ISL97519AIUZ-TK [INTERSIL]

600kHz/1.2MHz PWM Step-Up Regulator; 600kHz的/ 1.2MHz的PWM升压调节器
ISL97519AIUZ-TK
型号: ISL97519AIUZ-TK
厂家: Intersil    Intersil
描述:

600kHz/1.2MHz PWM Step-Up Regulator
600kHz的/ 1.2MHz的PWM升压调节器

调节器 开关 光电二极管
文件: 总9页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97519A  
®
Data Sheet  
June 30, 2008  
FN6683.2  
600kHz/1.2MHz PWM Step-Up Regulator  
Features  
The ISL97519A is a high frequency, high efficiency step-up  
voltage regulator operated at constant frequency PWM  
mode. With an internal 2.0A, 200mΩ MOSFET, it can deliver  
up to 1A output current at over 90% efficiency. Two  
selectable frequencies, 600kHz and 1.2MHz, allow trade offs  
between smaller components and faster transient response.  
An external compensation pin gives the user greater  
flexibility in setting frequency compensation allowing the use  
of low ESR Ceramic output capacitors.  
• >90% Efficiency  
• 2.0A, 200mΩ Power MOSFET  
• 2.3V to 5.5V Input  
• Up to 25V Output  
• 600kHz/1.2MHz Switching Frequency Selection  
• Adjustable Soft-Start  
• Internal Thermal Protection  
• 1.1mm Max Height 8 Ld MSOP Package  
• Pb-Free (RoHS compliant)  
• Halogen Free  
When shut down, it draws <1µA of current and can operate  
down to 2.3V input supply. These features along with  
1.2MHz switching frequency makes it an ideal device for  
portable equipment and TFT-LCD displays.  
The ISL97519A is available in an 8 Ld MSOP package with a  
maximum height of 1.1mm. The device is specified for  
operation over the full -40°C to +85°C temperature range.  
Applications  
• TFT-LCD displays  
• DSL modems  
Pinout  
• PCMCIA cards  
ISL97519A  
(8 LD MSOP)  
TOP VIEW  
• Digital cameras  
• GSM/CDMA phones  
• Portable equipment  
• Handheld devices  
COMP  
FB  
SS  
1
2
3
4
8
7
6
5
FSEL  
VDD  
LX  
EN  
Ordering Information  
GND  
PART  
NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
ISL97519AIUZ  
7519A  
7519A  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
MDP0043  
MDP0043  
MDP0043  
ISL97519AIUZ-T*  
ISL97519AIUZ-TK* 7519A  
*Please refer to TB347 for details on reel specifications.  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination  
finish, which is RoHS compliant and compatible with both SnPb and  
Pb-free soldering operations). Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2008. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL97519A  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
LX to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27V  
to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Ambient Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . See Curves on page 5  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
V
DD  
COMP, FB, EN, SS, FSEL to GND . . . . . . . . . -0.3V to (V  
+0.3V)  
DD  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 3.3V, V  
= 12V, I  
= 0mA, FSEL = GND, T = -40°C to +85°C unless otherwise specified.  
A
IN  
OUT  
OUT  
Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature  
limits established by characterization and are not production tested.  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
µA  
mA  
mA  
V
IQ1  
IQ2  
IQ3  
Quiescent Current - Shutdown  
Quiescent Current - Not Switching  
Quiescent Current - Switching  
Feedback Voltage  
EN = 0V  
EN = V , FB = 1.3V  
5
