ISL28248FUZ [INTERSIL]

4.5MHz, Single Dual and Quad Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current; 4.5MHz ,单路双路和四路精密轨到轨输入输出( RRIO )运算放大器具有极低的输入偏置电流
ISL28248FUZ
型号: ISL28248FUZ
厂家: Intersil    Intersil
描述:

4.5MHz, Single Dual and Quad Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
4.5MHz ,单路双路和四路精密轨到轨输入输出( RRIO )运算放大器具有极低的输入偏置电流

运算放大器
文件: 总20页 (文件大小:937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL28148, ISL28248, ISL28448  
®
Data Sheet  
March 13, 2008  
FN6337.2  
4.5MHz, Single Dual and Quad Precision  
Rail-to-Rail Input-Output (RRIO) Op Amps  
with Very Low Input Bias Current  
Features  
• 4.5MHz gain bandwidth product  
• 900µA supply current (per amplifier)  
• 1.8mV maximum offset voltage  
• 1pA typical input bias current  
• Down to 2.4V single supply operation  
• Rail-to-rail input and output  
The ISL28148, ISL28248 and ISL28448 are 4.5MHz  
low-power single, dual and quad operational amplifiers. The  
parts are optimized for single supply operation from 2.4V to  
5.5V, allowing operation from one lithium cell or two Ni-Cd  
batteries.  
The single, dual and quad feature an Input Range  
Enhancement Circuit (IREC) which enables them to maintain  
CMRR performance for input voltages greater than the  
positive supply. The input signal is capable of swinging  
0.25V above the positive supply and to 100mV below the  
negative supply with only a slight degradation of the CMRR  
performance. The output operation is rail-to-rail.  
• Enable pin (ISL28148 SOT-23 package only)  
• -40°C to +125°C operation  
• Pb-free (RoHS compliant)  
Applications  
• Low-end audio  
The parts draw minimal supply current (900µA per amplifier)  
while meeting excellent DC accuracy, AC performance,  
noise and output drive specifications. The ISL28148 features  
an enable pin that can be used to turn the device off and  
reduce the supply current to a maximum of 16µA. Operation  
is guaranteed over -40°C to +125°C temperature range.  
• 4mA to 20mA current loops  
• Medical devices  
• Sensor amplifiers  
• ADC buffers  
• DAC output amplifiers  
Ordering Information  
PACKAGE  
PART NUMBER  
ISL28148FHZ-T7* (Note 1)  
PART MARKING  
(Pb-free)  
6 Ld SOT-23 (Tape and Reel)  
6 Ld SOT-23 (Tape and Reel)  
6 Ld WLCSP (1.5mmx1.0mm)  
8 Ld SOIC  
PKG. DWG. #  
MDP0038  
GABT  
GABT  
178Z  
ISL28148FHZ-T7A* (Note 1)  
MDP0038  
W3x2.6C  
MDP0027  
MDP0027  
MDP0043  
MDP0043  
MDP0044  
MDP0044  
Coming Soon, ISL28148FIZ-T7 (Note 2)  
Coming Soon, ISL28248FBZ (Note 1)  
Coming Soon, ISL28248FBZ-T7* (Note 1)  
Coming Soon, ISL28248FUZ (Note 1)  
Coming Soon, ISL28248FUZ-T7* (Note 1)  
Coming Soon, ISL28448FVZ (Note 1)  
Coming Soon, ISL28448FVZ-T7* (Note 1)  
28248BZ  
28248BZ  
8248Z  
8248Z  
MXZ  
8 Ld SOIC (Tape and Reel)  
8 Ld MSOP  
8 Ld MSOP (Tape and Reel)  
14 Ld TSSOP  
MXZ  
14 Ld TSSOP (Tape and Reel)  
*Please refer to TB347 for details on reel specifications.  
NOTES:  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100%  
matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering  
operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
2. These Intersil Pb-free WLCSP and BGA packaged products products employ special Pb-free material sets; molding compounds/die attach  
materials and SnAgCu - e1 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free WLCSP and BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2007, 2008. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
ISL28148, ISL28248, ISL28448  
Pinouts  
ISL28148  
(6 LD SOT-23)  
TOP VIEW  
OUT  
V-  
1
2
3
6
5
4
V+  
EN  
IN-  
+
-
IN+  
ISL28148  
(6 LD WLCSP)  
TOP VIEW  
1
2
A
NC  
V +  
IN -  
OUT  
V -  
B
C
IN +  
ISL28248  
(8 LD SOIC)  
TOP VIEW  
ISL28248  
(8 LD MSOP)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_B  
IN-_B  
IN+_B  
OUT_B  
IN-_B  
IN+_B  
-
+
- +  
+
-
+ -  
ISL28448  
(14 LD TSSOP)  
TOP VIEW  
OUT_A  
IN-_A  
IN+_A  
V+  
1
2
3
4
5
6
7
14 OUT_D  
13 IN-_D  
12 IN+_D  
11 V-  
-
+
+
-
IN+_B  
