ISL97536 [INTERSIL]

Monolithic 1A Step-Down Regulator with Low Quiescent Current; 单片1A降压型稳压器具有低静态电流
ISL97536
型号: ISL97536
厂家: Intersil    Intersil
描述:

Monolithic 1A Step-Down Regulator with Low Quiescent Current
单片1A降压型稳压器具有低静态电流

稳压器
文件: 总9页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97536  
®
Data Sheet  
October 5, 2006  
FN6279.0  
Monolithic 1A Step-Down Regulator with  
Low Quiescent Current  
Features  
2
• Less than 0.15in footprint for the complete 1A converter  
• Components on one side of PCB  
The ISL97536 is a synchronous, integrated FET 1A  
step-down regulator with internal compensation. It operates  
with an input voltage range from 2.5V to 6V, which  
accommodates supplies of 3.3V, 5V, or a Li-Ion battery  
• Max height 1.1mm MSOP10  
• 100ms Power-On-Reset output (POR)  
• Internally-compensated voltage mode controller  
• Up to 95% efficiency  
source. The output can be externally set from 0.8V to V  
with a resistive divider.  
IN  
The ISL97536 features PWM control with a 1.4MHz typical  
switching frequency. The typical no load quiescent current is  
only 500µA. Additional features include a 100ms Power-On-  
Reset output, <1µA shutdown current, short-circuit  
protection, and over-temperature protection.  
• <1µA shutdown current  
• 500µA quiescent current  
• Hiccup mode overcurrent and over-temperature protection  
• Pb-free plus anneal available (RoHS compliant)  
The ISL97536 is available in the 10 Ld MSOP package,  
2
making the entire converter occupy less than 0.15in of PCB  
Applications  
area with components on one side only. The 10 Ld MSOP  
package is specified for operation over the full -40°C to  
+85°C temperature range.  
• PDA and pocket PC computers  
• Bar code readers  
Ordering Information  
• Cellular phones  
• Portable test equipment  
• Li-Ion battery powered devices  
• Small form factor (SFP) modules  
PART  
NUMBER  
PART  
MARKING REEL  
TAPE &  
PKG.  
PACKAGE DWG. #  
ISL97536IUZ  
(Note)  
7536Z  
-
10 Ld MSOP MDP0043  
(Pb-free)  
ISL97536IUZ-TK 7536Z  
(Note)  
13”  
10 Ld MSOP MDP0043  
Pinout and Typical Application Diagram  
(1k pcs) (Pb-free)  
ISL97536  
(10 LD MSOP)  
TOP VIEW  
ISL97536IUZ-T 7536Z  
(Note)  
13”  
10 Ld MSOP MDP0043  
(2.5k pcs) (Pb-free)  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
R *  
2
100k  
1
2
3
4
5
SGND  
PGND  
LX  
FB 10  
C
R *  
4
1
124kΩ  
VO  
POR  
EN  
9
8
7
6
C
10µF  
C
2
1
470pF  
POR  
L
1
10µF  
1.8µH  
V
(1.8V@600mA)  
O
VIN  
EN  
R
3
V
(2.5V-6V)  
S
100Ω  
VDD  
RSI  
RSI  
R
C
3
0.1µF  
6
100kΩ  
R
R
4
5
100kΩ  
100kΩ  
* V = 0.8V * (1 + R /R )  
O
1
2
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL97536  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
V
, V , PG to SGND . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
IN DD  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
130  
JA  
LX to PGND . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to (V + +0.3V)  
SYNC, EN, V , FB to SGND. . . . . . . . . . . . . -0.3V to (V + +0.3V)  
IN  
PGND to SGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V  
Continuous Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A  
IN  
MSOP10 Package . . . . . . . . . . . . . . . . . . . . . . . . . .  
O
Operating Ambient Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications  
V
= V = V  
IN  
= 3.3V, C1 = C2 = 10µF, L = 1.8µH, V = 1.8V (as shown in Typical Application Diagram),  
EN O  
DD  
= -40°C to +85°C unless otherwise specified.  
T
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC CHARACTERISTICS  
