HSP43881 [INTERSIL]

Digital Filter; 数字滤波器
HSP43881
型号: HSP43881
厂家: Intersil    Intersil
描述:

Digital Filter
数字滤波器

文件: 总21页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSP43881  
Data Sheet  
May 1999  
File Number 2758.4  
Digital Filter  
Features  
The HSP43881 is a video speed Digital Filter (DF) designed  
to efficiently implement vector operations such as FIR digital  
filters. It is comprised of eight filter cells cascaded internally  
and a shift and add output stage, all in a single integrated  
circuit. Each filter cell contains a 8 x 8-bit multiplier, three  
decimation registers and a 26-bit accumulator. The output  
stage contains an additional 26-bit accumulator which can  
add the contents of any filter cell accumulator to the output  
stage accumulator shifted right by 8 bits. The HSP43881 has  
a maximum sample rate of 30MHz. The effective multiply  
accumulate (mac) rate is 240MHz.  
• Eight Filter Cells  
• 0MHz to 30MHz Sample Rate  
• 8-Bit Coefficients and Signal Data  
• 26-Bit Accumulator Per Stage  
• Filter Lengths Over 1000 Taps  
• Expandable Coefficient Size, Data Size and Filter Length  
• Decimation by 2, 3 or 4  
Applications  
The HSP43881 DF can be configured to process expanded  
coefficient and word sizes. Multiple DFs can be cascaded for  
larger filter lengths without degrading the sample rate or a  
single DF can process larger filter lengths at less than  
30MHz with multiple passes. The architecture permits  
processing filter lengths of over 1000 taps with the  
guarantee of no overflows. In practice, most filter coefficients  
are less than 1.0, making even larger filter lengths possible.  
The DF provides for 8-bit unsigned or two’s complement  
arithmetic, independently selectable for coefficients and  
signal data.  
• 1-D and 2-D FIR Filters  
• Radar/Sonar  
• Adaptive Filters  
• Echo Cancellation  
• Complex Multiply-Add  
• Sample Rate Converters  
Ordering Information  
PART  
NUMBER  
TEMP. RANGE  
o
( C)  
PACKAGE  
84 Ld PLCC  
84 Ld PLCC  
84 Ld PLCC  
85 Ld PGA  
85 Ld PGA  
85 Ld PGA  
PKG. NO.  
N84.1.15  
N84.1.15  
N84.1.15  
G85.A  
Each DF filter cell contains three resampling or decimation  
registers which permit output sample rate reduction at rates  
HSP43881JC-20  
HSP43881JC-25  
HSP43881JC-30  
HSP43881GC-20  
HSP43881GC-25  
HSP43881GC-30  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
1
1
1
of / , / or / the input sample rate. These registers also  
2
3
4
provide the capability to perform 2-D operations such as  
matrix multiplication and N x N spatial  
correlations/convolutions for image processing applications.  
G85.A  
G85.A  
Block Diagram  
V
V
SS  
CC  
DIN0 - DIN7 TCS  
8
DIENB  
CIENB  
5
DCMO - 1  
ERASE  
8
8
8
8
8
8
8
8
TCCI  
TCCO  
DF  
DF  
DF  
DF  
DF  
DF  
DF  
DF  
FILTER  
CELL 0  
FILTER  
CELL 1  
FILTER  
CELL 2  
FILTER  
CELL 3  
FILTER  
CELL 4  
FILTER  
CELL 5  
FILTER  
CELL 6  
FILTER  
CELL 7  
8
5
8
8
8
8
8
8
8
8
CIN0 - 7  
