ISL97649AIRTZ-EVALZ [INTERSIL]

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET; TFT -LCD电源+ DCP + VCOM放大器+栅极脉冲调制器+ RESET
ISL97649AIRTZ-EVALZ
型号: ISL97649AIRTZ-EVALZ
厂家: Intersil    Intersil
描述:

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
TFT -LCD电源+ DCP + VCOM放大器+栅极脉冲调制器+ RESET

栅极 放大器 脉冲 CD
文件: 总20页 (文件大小:1004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse  
Modulator + RESET  
ISL97649A  
Features  
The ISL97649A is an integrated power management IC (PMIC) for  
TFT-LCDs used in notebooks, tablet PCs, and monitors. The device  
• 2.5V to 5.5V Input  
• 1.5A Integrated Boost for up to 15V A  
VDD  
integrates a boost converter for generating A , an LDO for  
VLOGIC. VON and VOFF are generated by a charge pump driven by  
the switch node of the boost. The ISL97649A also includes a V  
slice circuit, reset function, and a high performance VCOM  
amplifier with DCP (Digitally Controlled Potentiometer) that is  
used as a VCOM calibrator.  
VDD  
• V /V  
ON OFF  
Supplies Generated by Charge Pumps Driven By  
the Boost Switch Node  
ON  
• LDO for VLOGIC Channel  
• 600/1200kHz Selectable Switching Frequency  
• Integrated Gate Pulse Modulator  
• Reset Signal Generated by Supply Monitor  
• Integrated VCOM Amplifier  
• DCP  
The AVDD boost converter features a 1.5A/0.18Ω boost FET with  
600/1200kHz switching frequency.  
The logic LDO includes a 350mA FET for driving the low voltage  
needed by external digital circuitry.  
2
- I C Serial Interface, Address: 0101000, MSB Left  
The gate pulse modulator can control the gate voltage up to 30V,  
and both the rate and slew delay times are selectable.  
- Wiper Position Stored in 8-bit Nonvolatile Memory and  
Recalled on Power-up  
The supply monitor generates a reset signal when the system is  
powered down.  
- Endurance, 1,000 Data Changes Per Bit  
• UVLO, UVP, OVP, OCP, and OTP Protection  
• Pb-Free (RoHS Compliant)  
• 28 Ld 4x5 QFN  
2
It provides a programmable VCOM with I C interface. One VCOM  
amplifier is also integrated in the chip. The output of the VCOM is  
powered up with the voltage at the last programmed 8-bit  
EEPROM setting.  
Applications  
• LCD Notebook, Tablet, and Monitor  
Pin Configuration  
ISL97649A  
(28 LD 4x5 QFN)  
TOP VIEW  
28  
27  
26  
25  
24  
23  
FB  
PGND  
CE  
L_IN  
1
2
3
4
5
6
7
8
22  
21  
20  
CD2  
L_OUT  
RESET  
ADJ  
RE  
19  
18  
17  
16  
15  
GND  
THERMAL  
PAD  
VGH  
VGHM  
VFLK  
VDPM  
VDIV  
NEG  
VOUT  
9
10  
11  
12  
13  
14  
December 5, 2011  
FN7928.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL97649A  
Application Diagram  
VIN  
AVDD  
AVDD  
L1 10µH  
LX  
C1, 2  
20µF  
C4, 5, 6  
30µF  
D1  
C7  
0.1µF  
SW  
R1  
73.2k  
VIN  
C32  
0.1µF  
PGND  
AVDD BOOST  
CONTROLLER  
VIN  
EN  
SS  
SEQUENCER  
R2 8.06k  
FREQ  
FB  
COMP  
R12 5.5k  
D4  
C20 15nF  
Q1  
L_IN  
VOFF  
C16  
LDO VIN  
C25  
1µF  
VLOGIC  
C15  
1µF  
C11  
0.1µF  
R6 1k  
SW  
1µF  
Z1  
L_OUT  
VLOGIC  
AVDD  
LDO  
C24  
2.2µF  
C8  
47nF  
C10  
47nF  
R17  
8.25k  
VON  
R18  
3.92k  
C12  
1µF  
D2 C9  
1µF  
D3  
VFLK  
VGH  
ADJ  
C17 1nF  
VDPM  
C28  
0.1µF  
SCL  
C14 100pF  
CE  
RE  
GPM  
R9  
10k  
SDA  
RSET  
POS  
VGH GPM  
R5 100k  
DCP  
VGHM  
R22 22k  
GPM_LO  
133k  
R8  
AVDD  
VGH  
R7  
83k  
C18  
0.47µF  
R14 85k  
R26 100k  
VIN  
AVDD  
OUT  
VDIV  
AVDD  
VCOM  
VOLTAGE  
DETECTOR  
C19  
0.47uF  
OPEN  
VCOM OP  
NEG  
R15 115k  
CD2  
C26 1nF  
RESET  
RESET  
THERMAL PAD  
R16  
10k  
VLOGIC  
FN7928.0  
December 5, 2011  
2
ISL97649A  
Pin Descriptions  
PIN#  
SYMBOL  
DESCRIPTION  
1
FB  
AVDD boost converter feedback. Connect to the center of a voltage divider between AVDD and GND to set the AVDD voltage.  
Power ground  
2
PGND  
CE  
3
Gate Pulse Modulator Delay Control. Connect a capacitor between this pin and GND to set the delay time.  
Gate Pulse Modulator Slew Control. Connect a resistor between this pin and GND to set the falling slew rate.  
Gate Pulse Modulator High Voltage Input. Place a 0.1µF decoupling capacitor close to the VGH pin.  
Gate Pulse Modulator Output for gate driver IC  
4
RE  
5
VGH  
6
VGHM  
VFLK  
VDPM  
7
Gate Pulse Modulator Control input from T  
CON  
8
Gate Pulse Modulator Enable. Connect a capacitor from VDPM to GND to set the delay time before GPM is enabled. A current  
source charges the capacitor on VDPM.  
9
GPM_LO Gate Pulse Modulator Low Voltage Input; place a 0.47µF decoupling capacitor close to the GPM_LO pin.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AVDD  
SCL  
DCP and VCOM amplifier high voltage analog supply; place a 0.47µF decoupling capacitor close to the AVDD pin.  
2
I C comparable clock input  
2
SDA  
I C compatible serial bidirectional data line  
POS  
VCOM Positive Amplifier Non-inverting input  
RSET  
VOUT  
NEG  
DCP sink current adjustment pin; connect a resistor between this pin and GND to set the resolution of the DCP output voltage.  
VCOM Amplifier output  
VCOM Negative Amplifier Non-inverting input  
VDIV  
ADJ  
Voltage detector threshold. Connect to the center of a resistive divider between V and GND.  
IN  
VLOGIC LDO feedback. Connect to the center of a resistive divider between L_OUT and GND to set V  
voltage for T .  
CON  
Logic  
RESET  
L_OUT  
CD2  
Voltage detector reset output  
LDO output. Connect at least one 1µF capacitor to GND for stable operation.  
Voltage detector rising edge delay. Connect a capacitor between this pin and GND to set the rising edge delay.  
LDO input. Connect a 1µF decoupling capacitor close to this pin.  
L_IN  
SS  
Boost Converter Soft-Start. Connect a capacitor between this pin and GND to set the soft-start time.  
COMP  
Boost converter compensation pin. Connect a series resistor and capacitor between this pin and GND to optimize transient  
response and stability.  
25  
FREQ  
Boost Converter frequency select; pull it to logic high to operate boost at 1.2MHz. Connect this pin to GND to operate boost at  