V
Feedback Input Voltage  
790  
800  
810  
250  
6
mV  
nA  
V
FB  
I
Feedback Input Current  
Input Voltage  
FB  
V
V
V
, V  
2.5  
2
IN DD  
IN,OFF  
IN,ON  
Minimum Voltage for Shutdown  
Maximum Voltage for Start-up  
Supply Current  
V
V
V
falling, T = +25°C only  
2.2  
2.4  
500  
3
V
IN  
IN  
IN  
A
rising, T = +25°C only  
2.2  
V
A
I
= V  
= 5V  
DD  
400  
0.1  
70  
µA  
µA  
mΩ  
mΩ  
A
DD  
EN = 0, V = V  
IN  
= 5V  
DD  
R
R
PMOS FET Resistance  
NMOS FET Resistance  
Current Limit  
V
= 5V, T = +25°C  
DS(ON)-PMOS  
DS(ON)-NMOS  
LMAX  
DD  
DD  
A
V
= 5V, T = +25°C  
45  
A
I
1.5  
145  
130  
T
Over-temperature Threshold  
Over-temperature Hysteresis  
EN, RSI Current  
T rising  
T falling  
°C  
°C  
µA  
V
OT,OFF  
OT,ON  
T
I
, I  
EN RSI  
V
V
V
V
V
, V  
EN RSI  
= 0V and 3.3V  
-1  
0.8  
86  
1
V
V
V
, V  
EN1 RSI1  
EN, RSI Rising Threshold  
EN, RSI Falling Threshold  
= 3.3V  
= 3.3V  
rising  
2.4  
DD  
DD  
, V  
V
EN2 RSI2  
Minimum V for POR, WRT Targeted  
FB  
95  
70  
%
POR  
FB  
V
Value  
FB  
falling  
%
FB  
V
POR Voltage Drop  
I
= 3.3mA  
35  
mV  
OLPOR  
SINK  
AC CHARACTERISTICS  
F
PWM Switching Frequency  
Minimum RSI Pulse Width  
Soft-Start Time  
1.25  
80  
1.4  
25  
1.6  
50  
MHz  
ns  
PWM  
t
t
t
Guaranteed by design  
RSI  
650  
100  
µs  
SS  
Power On Reset Delay Time  
120  
ms  
POR  
FN6279.0  
October 5, 2006  
2
ISL97536  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
PIN FUNCTION  
1
2
SGND  
PGND  
LX  
Negative supply for the controller stage  
Negative supply for the power stage  
3
Inductor drive pin; high current digital output with average voltage equal to the regulator output voltage  
4
VIN  
Positive supply for the power stage  
Power supply for the controller stage  
Resets POR timer  
5
VDD  
RSI  
6
7
EN  
Enable  
8
POR  
VO  
Power on reset open drain output  
Output voltage sense  
9
10  
FB  
Voltage feedback input; connected to an external resistor divider between V and SGND for variable  
O
output  
Block Diagram  
100Ω  
V
V
DD  
O
INDUCTOR SHORT  
0.1µF  
+
-
10pF  
V
IN  
C4 124k  
470pF  
CURRENT  
SENSE  
FB  
5M  
-
+
PWM  
COMPEN-  
SATION  
+
-
PWM  
P-DRIVER  
100k  
COMPARATOR  
1.8µH  
LX  
RAMP  
GENERA-  
TOR  
PFM  
ON-TIME  
CONTROL  
CONTROL  
LOGIC  
1.8V  
0 TO 1A  
CLOCK  
EN  
EN  
SOFT-  
START  
+
-
10µF  
10µF  
PWM  
N-DRIVER  
COMPARATOR  
UNDER-  
VOLTAGE  
LOCKOUT  
+
5V  
PGND  
POR  
BANDGAP  
REFERENCE  
+
-
100k  
TEMPERATURE  
SENSE  
SYNCHRONOUS  
RECTIFIER  
POR  
SGND  
RSI  
POR  
FN6279.0  
October 5, 2006  
3
ISL97536  
Performance Curves and Waveforms  
All waveforms are taken at V = 3.3V, V = 1.8V, I = 600mA with component values shown on page 1 at room ambient temperature, unless  
IN  
O
O
otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
O
V
= 2.5V  
O
V
= 2.5V  
O
V
= 1.8V  
V
O
V
= 1.8V  
O
= 1.2V  
O
V
= 1.2V  
O
0
0
200  
400  
600  
(mA)  
800  
1000  
0
200  
400  
600  
(mA)  
800  
1000  
I
I
O
O
FIGURE 2. EFFICIENCY vs I AT 3.3V  
FIGURE 1. EFFICIENCY vs I AT 5V V  
O
O
IN  
0
200  
400  
600  
800  
1000  
1200  
0.2  
0
200.2  
400.2  
600.2  
800.2 1000.2 1200.2  
= 3.3V  
0
V
O
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
V
= 2.5V  
O
V
= 1.8V  
O
V
= 2.5V  
O
V
= 1.8V  
O
V
= 1.2V  
O
V
= 1.2V  
O
-1.2  
-1.2  
I
(mA)  
I
(mA)  
O
O
FIGURE 3. LOAD REGULATION vs I AT 5V V  
FIGURE 4. LOAD REGULATION vs I AT 3.3V V  
O IN  
O
IN  
2
3
4
5
6
12  
10  
8
-0.05  
-0.1  
-0.15  
-0.2  
6
4
2
0
V
= 1.2V  
-0.25  
-0.3  
O
V
= 1.8V  
O
-0.35  