0.7  
3
DD  
EN = V , FB = 1.0V  
DD  
4.5  
1.252  
0.5  
V
1.228  
1.24  
0.01  
FB  
I
Feedback Input Bias Current  
Input Voltage Range  
µA  
V
B-FB  
V
2.3  
85  
85  
5.5  
DD  
D
D
-600kHz Maximum Duty Cycle  
-1.2MHz Maximum Duty Cycle  
FSEL = 0V  
92  
90  
%
MAX  
FSEL = V  
%
MAX  
DD  
I
I
Current Limit - Max Peak Input Current  
V
V
< 2.8V  
1.0  
A
LIM1  
LIM2  
DD  
DD  
Current Limit - Max Peak Input Current  
Shutdown Input Bias Current  
Switch ON-Resistance  
> 2.8V  
1.5  
2.0  
A
I
EN = 0V  
= 2.7V, I = 1A  
0.01  
0.2  
0.5  
3
µA  
Ω
EN  
r
V
DS(ON)  
DD  
VSW = 27V  
3V < V < 5.5V, V  
LX  
I
Switch Leakage Current  
Line Regulation  
0.01  
0.2  
µA  
%
LX-LEAK  
ΔV /ΔV  
= 12V  
OUT  
/ΔI  
IN  
IN  
= 3.3V, V  
OUT  
ΔV  
Load Regulation  
V
= 12V, I = 30mA to 200mA  
0.3  
%
OUT OUT  
IN  
OUT  
O
F
F
Switching Frequency Accuracy  
Switching Frequency Accuracy  
EN, FSEL Input Low Level  
EN, FSEL Input High Level  
Error Amp Tranconductance  
FSEL = 0V  
500  
620  
1250  
740  
1500  
0.5  
kHz  
kHz  
V
OSC1  
OSC2  
FSEL = V  
1000  
DD  
V
IL  
V
1.5  
70  
V
IH  
G
ΔI = 5µA  
130  
2.1  
140  
3
150  
1µ/Ω  
V
M
V
V
V
V
UVLO On Threshold  
UVLO Hysteresis  
1.95  
2.25  
DD-ON  
DD  
DD  
HYS  
mV  
µA  
mV  
mA  
°C  
I
Soft-Start Charge Current  
2
4
SS  
-en  
Minimum Soft-Start Enable Voltage  
Current Limit Around SS Enable V  
Over-Temperature Protection  
40  
65  
150  
400  
SS  
ILIM-V -en  
SS  
SS = 200mV  
300  
350  
150  
OTP  
FN6683.2  
June 30, 2008  
2
ISL97519A  
Block Diagram  
FSEL  
EN  
SS  
SHUTDOWN  
AND START-UP  
CONTROL  
REFERENCE  
GENERATOR  
VDD  
OSCILLATOR  
LX  
PWM LOGIC  
CONTROLLER  
FET  
DRIVER  
COMPARATOR  
CURRENT  
SENSE  
GND  
FB  
GM  
AMPLIFIER  
COMP  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
2
COMP  
FB  
Compensation pin. Output of the internal error amplifier. Capacitor and resistor from COMP pin to ground.  
Voltage feedback pin. Internal reference is 1.24V nominal. Connect a resistor divider from V  
.
OUT  
V
= 1.24V (1 + R /R ). See “Typical Application Circuit” on page 3.  
1 2  
OUT  
3
4
5
6
7
EN  
GND  
LX  
Shutdown control pin. Pull EN low to turn off the device.  
Analog and power ground.  
Power switch pin. Connected to the drain of the internal power MOSFET.  
Analog power supply input pin.  
VDD  
FSEL  
Frequency select pin. When FSEL is set low, switching frequency is set to 620kHz. When connected to  
high or VDD, switching frequency is set to 1.25MHz.  
8
SS  
Soft-start control pin. Connect a capacitor to control the converter start-up.  
Typical Application Circuit  
1
2
3
4
COMP  
FB  
SS  
FSEL  
VDD  
LX  
8
7
6
5
R
3
1kΩ  
C
4
R
85.2kΩ  
1
27nF  
OPEN  
C
R
2
10kΩ  
5
C
5
4.7nF  
EN  
2.3V TO 5.5V  
C
+
C
1
2
22µF  
10µH  
0.1µF  
GND  
12V  
C
+
S1  
3
D
1
22µF  
FN6683.2  
June 30, 2008  
3
ISL97519A  
Typical Performance Curves  
95  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V
f
= 3.3V, V = 9V,  
O
IN  
= 620kHz  
90  
85  
s
V
= 5V, V = 12V, f = 1.25 MHz  
O s  
IN  
80  
75  
70  
65  
60  
V
= 5V, V = 12V, f = 620 kHz  
IN  
O
s
V
= 3.3V, V = 12V,  
O
IN  
= 620kHz  
f
s
V
= 5V, V = 9V, f = 620 kHz  
V
= 3.3V, V = 12V,  
O
IN  
O
s
IN  
= 1.25MHz  
f
s
V
= 5V, V = 9V, f = 1.25MHz  
V
= 3.3V, V = 9V,  
IN  
O
s
IN  
O
f
= 1.25MHz  
s
0
100  
200  
I