600kHz.  
26  
27  
28  
VIN  
LX  
IC input supply. Connect a 0.1µF decoupling capacitor close to this pin.  
AVDD boost converter switching node  
EN  
AVDD enable pin  
Ordering Information  
PART NUMBER  
PART  
V
RANGE  
(V)  
TEMP RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
IN  
(Notes 2, 3)  
MARKING  
ISL97649AIRZ (Note 1)  
ISL97649AIRTZ-EVALZ  
NOTES:  
97649 AIRZ  
2.5 to 5.5  
-40 to +85  
28 Ld 4x5 QFN  
L28.4x5A  
ISL97649A Evaluation Board  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL97649A For more information on MSL please see techbrief TB363.  
FN7928.0  
December 5, 2011  
3
ISL97649A  
Table of Contents  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Interface Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Enable Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Soft-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Rectifier Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Linear Regulator (LDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Supply Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Gate Pulse Modulator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
VCOM Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
DCP Memory Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I2C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protocol Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Communication with ISL97649A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register Description: Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register Description: IVP and WR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Initial VCOM Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Start-up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ISL97649A I2C EEPROM Reading/Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FN7928.0  
December 5, 2011  
4
ISL97649A  
Absolute Maximum Ratings  
Thermal Information  
RE, VGHM, GPM_LO and VGH to GND . . . . . . . . . . . . . . . . . . . . -0.3 to +36V  
LX, AVDD, POS, OUT to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +18V  
Voltage Between GND and PGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5V  
All Other Pins to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0V  
ESD Rating  
Human Body Model (Tested per JESD22-A114E). . . . . . . . . . . . . . . . 2kV  
Machine Model (Tested per JESD22-A115-A). . . . . . . . . . . . . . . . . 200V  
Charged Device Model (Tested per JESD22-C101). . . . . . . . . . . . . . . 1kV  
Thermal Resistance (Typical)  
28 Ld 4x5 QFN Package (Notes 4, 5). . . . .  
θ
JA (°C/W)  
38  
θ
JC (°C/W)  
4.5  
Ambient Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Functional Junction Temperature. . . . . . . . . . . . . . . . . . . .-40°C to +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Lead Temperature During Soldering . . . . . . . . . . . . . . . . . . . . . . . . +260°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Recommended Operating Conditions  
Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5V to 5.5V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications  
V
= ENABLE = 3.3V, A  
VDD  
= 8V, V  
= 2.5V, V = 24V, V = - 6V. Boldface limits apply over the  
ON OFF  
IN  
operating temperature range, -40°C to +85°C.  
LDO  
MIN  
TYP  
MAX  
SYMBOL  
GENERAL  
VIN  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
(Note 7)  
(Note 6) UNITS  
V
V
V
Supply Voltage Range  
Supply Currents when Disabled  
Supply Currents  
2.5  
3.3  
390  
0.7  
0
5.5  
500  
1.0  
V
IN  
IN  
IN  
I
VIN < UVLO  
µA  
mA  
µA  
S_DIS  
I
ENABLE = 3.3V, overdrive AVDD and VGH  
ENABLE = 0V  
S
I
ENABLE Pin Current  
EBABLE  
LOGIC INPUT CHARACTERISTICS - ENABLE, FLK, SCL, SDA, FREQ  
V
Low Voltage Threshold  
High Voltage Threshold  
Pull-Down Resistor  
0.65  
1.65  
V
V
IL  
V
1.75  
0.85  
IH  
R
Enable, FLK, FREQ  
1.25  
MΩ  
IL  
INTERNAL OSCILLATOR  
Switching Frequencies  
F
FREQ = low, T = +25°C  
550  
600  
650  
kHz  
kHz  
OSC  
A
FREQ = high, T = +25°C  
1100  
1200  
1300  
A
AVDD BOOST REGULATOR  
DAVDD/  
DIOUT  
AVDD Load Regulation  
50mA < I  
< 250mA  
0.2  
0.15  
0.8  
%
%
LOAD  
DAVDD/  
DVIN  
AVDD Line Regulation  
I
I
= 150mA, 2.5V < V < 5.5V  
IN  
LOAD  
LOAD  
V
Feedback Voltage (V  
)
= 100mA, T = +25°C  
0.792  
0.808  
100  
V
nA  
mΩ  
A
FB  
FB  
A
I
FB Input Bias Current  
Switch ON-resistance  
Switch Current Limit  
Max Duty Cycle  
FB  
r
T
= +25°C  
180  
1.5  
90  
230  
DS(ON)  
A
I
1.125  
80  
1.875  
LIM  
D
Freq = 1.2MHz  
%
MAX  
EFF  
Freq = 1.2MHz, IAVDD = 100mA  
91  
%
FN7928.0  
December 5, 2011  
5
ISL97649A  
Electrical Specifications  
V
= ENABLE = 3.3V, A  
VDD  
= 8V, V  
= 2.5V, V = 24V, V = - 6V. Boldface limits apply over the  
ON OFF  
IN  
operating temperature range, -40°C to +85°C. (Continued)  
LDO  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
(Note 7)  
(Note 6) UNITS  
LDO REGULATOR  
DV  
DV  
/
Line Regulation  
ILDO = 1mA, 3.0V < V  
< 5.5V  
1
mV/V  
%
LDO  
IN1  
IN  
DV  
/
Load Regulation  
1mA < ILDO < 350mA  
0.2  
LDO  
DI  
OUT  
V
Dropout Voltage  
Output drops by 2%, ILDO = 350mA  
Output drops by 5%  
225  
425  
0.8  
300  
mV  
mA  
V
DO  
I
Current Limit  
330  
LIML  
V
ADJ Reference Voltage  
ADJ Input Bias Current  
I
= 50mA, T = +25°C  
0.792  
0.808  
0.1  
ADJ  
ADJ  
LOAD  
A
I
µA  
GATE PULSE MODULATOR  
V
VGH Voltage  
7
33  
V
V
GH  
V
VDPM Enable Threshold  
VGH Input Current  
1.13  
1.215  
125  
1.30  
IH_VDPM  
I
VFLK = 0  
µA  
µA  
V
VGH  
RE = 100k, VFLK = VIN  
27.5  
V
GPM_LO Voltage  
2
VGH-2  
2
GPM_LO  
I
VGPM_LO Input Current  
CE Threshold Voltage 1  
CE Threshold Voltage 2  
CE Current  
-2  
0.1  
0.6xVIN  
1.215  
100  
µA  
V
GPM_LO  
VCE  
VCE  
0.8xVIN  
th1  
V
th2  
I
µA  
kΩ  
Ω
CE  
R
VGHM Pull-down Resistance  
VGH to VGHM On Resistance  
VDPM Charge Current  
1.1  
VGHM_PD  
R
23  
ONVGH  
IDPM  
SUPPLY MONITOR  
10  
µA  
V
VDIV High Threshold  
VDIV rising  