3.5  
4
4.5  
5
2.5  
3
V
(V)  
IN  
V
(V)  
S
FIGURE 6. NO LOAD QUIESCENT CURRENT  
FIGURE 5. LINE REGULATION vs V  
IN  
FN6279.0  
October 5, 2006  
4
ISL97536  
Performance Curves and Waveforms (Continued)  
All waveforms are taken at V = 3.3V, V = 1.8V, I = 600mA with component values shown on page 1 at room ambient temperature, unless  
IN  
O
O
otherwise noted.  
LX  
(2V/DIV)  
V
OUT  
I
L
(0.5A/DIV)  
V
IN  
V  
O
(10mV/DIV)  
I
IN  
0.5µs/DIV  
FIGURE 8. PWM STEADY-STATE OPERATION (I = 600mA)  
O
FIGURE 7. START-UP AT I = 600mA  
O
SYNC  
(2V/DIV)  
SYNC  
(2V/DIV)  
LX  
(2V/DIV)  
LX  
(2V/DIV)  
I
L
(0.5A/DIV)  
I
L
(0.5A/DIV)  
20ns/DIV  
0.2µs/DIV  
FIGURE 9. EXTERNAL SYNCHRONIZATION TO 2MHz  
FIGURE 10. EXTERNAL SYNCHRONIZATION TO 12MHz  
I
O
I
(200mA/DIV)  
O
(200mA/DIV)  
V  
O
V  
(100mV/DIV)  
O
(100mV/DIV)  
50µs/DIV  
100µs/DIV  
FIGURE 12. LOAD TRANSIENT RESPONSE  
(30mA TO 600mA)  
FIGURE 11. LOAD TRANSIENT RESPONSE (22mA TO 600mA)  
FN6279.0  
October 5, 2006  
5
ISL97536  
Performance Curves and Waveforms (Continued)  
All waveforms are taken at V = 3.3V, V = 1.8V, I = 600mA with component values shown on page 1 at room ambient temperature, unless  
IN  
O
O
otherwise noted.  
1
0.6  
0.2  
0
100  
12MHz  
1.4MHz  
12MHz  
80  
60  
40  
20  
1.4MHz  
5MHz  
5MHz  
-0.2  
-0.6  
0
0
0
200  
400  
600  
(mA)  
800  
1K  
1.2K  
200  
400  
600  
(mA)  
800  
1K  
1.2K  
I
O
I
O
FIGURE 13. EFFICIENCY vs I  
FIGURE 14. LOAD REGULATION  
O
PG  
0.5  
0.3  
0.1  
12MHz  
I
L
1.4MHz  
-0.1  
-0.3  
-0.5  
V
O
5MHz  
1K  
0
200  
400  
600  
(V)  
800  
1.2K  
V
IN  
FIGURE 16. OVERCURRENT SHUTDOWN  
FIGURE 15. LINE REGULATION @ 500mA  
PG  
I
L
V
O
FIGURE 17. OVERCURRENT HICCUP MODE  
FN6279.0  
October 5, 2006  
6
ISL97536  
average power dissipation is reduced, thereby reducing the  
likelihood of damage current and thermal conditions in the IC.  
Applications Information  
Product Description  
700µ ⋅ V  
IN  
(EQ. 1)  
The ISL97536 is a synchronous, integrated FET 1A  
step-down regulator which operates from an input of 2.5V to  
6V. The output voltage is user-adjustable with a pair of  
external resistors.  
tHICCUP --------------------------- + 216µ  
3
Thermal Shutdown  
Once the junction reaches about 145°C, the regulator shuts  
down. Both the P-channel and the N-channel MOSFETs turn  
off. The output voltage will drop to zero. With the output  
MOSFETs turned off, the regulator will cool down. Once the  
junction temperature drops to about 130°C, the regulator will  
perform a normal restart.  
The internally-compensated controller makes it possible to  
use only two ceramic capacitors and one inductor to form a  
complete, very small footprint 1A DC:DC converter.  
PWM Operation  
In PWM switching mode, the P-channel MOSFET and  
N-channel MOSFET always operate complementary. When  
the P-channel MOSFET is on and the N-channel MOSFET  
off, the inductor current increases linearly. The input energy  
is transferred to the output and also stored in the inductor.  
When the P-channel MOSFET is off and the N-channel  
MOSFET on, the inductor current decreases linearly, and  
energy is transferred from the inductor to the output. Hence,  
the average current through the inductor is the output  
current. Since the inductor and the output capacitor act as a  
low pass filter, the duty cycle ratio is approximately equal to  
Thermal Performance  
The ISL97536 is available in a fused-lead MSOP10.  
Compared with regular MSOP10 package, the fused-lead  
package provides lower thermal resistance. The θ is  