IN-_B  
OUT_B  
10 IN+_C  
+
-
+ -  
9
8
IN-_C  
OUT_C  
FN6337.2  
March 13, 2008  
2
ISL28148, ISL28248, ISL28448  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Rating  
Thermal Resistance (Typical, Note 3)  
θ
(°C/W)  
JA  
6 Ld SOT-23 Package . . . . . . . . . . . . . . . . . . . . . . .  
6 Ld WLCSP Package . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SO Package. . . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP Package . . . . . . . . . . . . . . . . . . . . . . . .  
14 Ld TSSOP Package . . . . . . . . . . . . . . . . . . . . . .  
230  
130  
125  
175  
115  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V  
Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
3. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
CM  
established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
CONDITIONS  
(Note 4)  
TYP  
(Note 4) UNIT  
0
V
-1.8  
1.8  
mV  
OS  
-2  
2
-0.1  
0.03  
±5  
CSP package  
-1.0  
-1.2  
1.0  
1.2  
ΔV  
Input Offset Voltage vs Temperature  
Input Offset Current  
µV/°C  
pA  
OS  
---------------  
ΔT  
I
-35  
35  
OS  
T
= -40°C to +85°C  
-80  
80  
A
I
Input Bias Current  
-30  
±1  
30  
pA  
B
T
= -40°C to +85°C  
-80  
80  
A
CSP package  
-40  
±1  
30  
-90  
80  
CMIR  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Guaranteed by CMRR  
0
5
V
CMRR  
V
V
V
V
= 0V to 5V  
75  
70  
98  
98  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
= 2.4V to 5.5V  
80  
75  
dB  
+
A
= 0.5V to 4.5V, R = 100kΩ to V  
CM  
200  
150  
580  
V/mV  
VOL  
O
O
L
= 0.5V to 4.5V, R = 1kΩ to V  
50  
3
V/mV  
mV  
L
CM  
V
Maximum Output Voltage Swing  
Output low, R = 100kΩ to V  
CM  
6
OUT  
L
8
Output low, R = 1kΩ to V  
50  
70  
110  
mV  
V
L
CM  
Output high, R = 100kΩ to V  
4.994  
4.99  
4.998  
4.95  
L
CM  
Output high, R = 1kΩ to V  
4.93  
V
L
CM  
4.89  
FN6337.2  
March 13, 2008  
3
ISL28148, ISL28248, ISL28448  
Electrical Specifications V+ = 5V, V- = 0V,V  
= 2.5V, R = Open, T = +25°C unless otherwise specified.  
L A  
Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data  
CM  
established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 4)  
TYP  
(Note 4) UNIT  
I
I
Quiescent Supply Current, Enabled  
0.7  
0.4  
0.9  
1.1  
1.4  
mA  
S,ON  
Quiescent Supply Current, Disabled  
Short-Circuit Output Source Current  
Short-Circuit Output Sink Current  
ISL28148 SOT-23 package only  
10  
75  
68  
14  
16  
µA  
S,OFF  
I +  
R
R
= 10Ω to V  
= 10Ω to V  
48  
45  
mA  
mA  
O
L
L
CM  
CM  
I -  
50  
O
45  
V
V
V
Supply Operating Range  
EN Pin High Level  
V+ to V-  
2.4  
2
5.5  
0.8  
V
V
SUPPLY  
ENH  
ISL28148 SOT-23 package only  
ISL28148 SOT-23 package only  
EN Pin Low Level  
V
ENL  
I
EN Pin Input High Current  
V
= V+,ISL28148 SOT-23 package  
1
1.5  
1.6  
µA  
ENH  
EN  
only  
I
EN Pin Input Low Current  
V
= V-, ISL28148 SOT-23 package only  
EN  
12  
25  
nA  
ENL  
30  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
A
R
= 100, R = 100kΩ, R = 1kΩ,  
4.5  
13  
MHz  
MHz  
V
F
G
= 10kΩ to V  
L
CM  
Unity Gain  
Bandwidth  
-3dB Bandwidth  
A
=1, R = 0Ω, V  
= 10mV  
,
P-P  
V
F
OUT  
= 10kΩ to V  
CM  
R
L
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
Input Noise Current Density  
f = 0.1Hz to 10Hz  
2
28  
µV  
PP  
N
f
f
= 1kHz  
= 1kHz  
nV/Hz  
pA/Hz  
dB  
O
i
0.016  
85  
N
O
CMRR @ 60Hz Input Common Mode Rejection Ratio  
V
= 1V , R = 10kΩ to V  
P-P CM  
CM  
L
PSRR- @  
120Hz  
Power Supply Rejection Ratio (V )  
V , V = ±1.2V and ±2.5V,  
-82  
dB  
-
+
-
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
CM  
CM  
PSRR+ @  
120Hz  
Power Supply Rejection Ratio (V )  
V , V = ±1.2V and ±2.5V  
-100  
dB  
+
+
-
V
= 1V , R = 10kΩ to V  
P-P  
SOURCE  
L
TRANSIENT RESPONSE  
SR  
t , t , Large  
Slew Rate  
±4  
V/µs  
ns  
Rise Time, 10% to 90%, V  
A
= +2,  
V
= 3V , R = R = 10kΩ  
P-P  
530  
r
f
OUT  
V
OUT  
G
F
Signal  
RL = 10kΩ to V  
CM  
Fall Time, 90% to 10%, V  
A
RL  
= +2,  
V
= 3V , R = R = 10kΩ  