VDIV falling  
1.265  
1.21  
1.280  
1.222  
1.217  
10  
1.295  
1.234  
1.234  
V
V
IH_VDIV  
V
VDIV Low Threshold  
IL_VDIV  
VthCD2  
CD2 Threshold voltage  
CD2 Charge Current  
1.200  
V
I
µA  
Ω
s
CD2  
R
RESET Pull-Down Resistance  
RESET Delay on the Rising Edge  
650  
IL_RESET  
t
121.7k*  
CD  
DELAY_RESET  
VCOM AMPLIFIER R  
LOAD  
= 10k, C  
= 10pF, Unless Otherwise Stated  
LOAD  
I
VCOM Amplifier Supply Current  
Offset Voltage  
0.7  
2.5  
0
1.08  
15  
mA  
mV  
nA  
V
S_com  
V
OS  
I
Non-inverting Input Bias Current  
Common Mode Input Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Output Voltage Swing High  
B
CMIR  
0
AVDD  
CMRR  
PSRR  
60  
70  
75  
dB  
dB  
mV  
V
85  
AVDD - 1.39  
AVDD - 1.27  
1.2  
V
I
I
I
I
(source) = 0.1mA  
(source) = 75mA  
(sink) = 0.1mA  
(sink) = 75mA  
OH  
OUT  
OUT  
OUT  
OUT  
V
Output Voltage Swing Low  
mV  
V
OL  
1
FN7928.0  
December 5, 2011  
6
ISL97649A  
Electrical Specifications  
V
= ENABLE = 3.3V, A  
VDD  
= 8V, V  
= 2.5V, V = 24V, V = - 6V. Boldface limits apply over the  
ON OFF  
IN  
operating temperature range, -40°C to +85°C. (Continued)  
LDO  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 6)  
(Note 7)  
(Note 6) UNITS  
I
Output Short Circuit Current  
Pull-up  
Pull-down  
150  
225  
200  
25  
mA  
mA  
SC  
150  
SR  
Slew Rate  
V/µs  
MHz  
BW  
Gain Bandwidth  
-3dB gain point  
20  
DIGITAL CONTROLLED POTENTIOMETER  
SET  
SET Voltage Resolution  
8
Bits  
VR  
(Note 12)  
SET  
SET Differential Nonlinearity  
T
= +25°C  
±1  
LSB  
DNL  
A
(Note 8, 9,  
14)  
SET  
SET Zero-Scale Error  
SET Full-Scale Error  
RSET Current  
T
= +25°C  
= +25°C  
±2  
±8  
LSB  
LSB  
ZSE  
(Note 10, 14)  
A
SET  
FSE  
(Note 11,14)  
T
A
I
100  
µA  
RSET  
AVDD to SET AVDD to SET Voltage Attenuation  
FAULT DETECTION THRESHOLD  
1:20  
V/V  
V
Undervoltage Lock out Threshold  
PV rising  
IN  
2.25  
2.125  
15.0  
2.33  
2.20  
15.5  
2.41  
2.27  
16.0  
V
V
V
UVLO  
PV falling  
IN  
OVP  
AVDD  
(Note 13)  
Boost Overvoltage Protection Off  
Threshold to Shutdown IC  
T
Thermal Shut-Down all Channels  
Temperature rising  
153  
°C  
OFF  
POWER SEQUENCE TIMING  
t
VLOGIC  
ss  
VLOGIC Soft-start Time  
Boost Soft-start Current  
0.45  
5.5  
ms  
µA  
I
3
8
ss  
Serial Interface Specifications For SCL and SDA Unless Otherwise Noted.  
MIN  
(Note 14)  
TYP  
(Note 7)  
MAX  
(Note 14) UNITS  
SYMBOL  
PARAMETER  
SCL Frequency  
TEST CONDITIONS  
f
400  
kHz  
SCL  
(Note 6)  
t
Pulse Width Suppression Time at SDA  
Any pulse narrower than the max spec is  
suppressed  
50  
ns  
iN  
(Note 6) and SCL Inputs  
t
SCL Falling Edge to SDA Output Data  
Valid  
SCL falling edge crossing 30% of V , until  
IN  
480  
ns  
AA  
SDA exits the 30% to 70% of V window  
IN  
t
Time the Bus Must be Free Before the  
Start of a New Transmission  
SDA crossing 70% of V during a STOP  
CC  
480  
ns  
BUF  
condition, to SDA crossing 70% of V during  
IN  
the following START condition  
t
Clock LOW Time  
Measured at the 30% of V crossing  
IN  
480  
400  
480  
ns  
ns  
ns  
LOW  
t
Clock HIGH Time  
Measured at the 70% of V crossing  
IN  
HIGH  
t
START Condition Set-up Time  
SCL rising edge to SDA falling edge; both  
SU:STA  
crossing 70% of V  
IN  
t
START Condition Hold Time  
From SDA falling edge crossing 30% of V to  
400  
ns  
HD:STA  
IN  
SCL falling edge crossing 70% of V  
IN  
FN7928.0  
December 5, 2011  
7
ISL97649A  
Serial Interface Specifications For SCL and SDA Unless Otherwise Noted. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
Input Data Set-up Time  
TEST CONDITIONS  
(Note 14)  
(Note 7)  
(Note 14) UNITS  
t
From SDA exiting the 30% to 70% of V  
40  
ns  
SU:DAT  
IN  
window, to SCL rising edge crossing 30% of  
V
IN  
t
Input Data Hold Time  
From SCL rising edge crossing 70% of V to  
0
ns  
ns  
ns  
HD:DAT  
IN  
SDA entering the 30% to 70% of V window  
IN  
t
STOP Condition Set-up Time  
From SCL rising edge crossing 70% of V , to  
400  
400  
SU:STO  
IN  
SDA rising edge crossing 30% of V  
IN  
t
STOP Condition Hold Time for Read, or  
Volatile Only Write  
From SDA rising edge to SCL falling edge;  
both crossing 70% of V  
HD:STO  
IN  
C
Capacitive on SCL  
5
5
pF  
pF  
SCL  
C
Capacitive on SDA  
SDA  
t
Non-Volatile Write Cycle Time  
EEPROM Endurance  
EEPROM Retention  
25  
1
ms  
Wp  
T = +25°C  
kCyc  
kHrs  
A
T
= +25°C  
88  
A
NOTES:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
7. Typical values are for T = +25°C and V = 3.3V.  
IN  
A
8. LSB = I V  
- V I / 254. V  
and V are the measured voltages for the DCP register set to FF hex and 01 hex respectively.  
1
255  
9. DNL = I V  
1
255  
- V I / LSB-1, i ∈ [1, 255]  
i+1  
i
10. ZS error = (V -VMIN) / LSB. VMIN = (VAVDD*R2) * [1-254*R1/(255*20*RSET)]/ (R1+R2).  
1
11. FS error = (V  
- VMAX) / LSB. VMAX= (VAVDD*R2) * [1-0*R1/(255*20*RSET)]/ (R1+R2).  
255  
12. Established by design. Not a parametric spec.  
13. Boost will stop switching as soon as boost output reaches OVP threshold.  
14. Compliance to limits is assured by characterization and design.  
FN7928.0  
December 5, 2011  
8
ISL97649A  
Typical Performance Curves  
92  
90  
88  
0.00  
-0.01  
-0.02  
-0.03  
f
= 600kHz  
OSC  
f
= 1.2MHz  
OSC  
f
= 600kHz  
OSC  
86  
84  
82  
80  
78  
76  
f
= 1.2MHz  
OSC  
V
= 3.3V, V  
250  
= 8.06V  
IN  
OUT  
V
= 3.3V, V  
= 8.06V  
IN  
OUT  
-0.04  
50  
0.0  
50  
100  
150  
200  
(mA)  
300  
350  
100  
150  
(mA)  
200  
250  
I
I
AVDD  
AVDD  
FIGURE 1.  
EFFICIENCY vs I  
FIGURE 2.  
I
LOAD REGULATION vs I  
AVDD AVDD  
AVDD  
AVDD  
L = 10µH, C  
= 40µF, C  
= 15nF, R = 5.5k  
COMP  
OUT  
COMP  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
I
= 150mA  
AVDD  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
IN  
FIGURE 3.  
I
LINE REGULATION vs V  
FIGURE 4. BOOST CONVERTER TRANSIENT RESPONSE  
AVDD  
IN  
CE = 1pF, RE = 100k  
CE = 100pF, RE = 100k  