JA  
+100°C/W on a 4-layer board and +125°C/W on 2-layer  
board. Maximizing the copper area around the pins will  
further improve the thermal performance.  
RSI/POR Function  
When powering up, the open-collector Power-On-Reset  
V
divided by V .  
IN  
output holds low for about 100ms after V reaches the  
O
O
preset voltage. When the active-HI reset signal RSI is  
issued, POR goes to low immediately and holds for the  
same period of time after RSI comes back to LOW. The  
output voltage is unaffected. (Please refer to the timing  
diagram). When the function is not used, connect RSI to  
The output LC filter has a second order effect. To maintain  
the stability of the converter, the overall controller must be  
compensated. This is done with the fixed internally  
compensated error amplifier and the PWM compensator.  
Because the compensations are fixed, the values of input  
and output capacitors are 10µF to 40µF ceramic and  
inductor is 1.5µH to 2.2µH.  
ground and leave open the pull-up resister R at POR pin.  
4
The POR output also serves as a 100ms delayed Power  
Good signal when the pull-up resister R is installed. The  
RSI pin needs to be directly (or indirectly through a resister  
4
Start-Up and Shutdown  
When the EN pin is tied to V , and V reaches  
R ) connected to Ground for this to function properly.  
IN  
IN  
6
approximately 2.4V, the regulator begins to switch. The  
inductor current limit is gradually increased to ensure proper  
soft-start operation.  
V
O
When the EN pin is connected to a logic low, the ISL97536 is  
in the shutdown mode. All the control circuitry and both  
MIN  
25ns  
RSI  
MOSFETs are off, and V  
falls to zero. In this mode, the  
OUT  
total input current is less than 1µA.  
100ms  
100ms  
When the EN reaches logic HI, the regulator repeats the  
start-up procedure, including the soft-start function.  
POR  
FIGURE 18. RSI AND POR TIMING DIAGRAM  
Current Limit and Short-Circuit Protection  
The current limit is set at about 1.5A for the PMOS. When a  
short-circuit occurs in the load, the preset current limit  
restricts the amount of current available to the output, which  
causes the output voltage to drop as load demand  
increases. When the output voltage drops 30mV below the  
reference voltage, the converter will shutdown for a period of  
time, approximated by Equation 1, and then restart. If the  
overcurrent condition still exists, it will repeat the shutdown-  
wait-restart event. This is called a “hiccup” event. The  
Output Voltage Selection  
Users can set the output voltage of the variable version with  
a resister divider, which can be chosen based on the  
following formula:  
R
2
V
= 0.8 × 1 + ------  
O
(EQ. 2)  
R
1
FN6279.0  
October 5, 2006  
7
ISL97536  
lead at a frequency of ~2.5kHz. The zero will always appear  
Component Selection  
at lower frequency than the pole and follow the equation  
below:  
Because of the fixed internal compensation, the component  
choice is relatively narrow. For a regulator with fixed output  
voltage, only two capacitors and one inductor are required.  
Capacitors must be chosen in the range of 10µF to 40µF,  
multilayer ceramic capacitors with X5R or X7R rating for  
both the input and output capacitors, and inductors in the  
range of 1.5µH to 2.2µH.  
1
f
= ----------------------  
Z
2πR C  
(EQ. 5)  
2
4
Over a normal range of R (~10-100k), C will range from  
2
4
~470-4700pF. The pole frequency cannot be set once the  
zero frequency is chosen as it is dictated by the ratio of R  
