ISL28248FUZ-T7 [RENESAS]

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current;
ISL28248FUZ-T7
型号: ISL28248FUZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current

放大器 光电二极管
文件: 总17页 (文件大小:1177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL28148, ISL28248  
4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very  
Low Input Bias Current  
FN6337  
Rev 5.00  
January 22, 2016  
The ISL28148, ISL28248 are 4.5MHz low-power single and  
Features  
dual operational amplifiers. The parts are optimized for single  
supply operation from 2.4V to 5.5V, allowing operation from  
one lithium cell or two Ni-Cd batteries.  
• 4.5MHz gain bandwidth product  
• 900µA supply current (per amplifier)  
• 1.8mV maximum offset voltage (ISL28248)  
• 1pA typical input bias current  
The single and dual feature an Input Range Enhancement  
Circuit (IREC), which enables them to maintain CMRR  
performance for input voltages greater than the positive  
supply. The input signal is capable of swinging 0.25V above the  
positive supply and to 100mV below the negative supply with  
only a slight degradation of the CMRR performance. The  
output operation is rail-to-rail.  
• Down to 2.4V single supply operation  
• Rail-to-rail input and output  
• Enable pin (ISL28148 SOT-23 package only)  
• -40°C to +125°C operation  
The parts draw minimal supply current (900µA per amplifier)  
while meeting excellent DC accuracy, AC performance, noise  
and output drive specifications. The ISL28148 features an  
enable pin that can be used to turn the device off and reduce  
the supply current to a maximum of 16µA. Operation is  
guaranteed across the -40°C to +125°C temperature range.  
• Pb-free (RoHS compliant)  
Applications  
• Low-end audio  
• 4mA to 20mA current loops  
• Medical devices  
• Sensor amplifiers  
• ADC buffers  
• DAC output amplifiers  
Ordering Information  
PART NUMBER  
TAPE AND REEL QUANTITY  
PACKAGE  
PKG.  
(Notes 2, 3)  
ISL28148FHZ-T7 (Notes 1, 4)  
ISL28148FHZ-T7A (Notes 1, 4)  
ISL28248FBZ  
PART MARKING  
GABT  
(UNITS)  
(RoHS Compliant)  
DWG. #  
3k  
6 Ld SOT-23  
P6.064A  
GABT  
250  
6 Ld SOT-23  
8 Ld SOIC  
P6.064A  
M8.15E  
28248 FBZ  
28248 FBZ  
8248Z  
ISL28248FBZ-T7 (Note 1)  
ISL28248FUZ  
1k  
8 Ld SOIC  
M8.15E  
8 Ld MSOP  
8 Ld MSOP  
M8.118A  
M8.118A  
ISL28248FUZ-T7 (Note 1)  
ISL28148EVAL1Z  
8248Z  
1.5k  
Evaluation Board  
Evaluation Board  
Evaluation Board  
ISL28248MSOPEVAL1Z  
ISL28248SOICEVAL1Z  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL28148, ISL28248. For more information on MSL, please see tech  
brief TB363.  
4. The part marking is located on the bottom of the part.  
FN6337 Rev 5.00  
January 22, 2016  
Page 1 of 17  
ISL28148, ISL28248  
Pin Configurations  
ISL28148  
(6 LD SOT-23)  
TOP VIEW  
ISL28248  
(8 LD SOIC)  
TOP VIEW  
ISL28248  
(8 LD MSOP)  
TOP VIEW  
OUT  
V-  
1
2
3
6
5
4
V+  
EN  
IN-  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_A  
IN-_A  
IN+_A  
V-  
1
2
3
4
8
7
6
5
V+  
OUT_B  
IN-_B  
IN+_B  
OUT_B  
IN-_B  
IN+_B  
-
+
- +  
+
-
IN+  
+
-
+ -  
Pin Descriptions  
ISL28248  
(8 Ld SOIC)  
(8 Ld MSOP)  
ISL28148  
(6 Ld SOT-23)  
PIN NAME  
FUNCTION  
EQUIVALENT CIRCUIT  
4
IN-  
inverting input  
2 (A)  
6 (B)  
IN-_A  
IN-_B  
V+  
IN-  
IN+  
V-  
Circuit 1  
3
2
IN+  
IN+_A  
IN+_B  
Noninverting input  
Negative supply  
(See circuit 1)  
3 (A)  
5 (B)  
4
V-  
V+  
CAPACITIVELY  
COUPLED  
ESD CLAMP  
V-  
Circuit 2  
V+  
1
OUT  
Output  
1 (A)  
7 (B)  
OUT_A  
OUT_B  
OUT  
V-  
Circuit 3  
6
5
8
V+  
EN  
Positive supply  