300  
(mA)  
400  
500  
0
200  
400  
600  
800  
1000  
I
(mA)  
OUT  
OUT  
FIGURE 1. BOOST EFFICIENCY vs I  
FIGURE 2. BOOST EFFICIENCY vs I  
OUT  
OUT  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
f
= 3.3V, V = 12V,  
V
f
= 3.3V, V = 9V,  
O
IN  
O
IN  
= 1.25MHz  
V
f
= 5V, V = 9V,  
O
V
f
= 5V, V = 12V,  
O
IN  
IN  
= 1.25MHz  
= 1.25MHz  
s
s
= 1.25MHz  
s
s
VIN = 3.3, V = 9V,  
O
V
f
= 5V, V = 9V,  
O
IN  
= 620kHz  
fs = 620kHz  
s
V
f
= 5V, V = 12V,  
O
V
f
= 3.3, V = 12V,  
O
IN  
IN  
= 620kHz  
= 620kHz  
s
s
0
100  
200  
I
300  
400  
500  
0
200  
400  
600  
(mA)  
800  
1000  
I
(mA)  
OUT  
OUT  
FIGURE 3. LOAD REGULATION vs I  
FIGURE 4. LOAD REGULATION vs I  
OUT  
OUT  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 50mA TO 300mA  
O
V
= 12V  
O
V
= 9V, I = 80mA  
O
O
f
= 1.25MHz  
s
V
= 9V, I = 100mA  
O
O
f
= 620kHz  
s
V
= 3.3V  
f
= 600kHz  
IN  
s
V
f
= 12V, I = 80mA  
O
O
= 1.25MHz  
s
V
= 12V, I = 80mA  
O
O
f
= 620kHz  
s
-0.1  
2
3
4
5
6
V
(V)  
IN  
FIGURE 5. LINE REGULATION vs V  
FIGURE 6. TRANSIENT RESPONSE  
IN  
FN6683.2  
June 30, 2008  
4
ISL97519A  
Typical Performance Curves (Continued)  
I
= 50mA to 300mA  
O
V
= 12V  
O
V
= 3.3V  
f
= 1.2MHz  
IN  
s
FIGURE 7. TRANSIENT RESPONSE  
FIGURE 8. SS DELAY AND LX DELAY DURING EN = VDD  
START- UP  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
0.6  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
870mW  
486mW  
0.4  
0.3  
0.2  
0.1  
0.0  
0
25  
50  
75 85 100  
125  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 9. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 10. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
the boost converter operates in two cycles. During the first  
cycle, as shown in Figure 12, the internal power FET turns  
on and the Schottky diode is reverse biased and cuts off the  
current flow to the output. The output current is supplied  
from the output capacitor. The voltage across the inductor is  
Applications Information  
The ISL97519A is a high frequency, high efficiency boost  
regulator operated at constant frequency PWM mode. The  
boost converter stores energy from an input voltage source  
and delivers it to a higher output voltage. The input voltage  
range is 2.3V to 5.5V and output voltage range is 5V to 25V.  
The switching frequency is selectable between 600kHz and  
1.2MHz allowing smaller inductors and faster transient  
response. An external compensation pin gives the user  
greater flexibility in setting output transient response and  
tighter load regulation. The converter soft-start characteristic  
V
and the inductor current ramps up in a rate of V /L, L is  
IN  
IN  
the inductance. The inductance is magnetized and energy is  
stored in the inductor. The change in inductor current is  
shown in Equation 1:  
V
IN  
---------  
ΔI  
= ΔT1 ×  
L1  
L
can also be controlled by external C capacitor. The EN pin  
allows the user to completely shutdown the device.  
D
SS  
------------  
ΔT1 =  
F
SW  
D = Duty Cycle  
Boost Converter Operations  
Figure 11 shows a boost converter with all the key  
components. In steady state operating and continuous  
conduction mode where the inductor current is continuous,  
I
OUT  
---------------  
ΔV  
=
× ΔT  
(EQ. 1)  
O
1
C
OUT  
FN6683.2  
June 30, 2008  
5
ISL97519A  
