ISL97516IUZ-T [INTERSIL]

600kHz/1.2MHz PWM Step-Up Regulator; 600kHz的/ 1.2MHz的PWM升压调节器
ISL97516IUZ-T
型号: ISL97516IUZ-T
厂家: Intersil    Intersil
描述:

600kHz/1.2MHz PWM Step-Up Regulator
600kHz的/ 1.2MHz的PWM升压调节器

调节器
文件: 总9页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL97516  
®
Data Sheet  
December 22, 2006  
FN9261.1  
600kHz/1.2MHz PWM Step-Up Regulator  
Features  
The ISL97516 is a high frequency, high efficiency step-up  
voltage regulator operated at constant frequency PWM  
mode. With an internal 2.0A, 200mΩ MOSFET, it can deliver  
up to 1A output current at over 90% efficiency. The  
selectable 600kHz and 1.2MHz allows smaller inductors and  
faster transient response. An external compensation pin  
gives the user greater flexibility in setting frequency  
compensation allowing the use of low ESR Ceramic output  
capacitors.  
• >90% Efficiency  
• 2.0A, 200mΩ Power MOSFET  
• 2.3V to 5.5V Input  
• Up to 25V Output  
• 600kHz/1.2MHz Switching Frequency Selection  
• Adjustable Soft-Start  
• Internal Thermal Protection  
When shut down, it draws <1µA of current and can operate  
down to 2.3V input supply. These features along with  
1.2MHz switching frequency makes it an ideal device for  
portable equipment and TFT-LCD displays.  
• 1.1mm Max Height 8 Ld MSOP Package  
• Pb-free Plus Anneal Available (RoHS compliant)  
Applications  
• TFT-LCD displays  
• DSL modems  
The ISL97516 is available in an 8 Ld MSOP package with a  
maximum height of 1.1mm. The device is specified for  
operation over the full -40°C to +85°C temperature range.  
• PCMCIA cards  
Pinout  
• Digital cameras  
• GSM/CDMA phones  
• Portable equipment  
• Handheld devices  
ISL97516  
(8 LD MSOP)  
TOP VIEW  
COMP  
FB  
SS  
1
2
3
4
8
7
6
5
FSEL  
VDD  
LX  
Ordering Information  
EN  
PART NUMBER  
(Note)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
GND  
ISL97516IUZ-T  
ISL97516IUZ-TK  
7516Z  
7516Z  
8 Ld MSOP  
8 Ld MSOP  
MDP0043  
MDP0043  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2006. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
ISL97516  
Absolute Maximum Ratings (T = +25°C)  
A
LX to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27V  
to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Ambient Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
V
DD  
COMP, FB, EN, SS, FSEL to GND . . . . . . . . . -0.3V to (V  
+0.3V)  
DD  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 3.3V, V  
= 12V, I  
= 0mA, FSEL = GND, T = -40°C to +85°C unless otherwise specified.  
A
IN  
OUT  
OUT  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNIT  
µA  
mA  
mA  
V
IQ1  
IQ2  
IQ3  
Quiescent Current - Shutdown  
EN = 0V  
EN= V , FB = 1.3V  
5
Quiescent Current - Not Switching  
Quiescent Current - Switching  
Feedback Voltage  
0.7  
DD  
EN = V , FB = 1.0V  
DD  
3
4
V
1.272  
1.294  
0.01  
1.309  
0.5  
FB  
I
Feedback Input Bias Current  
Input Voltage Range  
µA  
V
B-FB  
V
2.3  
85  
5.5  
DD  
D
D
-600kHz Maximum Duty Cycle  
FSEL = 0V  
92  
90  
%
MAX  
-1.2MHz Maximum Duty Cycle  
FSEL = V  
85  
%
MAX  
DD  
I
Current Limit - Max Peak Input Current  
1.5  
2.0  
A
LIM  
I
Shutdown Input Bias Current  
Switch ON Resistance  
EN = 0V  
0.01  
0.2  
0.5  
3
µA  
Ω
EN  
r
V
= 2.7V, I = 1A  
LX  
DS(ON)  
DD  
VSW = 27V  
3V < V < 5.5V, V  
I
Switch Leakage Current  
Line Regulation  
0.01  
0.2  
µA  
%
LX-LEAK  
ΔV /ΔV  
= 12V  
OUT  
/ΔI  
IN  
IN  
= 3.3V, V  
OUT  
ΔV  
Load Regulation  
V
= 12V, I = 30mA to 200mA  
0.3  
%
OUT OUT  
IN  
OUT  
O
F
F
Switching Frequency Accuracy  
Switching Frequency Accuracy  
EN, FSEL Input Low Level  
EN, FSEL Input High Level  
Error Amp Tranconductance  
FSEL = 0V  
500  
620  