Chip enable  
(See circuit 2)  
V+  
EN  
V-  
Circuit 4  
FN6337 Rev 5.00  
January 22, 2016  
Page 2 of 17  
ISL28148, ISL28248  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.75V  
Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5V  
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1200V  
Thermal Resistance (Typical, Note 5)  
(°C/W)  
JA  
6 Ld SOT-23 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ambient Operating Temperature Range . . . . . . . . . . . . . .-40°C to +125°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
165  
120  
160  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTE:  
5. is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications (V ±5V) V = 0V, V = 2.5V, R = Open, TA = +25°C unless otherwise specified. Boldface limits apply  
-
CM  
L
S
across the operating temperature range, -40°C to +125°C. Temperature data established by characterization.  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
Input Offset Voltage  
TEST CONDITIONS  
(Note 6)  
TYP  
0
(Note 6)  
UNIT  
mV  
V
ISL28148  
ISL28248  
-2.3  
-2.8  
2.3  
2.8  
OS  
0
0.03  
±5  
-1.8  
-2.8  
1.8  
2.8  
mV  
µV/°C  
pA  
V  
Input Offset Voltage vs Temperature  
Input Offset Current  
OS  
---------------  
T  
I
-35  
35  
OS  
T
= -40°C to +85°C  
-80  
80  
A
I
Input Bias Current  
-30  
±1  
30  
pA  
B
T
= -40°C to +85°C  
-80  
80  
A
CMIR  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Guaranteed by CMRR  
0
5
V
CMRR  
V
V
V
V
= 0V to 5V  
75  
70  
98  
98  
dB  
CM  
PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
= 2.4V to 5.5V  
80  
75  
dB  
+
O
O
A
= 0.5V to 4.5V, R = 100kΩto V  
CM  
200  
150  
580  
V/mV  
VOL  
L
= 0.5V to 4.5V, R = 1kΩto V  
CM  
50  
3
V/mV  
mV  
L
V
Maximum Output Voltage Swing  
Output low, R = 100kΩto V  
CM  
6
OUT  
L
8
Output low, R = 1kΩto V  
CM  
50  
4.998  
4.95  
0.9  
70  
110  
mV  
V
L
Output high, R = 100kΩto V  
CM  
4.994  
4.99  
L
Output high, R = 1kΩto V  
4.93  
4.89  
V
L
CM  
I
I
Quiescent Supply Current, Enabled  
Quiescent Supply Current, Disabled  
Short-Circuit Output Source Current  
Short-Circuit Output Sink Current  
Per Amplifier  
1.25  
1.4  
mA  
µA  
mA  
mA  
S,ON  
ISL28148 SOT-23 package only  
10  
14  
16  
S,OFF  
I +  
R
R
= 10Ωto V  
= 10Ωto V  
48  
45  
75  
O
L
CM  
I -  
-68  
-48  
O
L
CM  
-45  
V
V
Supply Operating Range  
EN Pin High Level  
V
to V  
-
2.4  
2
5.5  
V
V
SUPPLY  
+
ISL28148 SOT-23 package only  
ENH  
FN6337 Rev 5.00  
January 22, 2016  
Page 3 of 17  
ISL28148, ISL28248  
Electrical Specifications (V ±5V) V = 0V, V = 2.5V, R = Open, TA = +25°C unless otherwise specified. Boldface limits apply  
-
CM  
L
S
across the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
EN Pin Low Level  
TEST CONDITIONS  
(Note 6)  
TYP  
(Note 6)  
UNIT  
V
V
ISL28148 SOT-23 package only  
0.8  
ENL  
I
EN Pin Input High Current  
V
= V , ISL28148 SOT-23 package only  
1
1.5  
µA  
ENH  
EN  
+
1.6  
I
EN Pin Input Low Current  
V
= V , ISL28148 SOT-23 package only  
12  
25  
nA  
ENL  
EN  
-
30  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
A
R
= 100, R = 100kΩR = 1kΩ  
4.5  
13  
MHz  
MHz  
V
L
f
g
= 10kΩto V  
CM  
Unity Gain  
Bandwidth  
-3dB Bandwidth  
A
= 1, R = 0ΩV  
OUT  
= 10mV  
,
P-P  
V
f
R
= 10kΩto V  
L
CM  
e
Input Noise Voltage Peak-to-Peak  
Input Noise Voltage Density  
f = 0.1Hz to 10Hz  
2
28  
µV  
PP  
N
f
f
= 1kHz  
= 1kHz  
nV/Hz  
pA/Hz  
dB  
O
i
Input Noise Current Density  
0.016  
85  
N
O
CMRR at 60Hz  
Input Common-Mode Rejection Ratio  
V
= 1V , R = 10kΩto V  
P-P CM  