530  
50  
50  
5
ns  
ns  
ns  
µs  
µs  
OUT  
V
OUT  
= 10kΩ to V  
P-P  
G
F
CM  
t , t , Small  
Rise Time, 10% to 90%, V  
A
= +2,  
V
= 10mV  
=
,
r
f
OUT  
V
OUT  
= R = RL  
P-P  
10kΩ to V  
CM  
Signal  
R
G
F
Fall Time, 90% to 10%, V  
A
= +2,  
V
= 10mV  
,
P-P  
OUT  
V
OUT  
= R = RL = 10kΩ to V  
CM  
R
G
F
t
Enable to Output Turn-on Delay Time, 10%  
EN to 10% V , (ISL28148)  
= 5V to 0V, A = +2,  
EN V  
R
EN  
= R = RL = 1k to V  
OUT  
Enable to Output Turn-off Delay Time, 10%  
EN to 10% V , (ISL28148)  
G
F
CM  
V
R
= 0V to 5V, A = +2,  
0.2  
EN  
V
= R = RL = 1k to V  
OUT  
G
F CM  
NOTE:  
4. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
FN6337.2  
March 13, 2008  
4
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open  
CM  
L
15  
10  
5
1
0
V
= 100mV  
= 50mV  
= 10mV  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = R = 100k  
f
g
V
R = R = 10k  
OUT  
OUT  
f
g
V
V
= 1V  
0
OUT  
V
R
= 5V  
= 1k  
+
L
L
-5  
R = R = 1k  
V
R
= 5V  
= 1k  
f
g
+
L
L
C
= 16.3pF  
= +2  
-10  
A
V
C
= 16.3pF  
= +1  
V
= 10mV  
OUT  
P-P  
10k  
A
V
-15  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. GAIN vs FREQUENCY vs FEEDBACK RESISTOR  
FIGURE 2. GAIN vs FREQUENCY vs V  
R = 1k  
L
OUT,  
VALUES R /R  
f
g
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= 100mV  
= 50mV  
OUT  
V
= 100mV  
= 50mV  
= 10mV  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
OUT  
OUT  
V
V
V
OUT  
OUT  
= 10mV  
V
OUT  
= 1V  
V
V
= 1V  
OUT  
OUT  
V
= 5V  
= 10k  
V
= 5V  
= 100k  
+
L
L
+
L
L
R
C
A
R
C
A
= 16.3pF  
= +1  
= 16.3pF  
= +1  
V
V
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. GAIN vs FREQUENCY vs V  
70  
, R = 100k  
OUT  
FIGURE 3. GAIN vs FREQUENCY vs V  
1
, R = 10k  
OUT  
L
L
R
= 1k  
A
= 1, R = INF, R = 0  
L
V
V
g f  
A
= 1001  
V
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
A
= 10, R = 1k, R = 9.09k  
g f  
60  
50  
40  
30  
20  
10  
0
A
= 101, R = 1k, R = 100k  
V
g f  
R
= 10k  
L
A = 1001, R = 1k, R = 1M  
V g f  
A
= 101  
V
R
= 100k  
L
V
C
R
V
= 5V  
+
L
L
= 16.3pF  
= 10k  
A
= 10  
V
= 10mV  
OUT  
P-P  
V
V
= 5V  
+
= 10mV  
= 16.3pF  
= +1  
OUT  
P-P  
A
= 1  
V
C
L
A
V
-10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. GAIN vs FREQUENCY vs R  
FIGURE 6. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
L
FN6337.2  
March 13, 2008  
5
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
1
0
8
7
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
C
C
C
= 51.7pF  
= 43.7pF  
= 37.7pF  
L
L
V
= 5V  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
+
L
V
= 2.4V  
+
C
= 26.7pF  
= 16.7pF  
= 4.7pF  
L
R
C
A
= 10k  
L
L
V
R
= 5V  
= 1k  
= +1  
+
C
L
= 16.3pF  
= +1  
L
C
L
V
A
V
V
= 10mV  
V
= 10mV  
OUT  
P-P  
OUT  
P-P  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 7. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FIGURE 8. GAIN vs FREQUENCY vs C  
L
10  
0
20  
0
-10  
-20  
-30  
-40  
-50  
PSRR-  
PSRR+  
-20  
-40  
-60  
-80  
-100  
-120  
V
= 2.4V, 5V  
= 1k  
V , V = ±1.2V  
+
L
L
+
-
R
C
A
-60  
-70  
-80  
-90  
R
= 1k  
L
L
= 16.3pF  
= +1  
C
A
= 16.3pF  
= +1  
V
V
V
= 1V  
V
= 1V  
CM  
P-P  
CM  
P-P  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY; V = 2.4V AND 5V  
+
FIGURE 10. PSRR vs FREQUENCY, V , V = ±1.2V  
+
-
20  
0
1000  
100  
10  
PSRR-  
PSRR+  
-20  
-40  
V = 5V  
+
R =1k R =1k  
f
g
A
= +2  
V
-60  
V , V = ±2.5V  
+
-
R
= 1k  
-80  
L
L
C
A
= 16.3pF  
= +1  
-100  
V
V
= 1V  
P-P  
CM  
-120  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. INPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
FIGURE 11. PSRR vs FREQUENCY V , V = ±2.5V  
+
-
FN6337.2  
March 13, 2008  
6
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
0.1  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
V
= 5V  
+
R =1k R =1k  
f
g
A
= +2  
V
R
= 10k  
A = 10k  
V
V
C
= 5V  
= 16.3pF  
= 10  
L
+
L
R
R = 100k  
g
f
0.01  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
FREQUENCY (Hz)  