1250  
740  
1500  
0.5  
kHz  
kHz  
V
OSC1  
OSC2  
FSEL = V  
1000  
DD  
V
IL  
V
1.5  
70  
V
IH  
G
ΔI = 5µA  
130  
2.2  
100  
6
150  
2.3  
1µ/Ω  
V
M
V
V
V
UVLO On Threshold  
UVLO hyeteresis  
2.1  
DD-ON  
HYS  
DD  
DD  
mV  
µA  
°C  
I
Soft-Start Charge Current  
4
8
SS  
OTP  
Over Temperature Protection  
150  
FN9261.1  
December 22, 2006  
2
ISL97516  
Block Diagram  
FSEL  
EN  
SS  
SHUTDOWN &  
START-UP  
CONTROL  
REFERENCE  
GENERATOR  
VDD  
OSCILLATOR  
LX  
PWM LOGIC  
CONTROLLER  
FET  
DRIVER  
COMPARATOR  
CURRENT  
SENSE  
GND  
FB  
GM  
AMPLIFIER  
COMP  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
2
COMP  
FB  
Compensation pin. Output of the internal error amplifier. Capacitor and resistor from COMP pin to ground.  
Voltage feedback pin. Internal reference is 1.294V nominal. Connect a resistor divider from V  
.
OUT  
V
= 1.294V (1 + R /R ). See Typical Application Circuit.  
1 2  
OUT  
3
4
5
6
7
EN  
GND  
LX  
Shutdown control pin. Pull EN low to turn off the device.  
Analog and power ground.  
Power switch pin. Connected to the drain of the internal power MOSFET.  
Analog power supply input pin.  
VDD  
FSEL  
Frequency select pin. When FSEL is set low, switching frequency is set to 620kHz. When connected to  
high or V , switching frequency is set to 1.25MHz.  
DD  
8
SS  
Soft-start control pin. Connect a capacitor to control the converter start-up.  
Typical Application Circuit  
1
2
3
4
COMP  
FB  
SS  
FSEL  
VDD  
LX  
8
7
6
5
R
3
3.9kΩ  
C
3
R
85.2kΩ  
1
27nF  
C
R
2
10kΩ  
5
4.7nF  
EN  
2.3V TO 5.5V  
C
+
C
1
4
22µF  
10µH  
0.1µF  
GND  
12V  
C
+
S1  
2
D
1
22µF  
FN9261.1  
December 22, 2006  
3
ISL97516  
Typical Performance Curves  
95  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V
f
= 3.3V, V = 9V,  
O
IN  
= 620kHz  
90  
85  
s
V
= 5V, V = 12V, f = 1.25 MHz  
O s  
IN  
80  
75  
70  
65  
60  
V
= 5V, V = 12V, f = 620 kHz  
IN  
O
s
V
= 3.3V, V = 12V,  
O
IN  
= 620kHz  
f
s
V
= 5V, V = 9V, f = 620 kHz  
V
= 3.3V, V = 12V,  
O
IN  
O
s
IN  
= 1.25MHz  
f
s
V
= 5V, V = 9V, f = 1.25MHz  
V
= 3.3V, V = 9V,  
IN  
O
s
IN  
O
f
= 1.25MHz  
s
0
200  
400  
600  
800  
1000  
0
100  
200  
I
300  
(mA)  
400  
500  
I
(mA)  
OUT  
OUT  
FIGURE 1. BOOST EFFICIENCY vs I  
FIGURE 2. BOOST EFFICIENCY vs I  
OUT  
OUT  
0.7  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
f
= 3.3V, V = 12V,  
V
f
= 3.3V, V = 9V,  
O
IN  
O
IN  
= 1.25MHz  
V
f
= 5V, V = 9V,  
O
V
f
= 5V, V = 12V,  
O
IN  
IN  
= 1.25MHz  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
= 1.25MHz  
s
s
= 1.25MHz  
s
s
V
= 3.3, V = 9V,  
O
IN  
= 1.25kHz  
V
f
= 5V, V = 9V,  
O
IN  
f
s
= 620kHz  
s
V
f
= 5V, V = 12V,  
O
V
f
= 3.3, V = 12V,  
O
IN  
IN  
= 620kHz  
= 620kHz  
s
s
0
100  
200  
I
300  
400  
500  
0
200  
400  
600  
(mA)  
800  
1000  
I
(mA)  
OUT  
OUT  
FIGURE 3. LOAD REGULATION vs I  
FIGURE 4. LOAD REGULATION vs I  
OUT  
OUT  
0.9  
0.6  
V
f
= 5V, V = 12V,  
V
f
= 5V, V = 9V,  
O
IN  
O
IN  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
= 1.25MHz  
= 1.25MHz  
V
= 9V, I = 80mA  
O
s
s
O
0.5  
0.4  
0.3  
0.2  
0.1  
0
f
= 1.25MHz  
s
V
= 9V, I = 100mA  
O
O
V
= 5V, V = 9V,  
O
IN  
f
= 620kHz  
s
f
= 620kHz  
s
V
f
= 9V, I = 100mA  
O
O
= 1.25MHz  
s
V
= 5V, V = 12V,  
O
IN  
= 620kHz  
V
= 9V, I = 80mA  
O
O
f
s
f
= 620kHz  
s
0
-0.1  
0
200  
400  
600  
(mA)  
800  
1000  
2
3
4
5
6
I
V
(V)  
IN  
OUT  
FIGURE 5. LOAD REGULATION vs I  
FIGURE 6. LINE REGULATION vs V  
IN  
OUT  
FN9261.1  
December 22, 2006  
4
ISL97516  
Typical Performance Curves (Continued)  
I
= 50mA to 300mA  
I = 50mA to 300mA  
O
O
V
= 12V  
O
V
= 12V  
O
V
= 3.3V  
V
= 3.3V  
f
= 600kHz  
f = 1.2MHz  
s
IN  
IN  
s