CM  
L
PSRR- At  
120Hz  
Power Supply Rejection Ratio (V )  
V , V = ±1.2V and ±2.5V,  
-82  
dB  
-
+
-
V
= 1V , R = 10kΩto V  
P-P  
SOURCE  
L
CM  
PSRR+ At  
120Hz  
Power Supply Rejection Ratio (V )  
V , V = ±1.2V and ±2.5V  
-100  
dB  
+
+
-
V
= 1V , R = 10kΩto V  
P-P  
SOURCE  
L
CM  
TRANSIENT RESPONSE  
SR Slew Rate  
t , t , Large Rise Time, 10% to 90%, V  
±4  
V/µs  
ns  
A = +2, V  
OUT  
= 3V , R = R = 10kΩ  
P-P  
530  
r
f
OUT  
V
g
f
Signal  
R
= 10kΩto V  
L
CM  
Fall Time, 90% to 10%, V  
A = +2, V  
OUT  
= 3V , R = R = 10kΩ  
P-P  
530  
50  
50  
5
ns  
ns  
ns  
µs  
µs  
OUT  
V
g
f
R
= 10kΩto V  
L
CM  
t , t , Small  
Rise Time, 10% to 90%, V  
A = +2, V  
OUT  
= 10mV  
,
P-P  
r
f
OUT  
V
Signal  
R
= R = R = 10kΩto V  
g
f
L
CM  
Fall Time, 90% to 10%, V  
A = +2, V  
= 10mV  
,
OUT  
V
OUT  
P-P  
R
= R = R = 10kΩto V  
g
f L CM  
t
Enable to Output Turn-On Delay Time, 10%  
= 5V to 0V, A = +2,  
EN V  
EN  
EN to 10% V , (ISL28148)  
R
= R = R = 1kΩto V  
OUT  
g
f
L
CM  
Enable to Output Turn-Off Delay Time, 10%  
V
= 0V to 5V, A = +2,  
0.2  
EN  
V
EN to 10% V , (ISL28148)  
R
= R = R = 1kΩ to V  
OUT  
g
f
L
CM  
NOTE:  
6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN6337 Rev 5.00  
January 22, 2016  
Page 4 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open.  
+
-
CM  
L
15  
1
0
10  
V
= 100mV  
= 50mV  
= 10mV  
OUT  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R = R = 100k  
f
g
V
R = R = 10k  
OUT  
OUT  
f
g
5
0
V
V
= 1V  
OUT  
V
R
= 5V  
= 1k  
+
-5  
L
L
R = R = 1k  
V
R
= 5V  
= 1k  
f
g
+
L
L
C
= 16.3pF  
= +2  
-10  
A
V
C
= 16.3pF  
= +1  
V
= 10mV  
OUT  
P-P  
10k  
A
V
-15  
100  
1k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 1. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES  
R /R  
FIGURE 2. GAIN vs FREQUENCY vs V  
R = 1k  
L
OUT,  
f
g
1
0
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
V
= 100mV  
= 50mV  
OUT  
V
= 100mV  
= 50mV  
= 10mV  
OUT  
OUT  
V
V
V
OUT  
OUT  
= 10mV  
V
OUT  
= 1V  
V
V
= 1V  
OUT  
OUT  
V
= 5V  
= 10k  
V
= 5V  
+
L
L
+
R
C
A
R
C
A
= 100k  
L
L
= 16.3pF  
= +1  
= 16.3pF  
= +1  
V
V
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 4. GAIN vs FREQUENCY vs V  
, R = 100k  
OUT  
FIGURE 3. GAIN vs FREQUENCY vs V  
, R = 10k  
L
L
OUT  
70  
60  
50  
40  
30  
20  
10  
0
1
0
A
= 1, R = INF, R = 0  
g f  
g f  
= 101, R = 1k, R = 100k  
g f  
R
= 1k  
V
L
A
= 1001  
= 101  
V
A
= 10, R = 1k, R = 9.09k  
V
A
V
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
R
= 10k  
A
= 1001, R = 1k, R = 1M  
L
V
g f  
A
V
R
= 100k  
L
V
= 5V  
+
L
L
C
= 16.3pF  
= 10k  
A
= 10  
V
R
V
= 10mV  
OUT  
P-P  
V
V
= 5V  
+
= 10mV  
= 16.3pF  
= +1  
A
= 1  
OUT  
P-P  
V
C
L
A
V
-10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
FIGURE 5. GAIN vs FREQUENCY vs R  
L
FN6337 Rev 5.00  
January 22, 2016  
Page 5 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
+
-
CM  
L
1
8
7
6
C
C
= 51.7pF  
= 43.7pF  
= 37.7pF  
L
L
L
0
V
= 5V  
+
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
V
= 2.4V  
+
C
= 26.7pF  
= 16.7pF  
= 4.7pF  
L
R
C
A
= 10k  
L
L
V
R
= 5V  
= 1k  
= +1  
+
C
L
= 16.3pF  
= +1  
L
C
L
A
V
V
V
= 10mV  
V
= 10mV  
OUT  
P-P  
OUT  
P-P  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
FIGURE 8. GAIN vs FREQUENCY vs C  
FIGURE 7. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
L
10  
0
20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
PSRR-  
PSRR+  
-20  
-40  
-60  
-80  
-100  
-120  
V
= 2.4V, 5V  
= 1k  
V , V = ±1.2V  
+
L
L
+
-
R
C
A
R
= 1k  
L
L
= 16.3pF  
= +1  
C