1
The RMS current present at the input capacitor is decided by  
the following formula:  
and R , which is solely determined by the desired output set  
2
point. The equation below shows the pole frequency  
relationship:  
V
× (V V )  
IN O  
O
-----------------------------------------------  
I
=
× I  
INRMS  
O
(EQ. 3)  
V
IN  
1
f
= ---------------------------------------  
P
2π(R R )C  
4
(EQ. 6)  
1
2
This is about half of the output current I for all the V . This  
O
O
input capacitor must be able to handle this current.  
Layout Considerations  
The layout is very important for the converter to function  
properly. The following PC layout guidelines should be  
followed:  
The inductor peak-to-peak ripple current is given as:  
(V V ) × V  
O
IN  
O
I = -------------------------------------------  
IL  
L × V × f  
(EQ. 4)  
IN  
S
1. Separate the Power Ground ( ) and Signal Ground  
(
); connect them only at one point right at the pins  
L is the inductance  
the switching frequency (nominally 1.4MHz)  
2. Place the input capacitor as close to V and PGND pins  
IN  
f
S
as possible  
3. Make the following PC traces as small as possible:  
- from LX pin to L  
The inductor must be able to handle I for the RMS load  
O
current, and to assure that the inductor is reliable, it must  
handle the 2A surge current that can occur during a current  
limit condition.  
- from C to PGND  
O
4. If used, connect the trace from the FB pin to R and R  
1
2
as close as possible  
In addition to decoupling capacitors and inductor value, it is  
5. Maximize the copper area around the PGND pin  
important to properly size the phase-lead capacitor C  
4
6. Place several via holes under the chip to additional  
ground plane to improve heat dissipation  
(Refer to the Typical Application Diagram). The phase-lead  
capacitor creates additional phase margin in the control loop  
by generating a zero and a pole in the transfer function. As a  
The demo board is a good example of layout based on this  
outline. Please refer to the ISL97536 Application Brief.  
general rule of thumb, C should be sized to start the phase-  
4
FN6279.0  
October 5, 2006  
8
ISL97536  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
N
A
A1  
A2  
b
-
±0.05  
-
±0.09  
-
E
E1  
PIN #1  
I.D.  
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
E
±0.15  
-
1
B
(N/2)  
E1  
e
±0.10  
2, 3  
Basic  
-
L
±0.15  
-
e
H
C
L1  
N
Basic  
-
SEATING  
PLANE  
Reference  
-
Rev. C 6/99  
M
C A B  
b
0.08  
0.10 C  
NOTES:  
N LEADS  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
L1  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
A
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6279.0  
October 5, 2006  
9

相关型号:

ISL97536IUZ

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536IUZ-T

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536IUZ-TK

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97536_07

Monolithic 1A Step-Down Regulator with Low Quiescent Current
INTERSIL

ISL97631

White LED Boost Regulator With Integrated Schottky Diode
INTERSIL

ISL97631IHTZ-T7

White LED Boost Regulator With Integrated Schottky Diode
INTERSIL

ISL97631IHTZ-T7A

White LED Boost Regulator With Integrated Schottky Diode
INTERSIL

ISL97632

White LED Driver with Digital Dimming
INTERSIL

ISL97632IRT14Z-T

White LED Driver with Digital Dimming
INTERSIL

ISL97632IRT14Z-TK

White LED Driver with Digital Dimming
INTERSIL

ISL97632IRT14ZT

LED Driver with 1-Wire Dimming
INTERSIL

ISL97632IRT14ZTK

LED Driver with 1-Wire Dimming
INTERSIL