FIGURE 7. TRANSIENT RESPONSE  
FIGURE 8. TRANSIENT RESPONSE  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
870mW  
486mW  
0
25  
50  
75 85 100  
125  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
FIGURE 9. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 10. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
on and the Schottky diode is reverse biased and cuts off the  
current flow to the output. The output current is supplied  
from the output capacitor. The voltage across the inductor is  
Applications Information  
The ISL97516 is a high frequency, high efficiency boost  
regulator operated at constant frequency PWM mode. The  
boost converter stores energy from an input voltage source  
and deliver it to a higher output voltage. The input voltage  
range is 2.3V to 5.5V and output voltage range is 5V to 25V.  
The switching frequency is selectable between 600kHz and  
1.2MHz allowing smaller inductors and faster transient  
response. An external compensation pin gives the user  
greater flexibility in setting output transient response and  
tighter load regulation. The converter soft-start characteristic  
V
and the inductor current ramps up in a rate of V /L, L is  
IN  
IN  
the inductance. The inductance is magnetized and energy is  
stored in the inductor. The change in inductor current is:  
V
IN  
---------  
ΔI  
= ΔT1 ×  
L1  
L
D
------------  
ΔT1 =  
F
SW  
D = Duty Cycle  
can also be controlled by external C capacitor. The EN pin  
SS  
allows the user to completely shutdown the device.  
I
OUT  
---------------  
ΔV  
=
× ΔT  
(EQ. 1)  
O
1
C
OUT  
Boost Converter Operations  
Figure 11 shows a boost converter with all the key  
components. In steady state operating and continuous  
conduction mode where the inductor current is continuous,  
the boost converter operates in two cycles. During the first  
cycle, as shown in Figure 12, the internal power FET turns  
FN9261.1  
December 22, 2006  
5
ISL97516  
During the second cycle, the power FET turns off and the  
Schottky diode is forward biased, (Figure 13). The energy  
stored in the inductor is pumped to the output supplying  
output current and charging the output capacitor. The  
Schottky diode side of the inductor is clamp to a Schottky  
diode above the output voltage. So the voltage drop across  
L
D
V
V
OUT  
IN  
C
C
OUT  
IN  
ISL97516  
the inductor is V - V  
. The change in inductor current  
IN  
OUT  
I
during the second cycle is:  
L
ΔI  
L2  
ΔT  
2
V
V  
OUT  
L
IN  
-------------------------------  
ΔI = ΔT2 ×  
ΔV  
O
L
1 D  
-------------  
ΔT2 =  
FIGURE 13. BOOST CONVERTER - CYCLE 2, POWER  
SWITCH OPEN  
(EQ. 2)  
F
SW  
Output Voltage  
For stable operation, the same amount of energy stored in  
the inductor must be taken out. The change in inductor  
current during the two cycles must be the same.  
An external feedback resistor divider is required to divide the  
output voltage down to the nominal 1.294V reference  
voltage. The current drawn by the resistor network should be  
limited to maintain the overall converter efficiency. The  
maximum value of the resistor network is limited by the  
feedback input bias current and the potential for noise being  
coupled into the feedback pin. A resistor network less than  
100k is recommended. The boost converter output voltage is  
determined by the relationship:  
ΔI1 + ΔI2 = 0  
V
V
V  
IN OUT  
D
1 D  
IN  
------------ --------- ------------- -------------------------------  
×
+
×
= 0  
F
L
F
L
SW  
SW  
V
1
OUT  
(EQ. 3)  
---------------  
-------------  
=
V
1 D  
IN  
R
1
(EQ. 4)  
------  
V
= V × 1 +  
OUT  
FB  
R
2
L
D
The nominal VFB voltage is 1.294V.  
V
V
OUT  
IN  
C
C
OUT  
IN  