During the second cycle, the power FET turns off and the  
Schottky diode is forward biased, (see Figure 13). The  
energy stored in the inductor is pumped to the output  
supplying output current and charging the output capacitor.  
The Schottky diode side of the inductor is clamped to a  
Schottky diode above the output voltage. So the voltage  
L
D
V
V
OUT  
IN  
C
C
OUT  
IN  
ISL97519A  
drop across the inductor is V - V  
. The change in  
IN  
OUT  
I
inductor current during the second cycle is shown in  
Equation 2:  
L
ΔI  
L2  
ΔT  
2
ΔV  
O
V
V  
OUT  
L
IN  
-------------------------------  
ΔI = ΔT2 ×  
L
FIGURE 13. BOOST CONVERTER - CYCLE 2, POWER  
SWITCH OPEN  
1 D  
-------------  
ΔT2 =  
(EQ. 2)  
Output Voltage  
F
SW  
An external feedback resistor divider is required to divide the  
output voltage down to the nominal 1.24V reference voltage.  
The current drawn by the resistor network should be limited  
to maintain the overall converter efficiency. The maximum  
value of the resistor network is limited by the feedback input  
bias current and the potential for noise being coupled into  
the feedback pin. A resistor network less than 100k is  
recommended. The boost converter output voltage is  
determined by the relationship in Equation 4:  
For stable operation, the same amount of energy stored in  
the inductor must be taken out. The change in inductor  
current during the two cycles must be the same as shown in  
Equation 3.  
ΔI1 + ΔI2 = 0  
V
V
V  
IN OUT  
D
1 D  
IN  
------------ --------- ------------- -------------------------------  
×
+
×
= 0  
F
L
F
L
SW  
SW  
R
1
(EQ. 4)  
------  
V
= V × 1 +  
V
OUT  
FB  
1
R
2
OUT  
(EQ. 3)  
---------------  
-------------  
=
V
1 D  
IN  
The nominal VFB voltage is 1.24V.  
Inductor Selection  
L
D
The inductor selection determines the output ripple voltage,  
transient response, output current capability, and efficiency.  
Its selection depends on the input voltage, output voltage,  
switching frequency, and maximum output current. For most  
applications, the inductance should be in the range of 2µH to  
33µH. The inductor maximum DC current specification must  
be greater than the peak inductor current required by the  
regulator.The peak inductor current can be calculated in  
Equation 5:  
V
V
OUT  
IN  
C
C
OUT  
IN  
ISL97519A  
FIGURE 11. BOOST CONVERTER  
I
× V  
V
× (V  
V  
)
IN  
OUT  
OUT  
IN  
OUT  
-----------------------------------  
----------------------------------------------------  
I
=
+ 1 2 ×  
(EQ. 5)  
L(PEAK)  
V
L × V  
× FREQ  
OUT  
IN  
L
Output Capacitor  
V
V
OUT  
IN  
C
C
Low ESR capacitors should be used to minimized the output  
voltage ripple. Multi-layer ceramic capacitors (X5R and X7R)  
are preferred for the output capacitors because of their lower  
ESR and small packages. Tantalum capacitors with higher  
ESR can also be used. The output ripple can be calculated  
as shown in Equation 6:  
IN  
OUT  
ISL97519A  
I
L
ΔI  
L1  
I
× D  
OUT  
ΔT  
(EQ. 6)  
1
---------------------------  
ΔV  
=
+ I  
× ESR  
OUT  
O
F
× C  
O
SW  
ΔV  
O
For noise sensitive application, a 0.1µF placed in parallel  
with the larger output capacitor is recommended to reduce  
the switching noise coupled from the LX switching node.  
FIGURE 12. BOOST CONVERTER - CYCLE 1, POWER  
SWITCH CLOSE  