A
= 16.3pF  
= +1  
V
V
V
= 1V  
V
= 1V  
CM  
P-P  
CM  
P-P  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. CMRR vs FREQUENCY; V = 2.4V AND 5V  
+
FIGURE 10. PSRR vs FREQUENCY, V , V = ±1.2V  
+
-
20  
0
1000  
100  
10  
V
= 5V  
+
R = 1k R = 1k  
f
g
A
= +2  
V
PSRR-  
PSRR+  
-20  
-40  
-60  
-80  
-100  
-120  
V , V = ±2.5V  
+
-
R
= 1k  
L
L
C
A
= 16.3pF  
= +1  
V
V
= 1V  
P-P  
CM  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 12. INPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
FIGURE 11. PSRR vs FREQUENCY V , V = ±2.5V  
+
-
FN6337 Rev 5.00  
January 22, 2016  
Page 6 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
+
-
CM  
L
0
0.1  
V
= 5V  
+
R = 1k R = 1k  
f
g
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
A
= +2  
V
R
= 10k  
A = 10k  
V
V
C
= 5V  
= 16.3pF  
= 10  
L
+
L
R
R = 100k  
f
g
0.01  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10  
TIME (s)  
FREQUENCY (Hz)  
FIGURE 14. INPUT VOLTAGE NOISE 0.1Hz TO 10Hz  
FIGURE 13. INPUT CURRENT NOISE DENSITY vs FREQUENCY  
0.025  
0.020  
0.015  
0.010  
2.0  
1.5  
1.0  
0.5  
0
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
-0.5  
-1.0  
-1.5  
-2.0  
R
= 1k  
R
= 1k  
L
L
L
L
g
C
= 16.3pF  
C
R
A
= 16.3pF  
R = R = 10k  
= R = 10k  
g
f
f
A
OUT  
= 2  
= 2  
V
V
OUT  
V
= 10mV  
V
= 3V  
P-P  
6
P-P  
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
FIGURE 15. LARGE SIGNAL STEP RESPONSE  
FIGURE 16. SMALL SIGNAL STEP RESPONSE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
V
OUT  
V
EN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
= 5V  
= R = 10k  
+
g
L
f
C
= 16.3pF  
= +2  
A
V
V
= 1V  
P-P  
OUT  
R
= 10k  
L
-0.2  
90 100  
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
FIGURE 17. ISL28148 ENABLE TO OUTPUT RESPONSE  
FN6337 Rev 5.00  
January 22, 2016  
Page 7 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
CM  
+
-
L
100  
80  
800  
V
= 5V  
= OPEN  
V
R
= 5V  
= OPEN  
+
L
f
+
L
600  
400  
200  
0
R
R
A
60  
= 100k, R = 100  
g
= +1k  
R = 100k, R = 100  
f
g
40  
A
= +1k  
V
V
20  
0
-20  
-40  
-60  
-80  
-100  
-200  
-400  
-600  
-800  
-1  
0
1
2
3
4
5
6
-1  
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CM  
CM  
FIGURE 18. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT  
VOLTAGE  
FIGURE 19. INPUT BIAS CURRENT vs COMMON-MODE INPUT  
VOLTAGE  
1.2  
10.5  
MAX  
9.5  
1.1  
MAX  
8.5  
1.0  
MEDIAN  
7.5  
MEDIAN  
0.9  
6.5  
0.8  
MIN  
MIN  
5.5  
0.7  
0.6  
4.5  
3.5  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 20. SUPPLY CURRENT ENABLED vs TEMPERATURE V ,  
FIGURE 21. SUPPLY CURRENT DISABLED vs TEMPERATURE V ,  
+
+
V = ±2.5V  
V = ±2.5V  
-
-
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
MAX  
MAX  
MEDIAN  
MEDIAN  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. V vs TEMPERATURE V = 0V, V , V = ±2.75V  
FIGURE 23. V vs TEMPERATURE V = 0V, V , V = ±2.5V  
OS IN  
OS  
IN  
+
-
+
-
FN6337 Rev 5.00  
January 22, 2016  
Page 8 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
CM  
+
-
L
2.0  
300  
250  
200  
150  
100  
50  
MAX  
1.5  
1.0  
0.5  
MAX  
MEDIAN  
MEDIAN  
0
-0.5  
-1.0  
MIN  
MIN  
0
-1.5  
-2.0  
-50  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 25.  
I
- vs TEMPERATURE V , V = ±2.5V  
BIAS + -  
FIGURE 24.  
V
vs TEMPERATURE V = 0V, V , V = ±1.2V  
OS  
IN  
+
-
250  
200  
150  
100  
50  
10  
0
MAX  
MEDIAN  
MIN  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
MAX  
MEDIAN  
MIN  
0
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 27. I vs TEMPERATURE V , V = ±2.5V  
FIGURE 26. I  