FIGURE 13. INPUT CURRENT NOISE DENSITY vs FREQUENCY  
FIGURE 14. INPUT VOLTAGE NOISE 0.1Hz TO 10Hz  
0.025  
2.0  
1.5  
1.0  
0.5  
0.020  
0.015  
0.010  
0
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
-0.5  
-1.0  
-1.5  
-2.0  
R
= 1k  
R
= 1k  
L
L
L
L
g
C
= 16.3pF  
C
R
A
= 16.3pF  
R = R = 10k  
= R = 10k  
g
f
f
A
OUT  
= 2  
= 2  
V
V
OUT  
V
= 10mV  
V
= 3V  
P-P  
6
P-P  
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 15. LARGE SIGNAL STEP RESPONSE  
3.5  
FIGURE 16. SMALL SIGNAL STEP RESPONSE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
OUT  
V
EN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
= 5V  
= R = 10k  
+
g
L
f
C
= 16.3pF  
= +2  
A
V
V
= 1V  
P-P  
OUT  
R
= 10k  
L
-0.2  
90 100  
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
FIGURE 17. ISL28148 ENABLE TO OUTPUT RESPONSE  
FN6337.2  
March 13, 2008  
7
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
100  
80  
800  
600  
400  
200  
0
V = 5V  
+
V
R
= 5V  
= OPEN  
+
L
R
= OPEN  
L
60  
R
= 100k, R = 100  
g
R = 100k, R = 100  
f
f
g
40  
A = +1k  
A
= +1k  
V
V
20  
0
-20  
-40  
-60  
-80  
-100  
-200  
-400  
-600  
-800  
-1  
0
1
2
3
4
5
6
-1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CM  
CM  
FIGURE 19. INPUT BIAS CURRENT vs COMMON MODE  
INPUT VOLTAGE  
FIGURE 18. INPUT OFFSET VOLTAGE vs COMMON MODE  
INPUT VOLTAGE  
1.2  
10.5  
MAX  
9.5  
1.1  
MAX  
8.5  
1.0  
MEDIAN  
7.5  
MEDIAN  
0.9  
6.5  
0.8  
MIN  
MIN  
5.5  
0.7  
0.6  
4.5  
3.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 20. SUPPLY CURRENT ENABLED vs TEMPERATURE  
FIGURE 21. SUPPLY CURRENT DISABLED vs  
V , V = ±2.5V  
TEMPERATURE V , V = ±2.5V  
+
-
+
-
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
MAX  
MAX  
MEDIAN  
MEDIAN  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. V  
vs TEMPERATURE V = 0V, V , V = ±2.75V  
IN  
FIGURE 23. V  
vs TEMPERATURE V = 0V, V , V = ±2.5V  
IN  
OS  
+
-
OS  
+
-
FN6337.2  
March 13, 2008  
8
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
2.0  
1.5  
1.0  
0.5  
0
1.5  
1
MAX  
MAX  
0.5  
0
MEDIAN  
MEDIAN  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1  
MIN  
MIN  
-1.5  
-40  
-20  
V
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25. CSP PACKAGE V  
vs TEMPERATURE V = 0V,  
IN  
FIGURE 24.  
vs TEMPERATURE V = 0V, V , V = ±1.2V  
OS  
OS  
IN  
+
-
V , V = ±2.75V  
+
-
1.5  
1
1.5  
1
MAX  
MAX  
0.5  
0
0.5  
0
MEDIAN  
MEDIAN  
-0.5  
-1  
-0.5  
-1  
MIN  
MIN  
-1.5  
-1.5  
-40  
-40  
-20  
0
20  
40  
60  
80  
100 120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. CSP PACKAGE V vs TEMPERATURE V = 0V,  
OS IN  
FIGURE 26. CSP PACKAGE V  
OS  
vs TEMPERATURE V = 0V,  
IN  
V , V = ±1.2V  
V , V = ±2.5V  
+
-
+
-
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
0
0
-50  
-40  
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. I  
- vs TEMPERATURE V , V = ±1.2V  
BIAS  
FIGURE 28.  
I
- vs TEMPERATURE V , V = ±2.5V  
BIAS  
+
-
+
-
FN6337.2  
March 13, 2008  
9
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
MAX  
MEDIAN  
MAX  
MEDIAN  
MIN  
MIN  
0
0
-50  
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (C)  
Temperature (C)  
FIGURE 31. CSP PACKAGE I  
V , V = ±1.2V  
- vs TEMPERATURE  
FIGURE 30. CSP PACKAGE I  
V , V = ±2.5V  
- vs TEMPERATURE  
BIAS  
BIAS  
+
-
+
-
10  
0
20  
10  
MAX  
MEDIAN  
MIN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
MAX  
-10  
-20  
-30  
-40  
-50  
-60  
MEDIAN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 32. I  
vs TEMPERATURE V , V = ±2.5V  
+ -  
FIGURE 33. I  
80  
vs TEMPERATURE V , V = ±1.2V  
OS  
OS  
+
-
1750  
1550  
1350  
1150  
950  
70  
60  
50  
40  
30  
20  
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
750  
550  
MIN  
350  
150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. A  
V
vs TEMPERATURE R = 1k, V , V = ±2.5V,  
L + -  
FIGURE 34. A  
V
vs TEMPERATURE R = 100k, V , V = ±2.5V,  
L + -  
VOL  
= -2V TO +2V  
VOL  
= -2V TO +2V  