FN6683.2  
June 30, 2008  
6
ISL97519A  
The total soft-start time is calculated in Equation 7:  
Schottky Diode  
5
Css × 0.6V  
In selecting the Schottky diode, the reverse break down  
voltage, forward current and forward voltage drop must be  
considered for optimum converter performance. The diode  
must be rated to handle 2.0A, the current limit of the  
ISL97519A. The breakdown voltage must exceed the  
maximum output voltage. Low forward voltage drop, low  
leakage current, and fast reverse recovery will help the  
converter to achieve the maximum efficiency.  
(EQ. 7)  
-----------------------------  
= Css × 2 × 10  
t
=
ss  
3μA  
The full current is available after the soft-start period is  
finished. The soft-start capacitor should be selected to be big  
enough that it doesn't reach 0.6V before the output voltage  
reaches the final value.  
When the ISL97519A is disabled, the soft-start capacitor will  
be discharged to ground.  
Input Capacitor  
Frequency Selection  
The value of the input capacitor depends the input and  
output voltages, the maximum output current, the inductor  
value and the noise allowed to put back on the input line. For  
most applications, a minimum 10µF is required. For  
applications that run close to the maximum output current  
limit, input capacitor in the range of 22µF to 47µF is  
recommended.  
The ISL97519A switching frequency can be user selected to  
operate at either constant 620kHz or 1.25MHz. Connecting  
F
pin to ground sets the PWM switching frequency to  
SEL  
620kHz. When connecting F  
frequency is set to 1.25MHz.  
high or V , the switching  
DD  
SEL  
Shutdown Control  
The ISL97519A is powered from the VIN. A high frequency  
0.1µF bypass capacitor is recommended to be close to the  
VIN pin to reduce supply line noise and ensure stable  
operation.  
When the EN pin is pulled down, the ISL97519A is shutdown  
reducing the supply current to <1µA.  
Maximum Output Current  
The MOSFET current limit is nominally 2.0A and guaranteed  
Loop Compensation  
1.5A when V  
is greater than 2.8V. This restricts the  
DD  
maximum output current, I  
The ISL97519A incorporates a transconductance amplifier in  
its feedback path to allow the user some adjustment on the  
transient response and better regulation. The ISL97519A  
uses current mode control architecture which has a fast  
current sense loop and a slow voltage feedback loop. The  
fast current feedback loop does not require any  
, based on Equation 8:  
OMAX  
(EQ. 8)  
I
= I  
+ (1 2 × ΔI )  
L-AVG L  
L
where:  
I = MOSFET current limit  
L
compensation. The slow voltage loop must be compensated  
for stable operation. The compensation network is a series  
RC network from COMP pin to ground. The resistor sets the  
high frequency integrator gain for fast transient response  
and the capacitor sets the integrator zero to ensure loop  
stability. For most applications, the compensation resistor in  
the range of 0.5k to 7.5k and the compensation capacitor in  
the range of 3nF to 10nF.  
I
= average inductor current  
L-AVG  
ΔI = inductor ripple current  
L
V
× [(V + V  
) V  
]
IN  
IN  
O
DIODE  
(EQ. 9)  
------------------------------------------------------------------------------  
=
ΔI  
L
L × (V + V  
) × F  
S
O
DIODE  
V
= Schottky diode forward voltage, typically, 0.6V  