- vs TEMPERATURE V , V = ±1.2V  
+ -  
OS  
+
-
BIAS  
20  
10  
1750  
1550  
1350  
1150  
950  
0
MAX  
MEDIAN  
-10  
-20  
-30  
-40  
-50  
-60  
MAX  
MEDIAN  
MIN  
MIN  
750  
550  
350  
150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 29. A  
vs TEMPERATURE R = 100k, V , V = ±2.5V, V = -  
L + - O  
FIGURE 28. I vs TEMPERATURE V , V = ±1.2V  
OS  
VOL  
+
-
2V TO +2V  
FN6337 Rev 5.00  
January 22, 2016  
Page 9 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
CM  
+
-
L
80  
140  
130  
120  
110  
100  
90  
MAX  
70  
60  
MAX  
MEDIAN  
50  
40  
MEDIAN  
MIN  
30  
80  
MIN  
20  
-40  
70  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. CMRR vs TEMPERATURE V  
±2.5V  
= -2.5V TO +2.5V, V V =  
FIGURE 30. A  
vs TEMPERATURE R = 1k, V , V = ±2.5V, V = -2V  
CM  
+,  
-
VOL  
L
+
-
O
TO +2V  
140  
130  
120  
110  
100  
90  
4.970  
4.965  
4.960  
4.955  
MAX  
MAX  
MEDIAN  
4.950  
MEDIAN  
MIN  
MIN  
4.945  
80  
70  
-40  
4.940  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 32. PSRR vs TEMPERATURE V V = ±1.2V TO ±2.75V  
FIGURE 33. V  
OUT  
HIGH vs TEMPERATURE R = 1k,  
L
+,  
-
V , V = ±2.5V  
+
-
75  
70  
65  
60  
55  
50  
45  
40  
4.9994  
4.9992  
4.9990  
4.9988  
4.9986  
4.9984  
4.9982  
MAX  
MAX  
MEDIAN  
MEDIAN  
MIN  
MIN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 35. V  
OUT  
LOW vs TEMPERATURE R = 1k,  
L
FIGURE 34. V  
OUT  
HIGH vs TEMPERATURE R = 100k,  
L
V , V = ±2.5V  
V , V = ±2.5V  
+
-
+
-
FN6337 Rev 5.00  
January 22, 2016  
Page 10 of 17  
ISL28148, ISL28248  
Typical Performance Curves  
V
= 5V, V = 0V, V = 2.5V, R = Open. (Continued)  
CM  
+
-
L
3.3  
3.1  
2.9  
95  
90  
85  
80  
75  
70  
65  
60  
MAX  
MAX  
2.7  
2.5  
MEDIAN  
2.3  
MEDIAN  
2.1  
1.9  
MIN  
MIN  
1.7  
1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 37. + OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE  
= 2.55V, R = 10, V , V = ±2.5V  
FIGURE 36. V  
LOW vs TEMPERATURE R = 100k,  
L
OUT  
V
V , V = ±2.5V  
IN  
L
+
-
+
-
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
MAX  
MIN  
MEDIAN  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
FIGURE 38. - OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE V = -2.55V, R = 10, V , V = ±2.5V  
IN  
L
+
-
FN6337 Rev 5.00  
January 22, 2016  
Page 11 of 17  
ISL28148, ISL28248  
Applications Information  
-
Introduction  
V
R
OUT  
IN  
V
The ISL28148, ISL28248 are single and dual channel CMOS  
rail-to-rail input, output (RRIO) micropower precision operational  
amplifiers. The parts are designed to operate from a single  
supply (2.4V to 5.5V) or a dual supply (±1.2V to ±2.75V). The  
parts have an input common-mode range that extends 0.25V  
above the positive rail and 100mV below the negative supply rail.  
The output can swing within about 3mV of the supply rails with a  
100kΩ load.  
R
IN  
+
L
FIGURE 39. INPUT CURRENT LIMITING  
Enable/Disable Feature  
The ISL28148 offers an EN pin that disables the device when  
pulled up to at least 2.0V. In the disabled state (output in a high  
impedance state), the part consumes typically 10µA at room  
temperature. By disabling the part, multiple ISL28148 parts can  
be connected together as a MUX. In this configuration, the  
outputs are tied together in parallel and a channel can be  
selected by the EN pin. The loading effects of the feedback  
resistors of the disabled amplifier must be considered when  
multiple amplifier outputs are connected together. Note that  
feed-through from the IN+ to IN- pins occurs on any Mux Amp  