O
O
FN6337.2  
March 13, 2008  
10  
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
MAX  
MAX  
MEDIAN  
MIN  
MEDIAN  
MIN  
80  
80  
70  
-40  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 36. CMRR vs TEMPERATURE V  
= -2.5V TO +2.5V,  
FIGURE 37. PSRR vs TEMPERATURE V V = ±1.2V TO ±2.75V  
CM  
+,  
-
V
V = ±2.5V  
-
+,  
4.9994  
4.9992  
4.9990  
4.9988  
4.9986  
4.9984  
4.9982  
4.970  
4.965  
4.960  
4.955  
4.950  
4.945  
4.940  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 39. V  
HIGH vs TEMPERATURE R = 100k,  
L
OUT  
FIGURE 38. V  
HIGH vs TEMPERATURE R = 1k,  
L
OUT  
V , V = ±2.5V  
+
-
V , V = ±2.5V  
+
-
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
75  
70  
65  
60  
55  
50  
45  
40  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 41. V  
LOW vs TEMPERATURE R = 100k,  
L
FIGURE 40. V  
LOW vs TEMPERATURE R = 1k,  
L
OUT  
V , V = ±2.5V  
OUT  
V , V = ±2.5V  
+
-
+
-
FN6337.2  
March 13, 2008  
11  
ISL28148, ISL28248, ISL28448  
Typical Performance Curves V+ = 5V, V- = 0V, V = 2.5V, R = Open (Continued)  
CM  
L
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
95  
90  
85  
80  
75  
70  
65  
60  
MAX  
MIN  
MAX  
MEDIAN  
MEDIAN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 43. - OUTPUT SHORT CIRCUIT CURRENT vs  
TEMPERATURE V = -2.55V, R = 10,  
FIGURE 42. + OUTPUT SHORT CIRCUIT CURRENT vs  
TEMPERATURE V = -2.55V, R = 10,  
IN  
L
IN  
L
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
Pin Descriptions  
ISL28248  
(8 Ld SO)  
ISL28148  
ISL28148  
ISL28448  
(6 Ld SOT-23)  
6 Ld WLCSP (8 Ld MSOP)  
(14 Ld TSSOP)  
PIN NAME  
FUNCTION  
Not connected  
inverting input  
EQUIVALENT CIRCUIT  
NC  
4
C1  
IN-  
2 (A)  
6 (B)  
2 (A)  
6 (B)  
9 (C)  
13 (D)  
IN-_A  
IN-_B  
IN-_C  
IN-_D  
V+  
IN-  
IN+  
V-  
Circuit 1  
3
2
C2  
IN+  
Non-inverting  
input  
(See circuit 1)  
3 (A)  
5 (B)  
3 (A)  
5 (B)  
10 (C)  
12 (D)  
IN+_A  
IN+_B  
IN+_C  
IN+_D  
B2  
4
11  
V-  
Negative supply  
V+  
V-  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
Circuit 2  
V+  
1
A2  
OUT  
Output  
1 (A)  
7 (B)  
1 (A)  
7 (B)  
8 (C)  
14 (D)  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
OUT  
V-  
Circuit 3  
6
B1  
8
4
V+  
Positive supply  
(See circuit 2)  
FN6337.2  
March 13, 2008  
12  
ISL28148, ISL28248, ISL28448  
Pin Descriptions (Continued)  
ISL28248  
(8 Ld SO)  
ISL28148  
ISL28148  
ISL28448  
(6 Ld SOT-23)  
6 Ld WLCSP (8 Ld MSOP)  
(14 Ld TSSOP)  
PIN NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
EN  
V+  
5
-
Chip enable  
EN  
V-  
Circuit 4  
NC  
A1  
Connect pin to  
the most  
Negative Supply  
Results of Over-Driving the Output  
Applications Information  
Caution should be used when over-driving the output for long  
periods of time. Over-driving the output can occur in two ways:  
Introduction  
The ISL28148, ISL28248 and ISL28448 are single, dual and  
quad channel CMOS rail-to-rail input, output (RRIO)  
micropower precision operational amplifiers. The parts are  
designed to operate from single supply (2.4V to 5.5V) or dual  
supply (±1.2V to ±2.75V). The parts have an input common  
mode range that extends 0.25V above the positive rail and  
100mV below the negative supply rail. The output operation  
can swing within about 3mV of the supply rails with a 100kΩ  
load.  
1. The input voltage times the gain of the amplifier exceeds the  
supply voltage by a large value or  
2. The output current required is higher than the output stage  
can deliver. These conditions can result in a shift in the Input  
Offset Voltage (V ) as much as 1µV/hr. of exposure under  
OS  
these condition.  
IN+ and IN- Input Protection  
All input terminals have internal ESD protection diodes to both  
positive and negative supply rails, limiting the input voltage to  
within one diode beyond the supply rails. They also contain  
back-to-back diodes across the input terminals (“Pin  
Descriptions” table - Circuit 1 on page 12). For applications  