VGHM  
VGHM  
FIGURE 5. GPM CIRCUIT WAVEFORM  
FIGURE 6. GPM CIRCUIT WAVEFORM  
FN7928.0  
December 5, 2011  
9
ISL97649A  
Typical Performance Curves(Continued)  
CE = 10pF, RE = 50k  
CE = 10pF, RE = 150k  
VGHM  
VGHM  
FIGURE 7. GPM CIRCUIT WAVEFORM  
FIGURE 8. GPM CIRCUIT WAVEFORM  
VGHM  
FIGURE 9. V  
FOLLOWS V WHEN THE SYSTEM POWERS OFF  
GH  
FIGURE 10. VCOM RISING SLEW RATE  
GHM  
2.4854  
2.4852  
2.4850  
2.4848  
2.4846  
2.4844  
2.4842  
2.4840  
2.4838  
0.000  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
-0.030  
ILDO = 1mA  
VLDO = 2.5V  
2.4836  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
50  
100  
150  
200  
250  
300  
350  
VLDO_IN (V)  
ILDO (mA)  
FIGURE 11. LDO LINE REGULATION vs V  
FIGURE 12.  
LOAD REGULATION vs I  
LDO LDO  
IN  
FN7928.0  
December 5, 2011  
10  
ISL97649A  
This restricts the maximum output current (average) based on  
Applications Information  
Enable Control  
With VIN > UVLO, only the Logic output channel is activated. All  
other functions in ISL97649A are shut down when the enable pin  
is pulled down. When the voltage at the enable pin reaches H  
threshold, the whole chip turns on.  
Equation 3:  
ΔI  
V
IN  
V
O
L
(EQ. 3)  
-------  
--------  
I
=
I
LMT  
×
OMAX  
2
where ΔI is the peak-to-peak inductor ripple current, and is set  
L
by Equation 4:  
V
D
f
s
IN  
(EQ. 4)  
-------- ---  
ΔI  
=
×
L
L
Frequency Selection  
where f is the switching frequency (600kHz or 1.2MHz).  
S
The ISL97649A switching frequency can be user selected to  
operate at either constant 600kHz or 1.2MHz. Lower switching  
frequency can save power dissipation at very light load  
conditions. Also, low switching frequency more easily leads to  
discontinuous conduction mode, while higher switching  
frequency allows for smaller external components, such as  
inductor and output capacitors, etc. Higher switching frequency  
will get higher efficiency within some loading range depending  
on VIN, VOUT, and external components, as shown in Figure 1.  
Connecting the FREQ pin to GND sets the PWM switching  
Capacitor  
An input capacitor is used to suppress the voltage ripple injected  
into the boost converter. The ceramic capacitor with a  
capacitance larger than 10µF is recommended. The voltage  
rating of the input capacitor should be larger than the maximum  
input voltage. Some input capacitors are recommended in  
Table 1.  
TABLE 1. BOOST CONVERTER INPUT CAPACITOR RECOMMENDATION  
frequency to 600kHz, or connecting FREQ pin to V for 1.2MHz.  
IN  
CAPACITOR  
10µF/6.3V  
10µF/16V  
10µF/10V  
22µF/10V  
SIZE  
0603  
1206  
0805  
1210  
MFG  
TDK  
PART NUMBER  
C1608X5R0J106M  
C3216X7R1C106M  
GRM21BR61A106K  
GRB32ER61A226K  
Soft-Start  
The soft-start is provided by an internal current source to charge  
the external soft-start capacitor. The ISL97649A ramps up the  
current limit from 0A up to the full value, as the voltage at the SS  
pin ramps from 0V to 0.8V. Hence, the soft-start time is 3.2ms  
when the soft-start capacitor is 22nF, 6.8ms for 47nF and  
14.5ms for 100nF.  
TDK  
Murata  
Murata  
Inductor  
Operation  
The boost inductor is a critical part that influences the output  
voltage ripple, transient response, and efficiency. Values of  
3.3µH to 10µH are used to match the internal slope  
compensation. The inductor must be able to handle the following  
average and peak currents shown in Equation 5:  
The boost converter is a current mode PWM converter operating  
at either 600kHz or 1.2MHz. It can operate in both discontinuous  
conduction mode (DCM) at light load and continuous conduction  
mode (CCM). In continuous conduction mode, current flows  
continuously in the inductor during the entire switching cycle in  
steady state operation. The voltage conversion ratio in  
continuous current mode is given by Equation 1:  
V
I
O
------------  
I
=
LAVG  
1 D  
(EQ. 5)  
ΔI  
L
--------  
+
LAVG  
I
= I  
LPK  
2
1
1 D  
Boost  
(EQ. 1)  
-----------------  
------------  
=
V
Some inductors are recommended in Table 2 for different design  
considerations.  
IN  
where D is the duty cycle of the switching MOSFET.  
Rectifier Diode  
The boost regulator uses a summing amplifier architecture  
consisting of gm stages for voltage feedback, current feedback  
and slope compensation. A comparator looks at the peak  
inductor current cycle-by-cycle and terminates the PWM cycle if  
the current limit is reached.  
A high-speed diode is necessary due to the high switching  
frequency. Schottky diodes are recommended because of their  
fast recovery time and low forward voltage. The reverse voltage  
rating of this diode should be higher than the maximum output  
voltage. The rectifier diode must meet the output current and  
peak inductor current requirements. Table 3 shows some  
recommendations for boost converter diode.  
An external resistor divider is required to divide the output  
voltage down to the nominal reference voltage. Current drawn by  
the resistor network should be limited to maintain the overall  
converter efficiency. The maximum value of the resistor network  
is limited by the feedback input bias current and the potential for  
noise being coupled into the feedback pin. A resistor network in  
the order of 60kis recommended. The boost converter output  
voltage is determined by Equation 2:  
TABLE 2. BOOST CONVERTER INDUCTOR RECOMMENDATION  
DIMENSIONS  
(mm)  
PART  
NUMBER  
INDUCTOR  
MFG  
NOTE  
10µH/  
8.3x8.3x4.5 Sumida CDR8D43-100NC  
Efficiency  
R
+ R  
4Apeak  
Optimization  
1
2
(EQ. 2)  
--------------------  
V
=
× V  
Boost  
FB  
R
2
6.8µH/  
5.0x5.0x2.0  
TDK PLF5020T-6R8M1R8  
1.8Apeak  
The current through the MOSFET is limited to 1.5A  
.
PEAK  
FN7928.0  
December 5, 2011  
11  
ISL97649A  
TABLE 2. BOOST CONVERTER INDUCTOR RECOMMENDATION  
The efficiency of the LDO depends on the difference between  
input voltage and output voltage (Equation 7) by assuming LDO  
