8.00  
0.50  
52X  
A
6
B
56  
43  
PIN #1 INDEX AREA  
1
42  
6
PIN 1  
INDEX AREA  
6 . 50 ± 0 . 15  
29  
14  
(4X)  
0.15  
28  
15  
0.10 M C A B  
56X 0 . 4 ± 0 . 1  
4
0.25 +0.05 / -0.07  
b
TOP VIEW  
BOTTOM VIEW  
SEE DETAIL "X"  
PACKAGE OUTLINE  
0.10  
C
C
0 . 75  
BASE PLANE  
SEATING PLANE  
0.08  
C
SIDE VIEW  
( 7 . 8 TYP )  
(
6 . 5 )  
( 52X 0 . 5 )  
5
C
0 . 2 REF  
( 56X 0 . 25 )  
( 56X 0 . 6 )  
0 . 00 MIN.  
0 . 05 MAX.  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.18mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6684.0  
April 14, 2008  
21  

相关型号:

ISL97648IRTZ-TK

LIQUID CRYSTAL DISPLAY DRIVER, PQCC56, 8 X 8 MM, ROHS COMPLIANT, PLASTIC, TQFN-56
RENESAS

ISL97649A

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRZ-TR5566

TFT-LCD Supply DCP VCOM Amplifier Gate Pulse Modulator RESET
INTERSIL

ISL97649B

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97650

4-Channel Integrated LCD Supply
INTERSIL

ISL97650ARTZ-T

4-Channel Integrated LCD Supply
INTERSIL

ISL97650ARTZ-TK

4-Channel Integrated LCD Supply
INTERSIL

ISL97650B

4-Channel Integrated LCD Supply
INTERSIL