where the input differential voltage is expected to exceed  
0.5V, an external series resistor must be used to ensure the  
input currents never exceed 5mA (Figure 44).  
Rail-to-Rail Input  
Many rail-to-rail input stages use two differential input pairs,  
a long-tail PNP (or PFET) and an NPN (or NFET). Severe  
penalties have to be paid for this circuit topology. As the  
input signal moves from one supply rail to another, the  
operational amplifier switches from one input pair to the  
other causing drastic changes in input offset voltage and an  
undesired change in magnitude and polarity of input offset  
current.  
-
V
R
OUT  
IN  
V
R
IN  
+
L
The parts achieve input rail-to-rail operation without  
sacrificing important precision specifications and degrading  
distortion performance. The devices’ input offset voltage  
exhibits a smooth behavior throughout the entire  
common-mode input range. The input bias current vs the  
common-mode voltage range gives us an undistorted  
behavior from typically 100mV below the negative rail and  
0.25V higher than the V+ rail.  
FIGURE 44. INPUT CURRENT LIMITING  
Enable/Disable Feature  
The ISL28148 offers an EN pin that disables the device  
when pulled up to at least 2.0V. In the disabled state (output  
in a high impedance state), the part consumes typically 10µA  
at room temperature. By disabling the part, multiple  
Rail-to-Rail Output  
A pair of complementary MOS devices are used to achieve  
the rail-to-rail output swing. The NMOS sinks current to  
swing the output in the negative direction. The PMOS  
sources current to swing the output in the positive direction.  
The devices’ with a 100kΩ load will swing to within 3mV of  
the positive supply rail and within 3mV of the negative supply  
rail.  
ISL28148 parts can be connected together as a MUX. In this  
configuration, the outputs are tied together in parallel and a  
channel can be selected by the EN pin. The loading effects  
of the feedback resistors of the disabled amplifier must be  
considered when multiple amplifier outputs are connected  
together. Note that feed through from the IN+ to IN- pins  
occurs on any Mux Amp disabled channel where the input  
differential voltage exceeds 0.5V (e.g., active channel  
V
= 1V, while disabled channel V = GND), so the mux  
IN  
OUT  
FN6337.2  
March 13, 2008  
13  
ISL28148, ISL28248, ISL28448  
implementation is best suited for small signal applications. If  
large signals are required, use series IN+ resistors, or large  
Proper Layout Maximizes Performance  
To achieve the maximum performance of the high input  
impedance and low offset voltage, care should be taken in  
the circuit board layout. The PC board surface must remain  
clean and free of moisture to avoid leakage currents  
between adjacent traces. Surface coating of the circuit board  
will reduce surface moisture and provide a humidity barrier,  
reducing parasitic resistance on the board. When input  
leakage current is a concern, the use of guard rings around  
the amplifier inputs will further reduce leakage currents.  
Figure 46 shows a guard ring example for a unity gain  
amplifier that uses the low impedance amplifier output at the  
same voltage as the high impedance input to eliminate  
surface leakage. The guard ring does not need to be a  
specific width, but it should form a continuous loop around  
both inputs. For further reduction of leakage currents,  
components can be mounted to the PC board using Teflon  
standoff insulators.  
value R , to keep the feed through current low enough to  
F
minimize the impact on the active channel. See “Limitations  
of the Differential Input Protection” on page 14 for more  
details.The EN pin also has an internal pull-down. If left  
open, the EN pin will pull to the negative rail and the device  
will be enabled by default. When not used, the EN pin should  
either be left floating or connected directly to the V- pin.  
Limitations of the Differential Input Protection  