disabled channel where the input differential voltage exceeds  
Rail-to-Rail Input  
Many rail-to-rail input stages use two differential input pairs, a  
long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties  
have to be paid for this circuit topology. As the input signal moves  
from one supply rail to another, the operational amplifier  
switches from one input pair to the other causing drastic changes  
in input offset voltage and an undesired change in magnitude  
and polarity of input offset current.  
0.5V (e.g., active channel V  
= 1V, while disabled channel  
= GND), so the Mux implementation is best suited for small  
OUT  
The parts achieve input rail-to-rail operation without sacrificing  
important precision specifications and degrading distortion  
performance. The devices’ input offset voltage exhibits a smooth  
behavior throughout the entire common-mode input range. The  
input bias current vs the common-mode voltage range gives us  
an undistorted behavior from typically 100mV below the negative  
V
IN  
signal applications. If large signals are required, use series IN+  
resistors, or large value R , to keep the feed-through current low  
f
enough to minimize the impact on the active channel. See  
“Limitations of the Differential Input Protection” on page 12 for  
more details.The EN pin also has an internal pull-down. If left  
open, the EN pin will pull to the negative rail and the device will  
be enabled by default. When not used, the EN pin should either  
be left floating or connected directly to the V- pin.  
rail and 0.25V higher than the V rail.  
+
Rail-to-Rail Output  
A pair of complementary MOS devices are used to achieve the  
rail-to-rail output swing. The NMOS sinks current to swing the  
output in the negative direction. The PMOS sources current to  
swing the output in the positive direction. The devices’ with a  
100kΩ load will swing to within 3mV of the positive supply rail and  
within 3mV of the negative supply rail.  
Limitations of the Differential Input  
Protection  
If the input differential voltage is expected to exceed 0.5V, an  
external current limiting resistor must be used to ensure the input  
current never exceeds 5mA. For noninverting unity gain applications  
the current limiting can be via a series IN+ resistor, or via a feedback  
resistor of appropriate value. For other gain configurations, the  
Results of Overdriving the Output  
Caution should be used when overdriving the output for long  
periods of time. Overdriving the output can occur in two ways:  
series IN+ resistor is the best choice, unless the feedback (R ) and  
f
gain setting (R ) resistors are both sufficiently large to limit the input  
g
1. The input voltage times the gain of the amplifier exceeds the  
supply voltage by a large value or  
current to 5mA.  
Large differential input voltages can arise from several sources:  
2. The output current required is higher than the output stage can  
deliver. These conditions can result in a shift in the Input Offset  
• During open loop (comparator) operation. Used this way, the  
IN+ and IN- voltages don’t track, so differentials arise.  
Voltage (V ) as much as 1µV/hr. of exposure under these  
OS  
conditions.  
• When the amplifier is disabled but an input signal is still  
present. An R or R to GND keeps the IN- at GND, while the  
varying IN+ signal creates a differential voltage. Mux Amp  
L
g
IN+ and IN- Input Protection  
All input terminals have internal ESD protection diodes to both  
positive and negative supply rails, limiting the input voltage to  