quiescent current is much lower than LDO output current:  
DIMENSIONS  
(mm)  
PART  
NUMBER  
INDUCTOR  
MFG  
NOTE  
PCB  
space/profile  
optimization  
V
LDO_IN  
10uH/  
2.2Apeak  
6.6x7.3x1.2 Cyntec PCME061B-100MS  
-------------------------  
η(%) =  
× 100%  
(EQ. 7)  
V
LDO_OUT  
The less difference between input and output voltage, the higher  
efficiency it is.  
TABLE 3. BOOST CONVERTER RECTIFIER DIODE RECOMMENDATION  
Ceramic capacitors are recommended for the LDO input and  
output capacitors. Intersil recommends an output capacitor  
within the 1µF to 4.7µF range and a maximum feedback resistor  
impedance of 20k. Larger capacitors help to reduce noise and  
deviation during transient load change. Some capacitors are  
recommended in Table 5.  
DIODE  
V /I  
AVG  
RATING  
PACKAGE  
MFG  
R
PMEG2010ER  
MSS1P2U  
20V/1A  
20V/1A  
SOD123W NXP  
MicroSMP VISHAY  
Output Capacitor  
The output capacitor supplies the load directly and reduces the  
ripple voltage at the output. Output ripple voltage consists of two  
components:  
TABLE 5. LDO OUTPUT CAPACITOR RECOMMENDATION  
CAPACITOR  
1µF/10V  
SIZE  
0603  
0603  
0603  
MFG  
TDK  
PART NUMBER  
C1608X7R1A105K  
1. The voltage drop due to the inductor ripple current flowing  
through the ESR of the output capacitor.  
1µF/6.3V  
2.2µF/6.3V  
MURATA GRM188R70J105K  
TDK C1608X7R0J225K  
2. Charging and discharging of the output capacitor.  
V
V  
I
O
1
f
s
O
IN  
-------------------- ------------ ---  
V
= I  
× ESR +  
LPK  
×
×
(EQ. 6)  
Supply Monitor Circuit  
RIPPLE  
V
C
O
OUT  
The Supply Monitor circuit monitors the voltage on VDIV, and sets  
open-drain output RESET low when VDIV is below 1.28V (rising)  
or 1.22V (falling).  
For low ESR ceramic capacitors, the output ripple is dominated  
by the charging and discharging of the output capacitor. The  
voltage rating of the output capacitor should be greater than the  
maximum output voltage.  
There is a delay on the rising edge, controlled by a capacitor on  
CD2. When VDIV exceeds 1.28V (rising), CD2 is charged up from  
0V to 1.217V by a 10µA current source. Once CD2 exceeds  
1.217V, RESET will go tri-state. When VDIV falls below 1.22V,  
RESET will become low with a 650pull-down resistance. The  
delay time is controlled by Equation 8:  
Note: Capacitors have a voltage coefficient that makes their  
effective capacitance drop as the voltage across them increases.  
C
in Equation 6 assumes the effective value of the capacitor  
OUT  
at a particular voltage and not the manufacturer’s stated value,  
measured at 0V.  
(EQ. 8)  
t
= 121.7k × CD2  
delay  
Table 4 shows some selections of output capacitors.  
TABLE 4. BOOST OUTPUT CAPACITOR RECOMMENDATION  
For example, the delay time is 12.17ms if the CD2 = 100nF.  
Figure 13 shows the Supply Monitor Circuit timing diagram.  
CAPACITOR  
10µF/25V  
10µF/25V  
SIZE  
1210  
1210  
MFG  
TDK  
PART NUMBER  
C3225X7R1E106M  
Murata GRM32DR61E106K  
1.28V  
1.22V  
VDIV  
Compensation  
The boost converter of ISL97649A can be compensated by an RC  
network connected from the COMP pin to ground. 15nF and 5.5k  
RC network is used in the demo board. The larger value resistor  
and lower value capacitor can lower the transient overshoot,  
however, at the expense of the stability of the loop.  
1.217V  
CD2  
Linear Regulator (LDO)  
The ISL97649A includes an LDO with adjustable output. It can  
supply current up to 350mA. The output voltage is adjusted by  
connection of the ADJ pin.  
RESET DELAY TIME IS  
CONTROLLED BY CD2  
CAPACITOR  
RESET  
FIGURE 13. SUPPLY MONITOR CIRCUIT TIMING DIAGRAM  
FN7928.0  
December 5, 2011  
12  
ISL97649A  
VIN  
UVLO  
THRESHOLD  
0
VGH  
RESET  
VDPM  
1.215V  
VFLK  
VGH  
VGHM IS FORCED  
TO VGH WHEN VIN  
VGHM  
GPM_LO  
FALLS TO UVLO AND  
CONTROLLED BY RE  
SLOPE IS  
VGH>3V  
Power on delay tme  
POWER-ON DELAY TIME  
CONTROLLED BY C  
cn
DELAY TIME IS  
CONTROLLED BY CE  
DPM  
FIGURE 14. GATE PULSE MODULATOR TIMING DIAGRAM  
3V, VGHM will not be actively driven until VIN is driven. Figure 14  
Gate Pulse Modulator Circuit  
shows the VGHM voltage based on V , VGH and RESET.  
IN  
The gate pulse modulator circuit functions as a three way  
multiplexer, switching VGHM between ground, GPM_LO and VGH.  
Voltage selection is provided by digital inputs VDPM (enable) and  
VFLK (control). High to low delay and slew control is provided by  
external components on pins CE and RE, respectively.  
VCOM Amplifier  
The VCOM amplifier is designed to control the voltage on the back  
plane of an LCD display. This plane is capacitively coupled to the  
pixel drive voltage, which alternately cycles positive and negative at  
the line rate for the display. Thus, the amplifier must be capable of  
sourcing and sinking pulses of current, which can occasionally be  
quite large (in the range of 100mA for typical applications).  
When VDPM is LOW, the block is disabled and VGHM is  
grounded. When the input voltage exceeds UVLO threshold,  
VDPM starts to drive an external capacitor. Once VDPM exceeds  
1.215V, the GPM circuit is enabled, and the output VGHM is  
determined by VFLK, RESET signal and VGH voltage. If RESET  
signal is high and VFLK is high, VGHM is pulled to VGH. When  
VFLK goes low, there is a delay controlled by capacitor CE,  
following which, VGHM is driven to GPM_LO, with a slew rate  
controlled by resistor RE. Note that GPM_LO is used only as a  
reference voltage for an amplifier, and thus does not have to  
source or sink a significant DC current.  
The ISL97649A VCOM amplifier's output current is limited to  
225mA typical. This limit level, which is roughly the same for  
sourcing and sinking, is included to maintain reliable operation  
of the part. It does not necessarily prevent a large temperature  
rise if the current is maintained. (In this case, the whole chip may  
be shut down by the thermal trip to protect functionality.) If the  
display occasionally demands current pulses higher than this  