If the input differential voltage is expected to exceed 0.5V, an  
external current limiting resistor must be used to ensure the  
input current never exceeds 5mA. For non-inverting unity gain  
applications the current limiting can be via a series IN+ resistor,  
or via a feedback resistor of appropriate value. For other gain  
configurations, the series IN+ resistor is the best choice, unless  
the feedback (R ) and gain setting (R ) resistors are both  
F
G
sufficiently large to limit the input current to 5mA.  
.
Large differential input voltages can arise from several  
sources:  
V+  
HIGH IMPEDANCE INPUT  
IN  
• During open loop (comparator) operation. Used this way,  
the IN+ and IN- voltages don’t track, so differentials arise.  
• When the amplifier is disabled but an input signal is still  
present. An R or R to GND keeps the IN- at GND, while  
L
G
the varying IN+ signal creates a differential voltage. Mux  
Amp applications are similar, except that the active  
FIGURE 46. GUARD RING EXAMPLE FOR UNITY GAIN  
AMPLIFIER  
channel V  
determines the voltage on the IN- terminal.  
OUT  
Current Limiting  
• When the slew rate of the input pulse is considerably  
faster than the op amp’s slew rate. If the V can’t keep  
These devices have no internal current-limiting circuitry. If  
the output is shorted, it is possible to exceed the Absolute  
Maximum Rating for output current or power dissipation,  
potentially resulting in the destruction of the device.  
OUT  
up with the IN+ signal, a differential voltage results, and  
visible distortion occurs on the input and output signals. To  
avoid this issue, keep the input slew rate below 4.8V/μs, or  
use appropriate current limiting resistors.  
Power Dissipation  
Large (>2V) differential input voltages can also cause an  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply  
conditions. It is therefore important to calculate the  
increase in disabled I  
.
CC  
Using Only One Channel  
maximum junction temperature (T  
) for all applications  
JMAX  
If the application does not use all channels, then the user  
must configure the unused channel(s) to prevent them from  
oscillating. The unused channel(s) will oscillate if the input  
and output pins are floating. This will result in higher than  
expected supply currents and possible noise injection into  
the channel being used. The proper way to prevent this  
oscillation is to short the output to the negative input and  
ground the positive input (as shown in Figure 45).  
to determine if power supply voltages, load conditions, or  
package type need to be modified to remain in the safe  
operating area. These parameters are related in Equation 1:  
T
= T  
+ xPD  
)
MAXTOTAL  
(EQ. 1)  
JMAX  
MAX  
JA  
where:  
• P  
is the sum of the maximum power  
DMAXTOTAL  
dissipation of each amplifier in the package (PD  
)
MAX  
-
• PD  
MAX  
for each amplifier can be calculated as shown in  
Equation 2:  
+
V
OUTMAX  
R
L
----------------------------  
PD  
= 2*V × I  
+ (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
FIGURE 45. PREVENTING OSCILLATIONS IN UNUSED  
CHANNELS  
(EQ. 2)  
FN6337.2  
March 13, 2008  
14  
ISL28148, ISL28248, ISL28448  
where:  
• T  
= Maximum ambient temperature  
MAX  
θ = Thermal resistance of the package  
JA  
• PD  
= Maximum power dissipation of 1 amplifier  
MAX  
• V = Supply voltage (Magnitude of V and V )  
S
+
-
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
OUTMAX  
= Maximum output voltage swing of the  
application  
• R = Load resistance  
L
FN6337.2  
March 13, 2008  
15  
ISL28148, ISL28248, ISL28448  
SOT-23 Package Family  
MDP0038  
e1  
D
SOT-23 PACKAGE FAMILY  
A
MILLIMETERS  
SOT23-5  
6
4
N
SYMBOL  
SOT23-6  
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
6
TOLERANCE  
MAX  
A
A1  
A2  
b
1.45  
0.10  
1.14  
0.40  
0.14  
2.90  
2.80  
1.60  
0.95  
1.90  
0.45  
0.60  
5
±0.05  
E1  
E
±0.15  
2
3
±0.05  
0.15  
2X  
C
D
c