within one diode beyond the supply rails. They also contain  
back-to-back diodes across the input terminals (see “Pin  
Descriptions” table - Circuit 1 on page 2). For applications where  
the input differential voltage is expected to exceed 0.5V, an  
external series resistor must be used to ensure the input currents  
never exceed 5mA (Figure 39).  
applications are similar, except that the active channel V  
determines the voltage on the IN- terminal.  
OUT  
• When the slew rate of the input pulse is considerably faster  
than the op amp’s slew rate. If the V cannot keep up with  
OUT  
the IN+ signal, a differential voltage results and visible  
distortion occurs on the input and output signals. To avoid this  
issue, keep the input slew rate below 4.8V/µs, or use  
appropriate current limiting resistors.  
Large (>2V) differential input voltages can also cause an  
increase in disabled I  
.
CC  
FN6337 Rev 5.00  
January 22, 2016  
Page 12 of 17  
ISL28148, ISL28248  
Using Only One Channel  
Power Dissipation  
If the application does not use all channels, then the user must  
configure the unused channel(s) to prevent them from  
oscillating. The unused channel(s) will oscillate if the input and  
output pins are floating. This will result in higher than expected  
supply currents and possible noise injection into the channel  
being used. The proper way to prevent this oscillation is to short  
the output to the negative input and ground the positive input (as  
shown in Figure 40).  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power-supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (T  
) for all applications to determine if power  
JMAX  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related in Equation 1:  
T
= T  
+  xPD  
MAXTOTAL  
(EQ. 1)  
JMAX  
MAX  
JA  
-
Where:  
• P  
is the sum of the maximum power dissipation of  
+
DMAXTOTAL  
each amplifier in the package (PD  
)
MAX  
FIGURE 40. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
• PD  
for each amplifier can be calculated as shown in  
Equation 2:  
MAX  
V
OUTMAX  
Proper Layout Maximizes Performance  
----------------------------  
PD  
= 2*V I  
+ V - V    
OUTMAX  
MAX  
S
SMAX  
S
R
L
(EQ. 2)  
To achieve the maximum performance of the high input  
impedance and low offset voltage, care should be taken in the  
circuit board layout. The PC board surface must remain clean  
and free of moisture to avoid leakage currents between adjacent  
traces. Surface coating of the circuit board will reduce surface  
moisture and provide a humidity barrier, reducing parasitic  
resistance on the board. When input leakage current is a  
concern, the use of guard rings around the amplifier inputs will  
further reduce leakage currents. Figure 41 shows a guard ring  
example for a unity gain amplifier that uses the low impedance  
amplifier output at the same voltage as the high impedance  
input to eliminate surface leakage. The guard ring does not need  
to be a specific width, but it should form a continuous loop  
around both inputs. For further reduction of leakage currents,  
components can be mounted to the PC board using Teflon  
standoff insulators.  
Where:  
• T  
MAX  
= Maximum ambient temperature  
= Thermal resistance of the package  
JA  
• PD  
MAX  
= Maximum power dissipation of 1 amplifier  
• V = Supply voltage (Magnitude of V and V )  
S
+
-
• I  
= Maximum supply current of 1 amplifier  
MAX  
• V  
= Maximum output voltage swing of the application  
• R = Load resistance  
OUTMAX  
L
.
V+  
HIGH IMPEDANCE INPUT  
IN  