Inductor Selection  
The inductor selection determines the output ripple voltage,  
transient response, output current capability, and efficiency.  
Its selection depends on the input voltage, output voltage,  
switching frequency, and maximum output current. For most  
applications, the inductance should be in the range of 2µH to  
33µH. The inductor maximum DC current specification must  
be greater than the peak inductor current required by the  
regulator. The peak inductor current can be calculated:  
:
ISL97516  
FIGURE 11. BOOST CONVERTER  
L
V
V
OUT  
IN  
C
C
OUT  
IN  
I
× V  
V
× (V  
V  
)
IN  
OUT  
OUT  
IN  
OUT  
-----------------------------------  
----------------------------------------------------  
I
=
+ 1 2 ×  
L(PEAK)  
V
L × V  
× FREQ  
OUT  
ISL97516  
IN  
(EQ. 5)  
Output Capacitor  
Low ESR capacitors should be used to minimized the output  
voltage ripple. Multilayer ceramic capacitors (X5R and X7R)  
are preferred for the output capacitors because of their lower  
ESR and small packages. Tantalum capacitors with higher  
ESR can also be used. The output ripple can be calculated  
as:  
I
L
ΔI  
L1  
ΔT  
1
ΔV  
O
FIGURE 12. BOOST CONVERTER - CYCLE 1, POWER  
SWITCH CLOSED  
I
× D  
OUT  
(EQ. 6)  
---------------------------  
ΔV  
=
+ I  
× ESR  
OUT  
O
F
× C  
O
SW  
For noise sensitive application, a 0.1µF placed in parallel  
with the larger output capacitor is recommended to reduce  
the switching noise coupled from the LX switching node.  
FN9261.1  
December 22, 2006  
6
ISL97516  
Schottky Diode  
Maximum Output Current  
The MOSFET current limit is nominally 2.0A and guaranteed  
In selecting the Schottky diode, the reverse break down  
voltage, forward current and forward voltage drop must be  
considered for optimum converter performance. The diode  
must be rated to handle 2.0A, the current limit of the  
ISL97516. The breakdown voltage must exceed the  
maximum output voltage. Low forward voltage drop, low  
leakage current, and fast reverse recovery will help the  
converter to achieve the maximum efficiency.  
1.7A. This restricts the maximum output current, I  
based on the following formula:  
,
OMAX  
(EQ. 7)  
I
= I  
+ (1 2 × ΔI )  
L-AVG L  
L
where:  
I = MOSFET current limit  
L
Input Capacitor  
I
= average inductor current  
L-AVG  
The value of the input capacitor depends the input and  
output voltages, the maximum output current, the inductor  
value and the noise allowed to put back on the input line. For  
most applications, a minimum 10µF is required. For  
applications that run close to the maximum output current  
limit, input capacitor in the range of 22µF to 47µF is  
recommended.  
ΔI = inductor ripple current  
L
V
× [(V + V  
) V  
]
IN  
IN  
O
DIODE  
(EQ. 8)  
------------------------------------------------------------------------------  
=
ΔI  
L
L × (V + V  
) × F  
S
O
DIODE  
V
= Schottky diode forward voltage, typically, 0.6V  
DIODE  
F
I
= switching frequency, 600kHz or 1.2MHz  
S
The ISL97516 is powered from the VIN. A High frequency  
0.1µF bypass cap is recommended to be close to the VIN  
pin to reduce supply line noise and ensure stable operation.  
I
OUT  
-------------  
=
L-AVG  
1 D  
Loop Compensation  
D = MOSFET turn-on ratio:  
The ISL97516 incorporates a transconductance amplifier in  
its feedback path to allow the user some adjustment on the  
transient response and better regulation. The ISL97516  
uses current mode control architecture which has a fast  
current sense loop and a slow voltage feedback loop. The  
fast current feedback loop does not require any  
V
IN  
(EQ. 9)  
--------------------------------------------  
OUT  
D = 1 –  
V
+ V  
DIODE  