±0.06  
1
2
3
0.20  
2X  
C
D
Basic  
5
e
E
Basic  
E1  
e
Basic  
0.20  
C
A-B  
D
M
B
b
NX  
Basic  
e1  
L
Basic  
±0.10  
L1  
N
Reference  
Reference  
Rev. F 2/07  
0.15  
2X  
C
A-B  
1
3
D
NOTES:  
C
1. Plastic or metal protrusions of 0.25mm maximum per side are not  
included.  
A2  
SEATING  
PLANE  
2. Plastic interlead protrusions of 0.25mm maximum per side are not  
included.  
A1  
0.10  
NX  
C
3. This dimension is measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
5. Index area - Pin #1 I.D. will be located within the indicated zone  
(SOT23-6 only).  
6. SOT23-5 version has no center lead (shown as a dashed line).  
(L1)  
H
A
GAUGE  
PLANE  
0.25  
c
+3°  
-0°  
L
0°  
FN6337.2  
March 13, 2008  
16  
ISL28148, ISL28248, ISL28448  
Wafer Level Chip Scale Package (WLCSP)  
W3x2.6C  
3x2 ARRAY 6 BALL WAFER LEVEL CHIP SCALE PACKAGE  
E
SYMBOL  
MILLIMETERS  
0.51 Min, 0.55 Max  
0.225 ±0.015  
0.305 ±0.013  
Φ0.323 ±0.025  
0.955 ±0.020  
0.50 BASIC  
A
A
A
1
D
2
PIN 1 ID  
b
D
TOP VIEW  
D
1
E
1.455 ±0.020  
1.00 BASIC  
E
1
e
0.50 BASIC  
SD  
SE  
0.25 BASIC  
A
2
A
0.00 BASIC  
A
1
Rev. 3 03/08  
b
NOTES:  
1. All dimensions are in millimeters.  
SIDE VIEW  
E1  
e
SE  
2
1
SD  
D
1
b
C
B
A
BOTTOM VIEW  
FN6337.2  
March 13, 2008  
17  
ISL28148, ISL28248, ISL28448  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24  
(SOL-24)  
SO28  
(SOL-28)  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
±0.002  
±0.003  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
-
-
c
-
D
1, 3  
E
-
E1  
e
2, 3  
-
L
±0.009  
Basic  
-
L1  
h
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN6337.2  
March 13, 2008  
18  
ISL28148, ISL28248, ISL28448  
Mini SO Package Family (MSOP)  
MDP0043  
0.25 M C A B  
A
MINI SO PACKAGE FAMILY  
D
(N/2)+1  
MILLIMETERS  
N
SYMBOL  
MSOP8  
1.10  
0.10  
0.86  
0.33  
0.18  
3.00  
4.90  
3.00  
0.65  
0.55  
0.95  
8
MSOP10  
1.10  
0.10  
0.86  
0.23  
0.18  
3.00  
4.90  
3.00  
0.50  
0.55  
0.95  
10  
TOLERANCE  
Max.  
NOTES  
A
A1  
A2  
b
-
±0.05  
-
E
E1  
PIN #1  
I.D.  
±0.09  
-
+0.07/-0.08  
±0.05  
-
c
-
D
±0.10  
1, 3  
1
B
(N/2)  
E
±0.15  
-
E1  
e
±0.10  
2, 3  
Basic  
-
e
H
C
L
±0.15  
-
SEATING  
PLANE  
L1  
N
Basic  
-
Reference  
-
M
C A B  
b
0.08  
0.10 C  
Rev. D 2/07  
N LEADS  
NOTES:  
1. Plastic or metal protrusions of 0.15mm maximum per side are not  
included.  
L1  
2. Plastic interlead protrusions of 0.25mm maximum per side are  
not included.  
A
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
SEE DETAIL "X"  
A2  
GAUGE  
PLANE  
0.25  
L
DETAIL X  
A1  
3° ±3°  
FN6337.2  
March 13, 2008  
19  
ISL28148, ISL28248, ISL28448  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
MILLIMETERS  
N
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
0.20 C B A  
2X  
1
(N/2)  
c
N/2 LEAD TIPS  
B
D
TOP VIEW  
E
Basic  
E1  
e
±0.10  
Basic  
0.05  
H
e
L
±0.15  
C
L1  
Reference  
Rev. F 2/07  
SEATING  
PLANE  
NOTES:  
0.10 M C A B  
b
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
SEE DETAIL “X”  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6337.2  
March 13, 2008  
20  

相关型号:

ISL28248FUZ-T7

4.5MHz, Single Dual and Quad Precision Rail-to-Rail Input-Output (RRIO) Op Amps with Very Low Input Bias Current
INTERSIL

ISL28248FUZ-T7

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28248MSOPEVAL1Z

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28248SOICEVAL1Z

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28256

39uA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FAZ-T7

39uA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ

DUAL OP-AMP, 250uV OFFSET-MAX, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL28256FBZ-T7

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ-T7

DUAL OP-AMP, 250uV OFFSET-MAX, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL28256FUZ

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FUZ

DUAL OP-AMP, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8
RENESAS