limit, the reservoir capacitor will provide the excess and the  
amplifier will top the reservoir capacitor back up once the pulse  
has stopped. This will happen in the µs time scale in practical  
systems and for pulses 2 or 3 times the current limit; the VCOM  
voltage will have settled again before the next line is processed.  
Low to high transition is determined primarily by the switch  
resistance and the external capacitive load. High to low transition  
is more complex. Take the case where the block is already  
enabled (VDPM is H). When VFLK is H, if CE is not externally  
pulled above threshold voltage 1, pin CE is pulled low. On the  
falling edge of VFLK, a current is passed into pin CE to charge the  
external capacitor up to threshold voltage 2, providing a delay  
which is adjustable by varying the capacitor on CE. Once this  
threshold is reached, the output starts to be pulled down from  
VGH to GPM_LO. The maximum slew current is equal to 500/(RE  
DCP Memory Description  
The ISL97649A contains one non-volatile byte known as the  
2
Initial Value Register (IVR). It is accessed by the I C interface  
operations with Address 00h. The IVR contains the value that is  
loaded into the Volatile Wiper Register (WR) at power-up.  
+ 40k), and the dv/dt slew rate is Isl/C  
, where C is the  
LOAD  
LOAD  
load capacitance applied to VGHM. The slew rate reduces as  
VGHM approaches GPM_LO.  
The volatile WR and the non-volatile IVR of a DCP are accessed  
with the same address.  
If CE is always pulled up to a voltage above threshold 1, zero  
delay mode is selected; thus, there will be no delay from FLK  
falling to the point where VGHM starts to fall. Slew down currents  
will be identical to the previous case.  
The Access Control Register (ACR) determines which word at  
address 00h is accessed (IVR or WR). The volatile ACR must be  
set as follows:  
When the ACR is all zeroes, which is the default at power-up:  
At power-down, when VIN falls to UVLO, VGHM will be tied to VGH  
until the VGH voltage falls to 3V. Once the VGH voltage falls below  
• A read operation to address 0 outputs the value of the  
non-volatile IVR.  
FN7928.0  
December 5, 2011  
13  
ISL97649A  
• A write operation to address 0 writes the identical values to the  
WR and IVR of the DCP.  
An ACK (Acknowledge) is a software convention used to indicate a  
successful data transfer. The transmitting device, either master or  
slave, releases the SDA bus after transmitting eight bits. During the  
ninth clock cycle, the receiver pulls the SDA line LOW to  
• When the ACR is 80h:  
acknowledge the reception of the eight bits of data (see Figure 16).  
- A read operation to address 0 outputs the value of the  
volatile WR.  
The ISL97649A DCP responds with an ACK after recognition of a  
START condition followed by a valid Identification Byte, and once  
again after successful receipt of an Address Byte. The ISL97649A  
also respond with an ACK after receiving a Data Byte of a write  
operation. The master must respond with an ACK after receiving  
a Data Byte of a read operation.  
- A write operation to address 0 only writes to the  
volatile WR.  
It is not possible to write to an IVR without writing the same value  
to its WR.  
00h and 80h are the only values that should be written to  
address 2. All other values are reserved and must not be written  
to address 2.  
A valid Identification Byte contains 0101000 as the seven MSBs.  
The LSB is in the Read/Write bit. Its value is "1" for a Read  
operation, and "0" for a Write operation (see Table 7).  
TABLE 6. MEMORY MAP  
TABLE 7. IDENTIFICATION BYTE FORMAT  
ADDRESS  
NON-VOLATILE  
-
VOLATILE  
ACR  
0
1
0
1
0
0
0
R/W  
2
1
0
(MSB)  
(LSB)  
Reserved  
IVR  
WR  
Write Operation  
WR: Wiper Register, IVR: Initial value Register.  
A write operation requires a START condition, followed by a valid  
Identification Byte, a valid Address Byte, a Data Byte, and a STOP  
condition (see Figure 17). After each of the three bytes, the  
ISL97649A responds with an ACK. At this time, if the Data Byte is  
to be written only to volatile registers, the device enters its  
standby state. If the Data Byte is to be written also to non-volatile  
memory, the ISL97649A begins its internal write cycle to  
non-volatile memory. During the internal non-volatile write cycle,  
the device ignores transitions at the SDA and SCL pins and the  
SDA output is at high impedance state. When the internal  
non-volatile write cycle is completed, the ISL97649A enters its  
standby state. The byte at address 02h determines if the Data  
Byte is to be written to volatile and/or non-volatile memory.  
2
I C Serial Interface  
The ISL97649A supports a bidirectional bus oriented protocol.  
The protocol defines any device that sends data on to the bus as  
a transmitter and the receiving device as the receiver. The device  
controlling the transfer is a master and the device being  
controlled is the slave. The master always initiates data transfers  
and provides the clock for both transmit and receive operations.  
Therefore, the DCP of the ISL97649A operates as a slave device  
in all applications. The fall and rise time of SDA and SCL signal  
2
should be in the range listed in Table 8. Capacitive load on I C  
bus is also specified in Table 8.  
2
All communication over the I C interface is conducted by sending  
Data Protection  
the MSB of each byte of data first.  
A STOP condition also acts as a protection of non-volatile  
memory. A valid Identification Byte, Address Byte, and total  
number of SCL pulses act as a protection of both volatile and  
non-volatile registers. During a Write sequence, the Data Byte is  
loaded into an internal shift register as it is received. If the  
Address Byte is 0 or 2, the Data Byte is transferred to the Wiper  
Register (WR) or to the Access Control Register respectively, at  