Table 1 gives typical maximum I  
OUT  
switching frequency and 10µH inductor.  
values for 1.2MHz  
compensation. The slow voltage loop must be compensated  
for stable operation. The compensation network is a series  
RC network from COMP pin to ground. The resistor sets the  
high frequency integrator gain for fast transient response  
and the capacitor sets the integrator zero to ensure loop  
stability. For most applications, the compensation resistor in  
the range of 2k to 7.5k and the compensation capacitor in  
the range of 3nF to 10nF.  
TABLE 1.  
V
(V)  
V
(V)  
I
(mA)  
IN  
OUT  
OMAX  
2.5  
5
870  
2.5  
2.5  
3.3  
3.3  
3.3  
5
9
12  
5
500  
380  
1150  
655  
500  
990  
750  
9
Soft-Start  
12  
9
The soft-start is provided by an internal 6µA current source  
charges the external C , the peak MOSFET current is  
SS  
limited by the voltage on the capacitor. This in turn controls  
the rising rate of the output voltage. The regulator goes  
through the start-up sequence as well after the EN pin is  
pulled to HI.  
5
12  
Cascaded MOSFET Application  
An 25V N-channel MOSFET is integrated in the boost  
regulator. For the applications where the output voltage is  
greater than 25V, an external cascaded MOSFET is needed  
as shown in Figure 12. The voltage rating of the external  
Frequency Selection  
The ISL97516 switching frequency can be user selected to  
operate at either constant 620kHz or 1.25MHz. Connecting  
F
pin to ground sets the PWM switching frequency to  
SEL  
620kHz. When connecting F  
MOSFET should be greater than A .  
VDD  
high or V , the switching  
DD  
SEL  
frequency is set to 1.25MHz.  
Shutdown Control  
When the EN pin is pulled down, the ISL97516 is shutdown  
reducing the supply current to <1µA.  
FN9261.1  
December 22, 2006  
7
ISL97516  
DC PATH BLOCK APPLICATION  
Note that there is a DC path in the boost converter from the  
input to the output through the inductor and diode, hence the  
input voltage will be seen at output with a forward voltage  
drop of diode before the part is enabled. If this voltage is not  
desired, the following circuit can be inserted between input  
and inductor to disconnect the DC path when the part is  
disabled.  
A
V
VDD  
IN  
LX  
FB  
Intersil  
ISL97516  
INPUT  
TO INDUCTOR  
EN  
FIGURE 15. CIRCUIT TO DISCONNECT THE DC PATH OF  
BOOST CONVERTER  
FIGURE 14. CASCADED MOSFET TOPOLOGY FOR HIGH  
OUTPUT VOLTAGE APPLICATIONS  
FN9261.1  
December 22, 2006  
8
ISL97516  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
N
A
A1  
A2  
b
-
±0.05  
-
±0.09  
-
E
E1  
PIN #1  
I.D.  
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
E
±0.15  
-
1
B
(N/2)  
E1  
e
±0.10  
2, 3  
Basic  
-
L
±0.15  
-
e
H
C
L1  
N
Basic  
-
SEATING  
PLANE  
Reference  
-
Rev. C 6/99  
M
C A B  
b
0.08  
0.10 C  
NOTES:  
N LEADS  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
L1  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
A
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN9261.1  
December 22, 2006  
9

相关型号:

ISL97516IUZ-TK

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97516_07

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519A

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519AIUZ

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519AIUZ-T

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519AIUZ-TK

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519IUZ

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519IUZ-T

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97519IUZ-TK

1% Output Accuracy 600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

ISL97522

4-Channel TFT-LCD Supply
INTERSIL

ISL97522IRZ-T

4-Channel TFT-LCD Supply
INTERSIL