DIODE  
F
I
= switching frequency, 600kHz or 1.2MHz  
S
Soft-Start  
I
OUT  
During power-up, assuming EN is tied to VDD, as VDD rises  
above VDD UVLO, the SS capacitor begins to charge up  
with a constant 3µA current. During the time the part takes to  
rise to 60mV the boost will not be enabled. Depending on  
the value of the capacitor on the SS pin, this provides  
sufficient (540µs for a 27nf capacitor or 2ms for a 100nf  
capacitor) time for the passive in-rush current to settle down,  
allowing the output capacitors to be charged to a diode drop  
below VDD.  
(EQ. 10)  
(EQ. 11)  
-------------  
=
L-AVG  
1 D  
D = MOSFET turn-on ratio:  
V
IN  
--------------------------------------------  
OUT  
D = 1 –  
V
+ V  
DIODE  
Table 1 gives typical maximum I values for 1.2MHz  
switching frequency and 10µH inductor.  
OUT  
After the SS pin passes above the threshold beyond which  
the part is enabled (60mV) the part begins to switch. The  
linearly rising SS voltage, at a charge rate proportional to  
3µA, has a direct effect on the current limit allowing the  
current limit to linearly ramp-up to full current limit. SS  
voltage of 200mV corresponds to a current limit around  
350mA and 0.6V corresponds to full current limit.  
FN6683.2  
June 30, 2008  
7
ISL97519A  
TABLE 1. TYPICAL MAXIMUM I  
VALUES  
DC PATH BLOCK APPLICATION  
OUT  
Note that there is a DC path in the boost converter from the  
input to the output through the inductor and diode. The input  
voltage will be seen at the output less a forward voltage drop  
of the diode before the part is enabled. If this direct  
connection is not desired, the following circuit can be  
inserted between input and inductor to disconnect the DC  
path when the part is disabled (see Figure 15).  
V
(V)  
V
(V)  
I
(mA)  
IN  
OUT  
OMAX  
3.3  
5
1150  
3.3  
3.3  
5
9
12  
9
655  
500  
990  
750  
5
12  
INPUT  
TO INDUCTOR  
Cascaded MOSFET Application  
A 25V N-Channel MOSFET is integrated in the boost  
regulator. For applications where the output voltage is  
greater than 25V, an external cascaded MOSFET is needed  
as shown in Figure 14. The voltage rating of the external  
EN  
MOSFET should be greater than A  
.
VDD  
FIGURE 15. CIRCUIT TO DISCONNECT THE DC PATH OF  
BOOST CONVERTER  
A
V
VDD  
IN  
LX  
FB  
INTERSIL  
ISL97519A  
FIGURE 14. CASCADED MOSFET TOPOLOGY FOR HIGH  
OUTPUT VOLTAGE APPLICATIONS  
FN6683.2  
June 30, 2008  
8
ISL97519A  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3¬¨Ðó  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6683.2  
June 30, 2008  
9

相关型号:

ISL97519IUZ

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519IUZ-T

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519IUZ-TK

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97522

4-Channel TFT-LCD Supply
INTERSIL

ISL97522IRZ-T

4-Channel TFT-LCD Supply
INTERSIL

ISL97522IRZ-TK

4-Channel TFT-LCD Supply
INTERSIL

ISL97536

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536IUZ

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536IUZ-T

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536IUZ-TK

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536_07

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97631

White LED Boost Regulator With Integrated Schottky Diode
INTERSIL