the falling edge of the SCL pulse that loads the last bit (LSB) of  
the Data Byte. If the Address Byte is 0, and the Access Control  
Register is all zeros (default), then the STOP condition initiates  
the internal write cycle to non-volatile memory.  
Protocol Conventions  
Data states on the SDA line can change only during SCL LOW  
periods. SDA state changes during SCL HIGH are reserved for  
indicating START and STOP conditions (see Figure 15). On  
power-up of the ISL97649A, the SDA pin is in the input mode.  
2
All I C interface operations must begin with a START condition,  
which is a HIGH to LOW transition of SDA while SCL is HIGH. The  
DCP continuously monitors the SDA and SCL lines for the START  
condition and does not respond to any command until this  
condition is met (see Figure 15). A START condition is ignored  
during the power-up sequence and during internal non-volatile  
write cycles.  
2
TABLE 8. I C INTERFACE SPECIFICATION  
PARAMETER  
SDA and SCL Rise Time  
SDA and SCL Fall Time  
MIN  
TYP  
MAX  
1000  
300  
UNITS  
ns  
2
All I C interface must be terminated by a STOP condition, which  
is a LOW to HIGH transition of SDA while SCL is high (see  
Figure 15). A STOP condition at the end of a read operation, or at  
the end of a write operation to volatile bytes only places the  
device in its standby mode. A STOP condition during a write  
operation to a non-volatile write byte, initiates an internal  
non-volatile write cycle. The device enters its standby state when  
the internal non-volatile write cycle is completed.  
ns  
2
I C Bus Capacitive Load  
400  
pF  
FN7928.0  
December 5, 2011  
14  
ISL97649A  
SCL  
SDA  
START  
DATA  
DATA  
DATA  
STOP  
STABLE  
CHANGE STABLE  
FIGURE 15. VALID DATA CHANGES, START, AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT FROM  
RECEIVER  
START  
ACK  
FIGURE 16. ACKNOWLEDGE RESPONSE FROM RECEIVER  
WRITE  
S
T
SIGNALS FROM  
THE MASTER  
S
T
O
P
A
R
T
IDENTIFICATION  
BYTE  
ADDRESS  
BYTE  
DATA  
BYTE  
X
0
SIGNAL AT SDA  
0
1
0
1
0 0  
0
0
0
0
0
0
0
0
SIGNALS FROM  
THE ISL97649A  
A
C
K
A
C
K
A
C
K
FIGURE 17. BYTE WRITE SEQUENCE  
S
T
A
R
T
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH  
R/W = 0  
IDENTIFICATION  
BYTE WITH  
R/W = 1  
ADDRESS  
BYTE  
SIGNAL AT SDA  
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
1
0 0  
0
1
0
0
0
X
A
C
K
A
C
K
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ  
DATA BYTE  
LAST READ  
DATA BYTE  
FIGURE 18. READ SEQUENCE  
FN7928.0  
December 5, 2011  
15  
ISL97649A  
should be zero (0). The ACR controls which word is accessed at  
Read Operation  
A read operation consists of a three-byte instruction followed by  
one or more Data Bytes (see Figure 18). The master initiates the  
operation issuing the following sequence: a START, the  
Identification byte with the R/W bit set to "0", an Address Byte, a  
second START, and a second Identification byte with the R/W bit  
set to "1". After each of the three bytes, the ISL97649A responds  
with an ACK; then the ISL97649A transmits the Data Byte. The  
master then terminates the read operation (issuing a STOP  
condition) following the last bit of the Data Byte (see Figure 16).  
register 00h as follows:  
• 00h = Nonvolatile IVR  
• 80h = Volatile WR  
All other bits of the ACR should be written 0 or 1. Power-up  
default for this address is 00h.  
Register Description: IVP and WR  
The output of the DCP is controlled directly by the WR. Writes and  
reads can be made directly to this register to control and monitor  
without any non-volatile memory changes. This is done by setting  
address 02h to data 80h, then writing the data.  
The byte at address 02h determines if the Data Bytes being read  
are from volatile or non-volatile memory.  
Communication with ISL97649A  
The non-volatile IVR stores the power-up value of the DCP output.  
On power -up, the contents of the IVR are transferred to the WR.  
There are three register addresses in the ISL97649A, of which  
two can be used. Address 00h and address 02h are used to  
control the device. Address 01h is reserved and should not be  
used. Address 00h contains the non-volatile Initial Value Register  
(IVR), and the volatile Wiper Register (WR). Address 02h contains  
only a volatile word and is used as a pointer to either the IVR or  
WR.  
To write to the IVR, first address 02h is set to data 00h and then  
the data is written. Writing a new value to the IVR register will set  
a new power- up position for the wiper. Also, writing to this  
register will load the same value into the WR as the IVR.  
Therefore, if a new value is loaded into the IVR, not only will the  
non-volatile IVR change, but the WR will also contain the same  
value after the write, and the wiper position will change. Reading  
from the IVR will not change the WR, if its contents are different.  
Register Description: Access Control  
The Access Control Register (ACR) is volatile and is at address  
02h. It is 8 bits, and only the MSB is significant; all other bits  
Writing a new value to the IVR  
Write to ACR first  
0
1
0
1
0
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
A
A
0
0
0
0
0
0
0
0
A
A
Then, write to IVR  
0
1
0
1
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Note that the WR will also reflect this new value since both registers get writen at the same time  
D0:LSB, D7:MSB  
Writing a new value to WR only  
Write to ACR first  
0
1
0
1
0
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
A
A
1
0
0
0
0
0
0
0
A
A
Then, write to WR  
0
1
0
1
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Note that the IVR value will NOT change  
D0:LSB, D7:MSB  
Reading from IVR  
Write to the ACR first  
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
A
A
A
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
A
A
0
0
0
0
0
0
0
0
A
Then set the IVR address  
0
1
0
0
Read from the IVR  
0
1
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Example 2  
Reading from the WR  