FIGURE 41. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER  
Current Limiting  
These devices have no internal current limiting circuitry. If the  
output is shorted, it is possible to exceed the absolute maximum  
rating for output current or power dissipation, potentially  
resulting in the destruction of the device.  
FN6337 Rev 5.00  
January 22, 2016  
Page 13 of 17  
ISL28148, ISL28248  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN6337.5  
CHANGE  
January 22, 2016  
-Removed part number ISL28448 throughout the datasheet.  
-Updated 3rd bullet under Features section.  
-Ordering information table on page 1: Added ISL28248MSOPEVAL1Z, ISL28248SOICEVAL1Z.  
-Electrical spec table on page 3, Changed VOS limits for the ISL28148: Min from -1.8, -2 to -2.3, -2.8 and Max  
from 1.8, 2 to 2.3, 2.8.  
Thermal Information table on page 3, changes are:  
6ld SOT-23: from 230C/W, to 165C/W  
8ld SOIC: from 125C/W, to 120C/W  
8ld MSOP: from 175C/W, to 160C/W  
- Added revision history and About Intersil verbiage  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2007-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6337 Rev 5.00  
January 22, 2016  
Page 14 of 17  
ISL28148, ISL28248  
Package Outline Drawing  
P6.064A  
6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
Rev 0, 2/10  
1.90  
0-3°  
0.08-0.20  
0.95  
D
A
6
5
4
PIN 1  
INDEX AREA  
2.80  
3
1.60  
3
5
0.15 C D  
2x  
(0.60)  
1
2
3
0.20  
2x  
C
SEE DETAIL X  
END VIEW  
0.40 ±0.05  
3
B
0.20 M C A-B  
D
TOP VIEW  
10° TYP  
(2 PLCS)  
5
0.15 C A-B  
2x  
2.90  
H
1.14 ±0.15  
1.45 MAX  
C
GAUGE  
PLANE  
(0.25)  
0.10  
C
SEATING PLANE  
0.05-0.15  
(0.60)  
SIDE VIEW  
DETAIL "X"  
4
0.45±0.1  
(1.20)  
NOTES:  
(2.40)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3.  
4. Foot length is measured at reference to guage plane.  
Dimension is exclusive of mold flash, protrusions or gate burrs.  
This dimension is measured at Datum “H”.  
Package conforms to JEDEC MO-178AA.  
5.  
6.  
(0.95)  
(1.90)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6337 Rev 5.00  
January 22, 2016  
Page 15 of 17  
ISL28148, ISL28248  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6337 Rev 5.00  
January 22, 2016  
Page 16 of 17  
ISL28148, ISL28248  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
0.18 ± 0.05  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
PLANE  
H
C
0.25  
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3.  
Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
TYPICAL RECOMMENDED LAND PATTERN  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
FN6337 Rev 5.00  
January 22, 2016  
Page 17 of 17  

相关型号:

ISL28248MSOPEVAL1Z

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28248SOICEVAL1Z

4.5MHz, Single and Dual Precision Rail-to-Rail Input-Output Op Amps with Very Low Input Bias Current
RENESAS

ISL28256

39uA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FAZ-T7

39uA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ

DUAL OP-AMP, 250uV OFFSET-MAX, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL28256FBZ-T7

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FBZ-T7

DUAL OP-AMP, 250uV OFFSET-MAX, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
RENESAS

ISL28256FUZ

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FUZ

DUAL OP-AMP, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8
RENESAS

ISL28256FUZ-T7

39レA Micropower Single and Dual Precision Rail-to-Rail Input-Output (RRIO) Low Input Bias Current Op Amps
INTERSIL

ISL28256FUZ-T7

DUAL OP-AMP, 0.25MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MSOP-8
RENESAS