Write to the ACR first  
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
A
A
A
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
A
A
1
0
0
0
0
0
0
0
A
Then set the WR address  
0
1
0
0
Read from the WR  
0
1
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
FN7928.0  
December 5, 2011  
16  
ISL97649A  
PCB layout. PCB layout is critical, especially at high switching  
frequency.  
Initial VCOM Setting  
A 256-step resolution is provided under digital control, which  
adjusts the sink current of the output. The output is connected to  
an external voltage divider, so that the device will have the  
capability to reduce the voltage on the output by increasing the  
output sink current. The equations that control the output are  
given in the following. The initial setting value is at 128. The WR  
Following are some general guidelines for layout:  
1. Place the external power components (the input capacitors,  
output capacitors, boost inductor and output diodes, etc.) in  
close proximity to the device. Traces to these components  
should be kept as short and wide as possible to minimize  
parasitic inductance and resistance.  
2
value is set back to 128 if any error occurs during I C read or  
write communication. When writing to the EEPROM, VGH needs  
to be higher than 12V when AVDD is 8V. Outside these  
conditions, writing operations may be not successful. The  
maximum resistor value of RSET is determined by the following  
equations:  
2. Place V and V  
DC  
bypass capacitors close to the pins.  
REF  
3. Loops with large AC amplitudes and fast slew rate should be  
made as small as possible.  
4. The feedback network should sense the output voltage  
directly from the point of load, and be as far away from the LX  
node as possible.  
RSET < V_AVDD 100μA  
(EQ. 9)  
(EQ. 10)  
(EQ. 11)  
V
255 Setting  
AVDD  
------------------------------------- --------------------------  
IOUT =  
VOUT =  
5. The power ground (PGND) should be connected at the  
ISL97649A exposed die plate area.  
255  
V  
20(RSET)  
R
R
U
20(RSET)  
255 Setting  
L
AVDD  
----------------------------  
------------------------------------- --------------------------  
×
1 –  
6. The exposed die plate, on the underside of the package,  
should be soldered to an equivalent area of metal on the PCB.  
This contact area should have multiple via connections to the  
back of the PCB as well as connections to intermediate PCB  
layers, if available to maximize thermal dissipation away from  
the IC.  
(R + R )  
255  
U
L
where R , R and RSET in Equation 11 correspond to R , R and  
L
U
7
8
R in the Application Diagram on page 2.  
9
Start-up Sequence  
7. To minimize the thermal resistance of the package when  
soldered to a multi-layer PCB, the amount of copper track and  
ground plane area connected to the exposed die plate should  
be maximized and spread out as far as possible from the IC.  
The bottom and top PCB areas especially should be  
When VIN rising exceeds UVLO, it takes 120µs to read the  
settings stored in the chip in order to activate the chip correctly.  
After all the settings are written in the registers, VLOGIC starts up  
with a 0.5ms soft-start time. When both VLOGIC is in regulation  
and EN is high, the boost converter starts up. The Gate Pulse  
modulator output VGHM is held low until VDPM is charged to  
1.215V. The detailed power on sequence is shown in Figure 19.  
maximized to allow thermal dissipation to the surrounding air.  
8. Minimize feedback input track lengths to avoid switching  
noise pick-up.  
Layout Recommendation  
The device's performance, including efficiency, output noise,  
transient response and control loop stability, is affected by the  
A demo board is available to illustrate the proper layout  
implementation.  
FN7928.0  
December 5, 2011  
17  
ISL97649A  
EN  
VIN  
UVLO  
UVLO  
tSS_VLOGIC  
PANEL NORMAL OPERATION  
VLOGIC  
AVDD  
VOFF  
tSS_AVDD CONTROLLED BY VSS  
VON  
VCOM  
1.280V  
1.222V  
1.217V  
VDIV  
CD2  
1.215V  
RESET  
VDPM  
GPM ENABLED WHEN BOTH  
1) EN = HIGH AND  
2) VDPM > 1.215V  
VGHM  
VGHM OUTPUT TIED TO VGH WHEN VIN FALLS TO UVLO  
FIGURE 19. ISL97649A POWER ON/OFF SEQUENCE  
FN7928.0  
December 5, 2011  
18  
ISL97649A  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make  
sure you have the latest revision.  
DATE  
REVISION  
FN7928.0  
CHANGE  
December 5, 2011  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISL97649A  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7928.0  
December 5, 2011  
19  
ISL97649A  
Package Outline Drawing  
L28.4x5A  
28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 06/08  
2.50  
0.50  
6
4.00  
A
24X  
PIN #1 INDEX AREA  
B
28  
23  
6
22  
1
PIN 1  
INDEX AREA  
3.50  
Exp. DAP  
3.50  
8
0.10 M C A B  
28X 0.25  
15  
(4X)  
0.15  
4
9
14  
SIDE VIEW  
TOP VIEW  
2.50  
Exp. DAP  
28X 0.400  
BOTTOM VIEW  
SEE DETAIL "X"  
( 3.80 )  
( 2.50)  
C
0.10  
C
Max 0.90  
SEATING PLANE  
0.08  
C
SIDE VIEW  
( 4.80 )  
( 24X 0.50)  
( 3.50 )  
5
C
0 . 2 REF  
0 . 00 MIN.  
0 . 05 MAX.  
(28X .250)  
DETAIL "X"  
( 28 X 0.60)  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN7928.0  
December 5, 2011  
20  

相关型号:

ISL97649AIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649AIRZ-TR5566

TFT-LCD Supply DCP VCOM Amplifier Gate Pulse Modulator RESET
INTERSIL

ISL97649B

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRTZ-EVALZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97649BIRZ

TFT-LCD Supply + DCP + VCOM Amplifier + Gate Pulse Modulator + RESET
INTERSIL

ISL97650

4-Channel Integrated LCD Supply
INTERSIL

ISL97650ARTZ-T

4-Channel Integrated LCD Supply
INTERSIL

ISL97650ARTZ-TK

4-Channel Integrated LCD Supply
INTERSIL

ISL97650B

4-Channel Integrated LCD Supply
INTERSIL

ISL97650BIRTZ-T

4-Channel Integrated LCD Supply
INTERSIL

ISL97650BIRTZ-TK

4-Channel Integrated LCD Supply
INTERSIL

ISL97650_09

4-Channel Integrated LCD Supply
INTERSIL