COUT0 - 7  
RESET  
CLK  
26  
26  
26  
26  
26  
26  
26  
5
26  
COENB  
3
ADR0 - 2  
MUX  
26  
RESET  
CLK  
ADR0, ADR1, ADR2  
2
OUTPUT  
STAGE  
SHADD  
SENBL  
SENBH  
2
26  
SUM0 - 25  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HSP43881  
Pinouts  
85 PIN GRID ARRAY (PGA)  
TOP VIEW, PINS DOWN  
1
2
3
4
5
6
7
8
9
10  
11  
V
V
V
SS  
A
B
C
D
E
RESET DIN7 DIN6 DIN3 DIN0 TCCI  
COENB  
CC  
CC  
V
V
SS  
CIENB  
COUT7 TCCO ERASE TCS  
ALIGN  
DIN1 DIN2  
DIN5 DIN4  
CIN7 CIN6 CIN4  
CIN5 CIN3  
CC  
DIENB  
COUT5 COUT6  
PIN  
V
COUT3 COUT4  
CIN2  
CIN0  
CC  
SENBL  
COUT1  
COUT2  
V
CIN1  
SS  
V
V
V
F
COUT0 SHADD  
CC  
SS  
SS  
SUM0  
SUM1  
G
ADR2 DCM0 CLK  
ADR1 ADR0  
SUM3 SUM2  
H
J
SUM5 SUM4  
V
V
SUM25  
SUM24  
SUM20 SUM17 SUM16  
SUM7  
SS  
CC  
K
SENBH  
V
SUM19  
SUM15 SUM12 SUM10 SUM8 SUM6  
V
V
SS  
CC  
SS  
L
DCM1 SUM23 SUM22 SUM21 SUM18 SUM14  
SUM13  
SUM11 SUM9  
V
V
SS  
CC  
HSP43881  
TOP VIEW, PINS UP  
1
2
3
4
5
6
7
8
9
10  
11  
L
DCM1 SUM23 SUM22 SUM21 SUM18 SUM14  
V
SUM13  
V
SUM11 SUM9  
CC  
SS  
K
SENBH SUM24  
V
V
SUM19  
V
SS  
SUM15 SUM12 SUM10 SUM8  
SUM6  
SS  
CC  
J
V
SUM25  
ADR0  
DCM0  
SUM20 SUM17 SUM16  
SUM7  
SUM5  
SUM3  
V
CC  
SS  
H
ADR1  
ADR2  
SUM4  
SUM2  
G
F
CLK  
SUM1  
SUM0  
CIN1  
V
COUT0 SHADD  
V
V
SS  
CC  
SS  
E
D
COUT1  
V
COUT2  
CIN0 SENBL  
SS  
V
CIN2  
CIN5  
CIN6  
COUT3 COUT4  
COUT5 COUT6  
CC  
C
B
ALIGN  
PIN  
DIENB  
DIN5  
DIN4  
CIN3  
CIN4  
V
COUT7 COUT8 ERASE DIN8  
DIN1  
DIN6  
DIN2  
DIN3  
CIENB  
DIN0  
CIN7  
CIN8  
CC  
A
V
COENB  
V
DIN7  
V
V
RESET  
SS  
CC  
CC  
SS  
2
HSP43881  
Pinouts (Continued)  
84 LEAD PLCC PACKAGE  
BOTTOM VIEW  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
SUM23  
SUM22  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
COUT6  
COUT7  
V
V
SS  
CC  
SUM21  
SUM20  
SUM19  
SUM18  
TCCO  
COENB  
V
CC  
ERASE  
RESET  
DIENB  
TCS  
V
SS  
SUM17  
SUM16  
DIN7  
V
CC  
SUM15  
SUM14  
SUM13  
SUM12  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
V
SS  
SUM11  
SUM10  
SUM9  
SUM8  
SUM7  
DIN1  
DIN0  
CIENB  
TCCI  
V
CC  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
NOTE: An overbar on a signal name represents an active LOW signal.  
3
HSP43881  
Pin Description  
PIN  
SYMBOL  
NUMBER  
TYPE  
DESCRIPTION  
V
A3, A10, B1,  
D11, F10, J1,  
K4, L7  
+5V Power Supply Input.  
CC  
V
A1, A11, E2,  
F1, E11, H11,  
K3, K6, L9  
Power Supply Ground Input.  
SS  
CLK  
G3  
I
I
The CLK input provides the DF system sample clock. The maximum clock frequency is 30MHz.  
DIN0-7  
A58, B67, C67  
These eight inputs are the data sample input bus. Eight bit data samples are synchronously loaded  
through these pins to the X register of each filter cell simultaneously. The DIENB signal enables  
loading, which is synchronous on the rising edge of the clock signal.  
TCS  
B5  
C5  
I
The TCS input determines the number system interpretation of the data input samples on pins  
DIN0-7 as follows:  
TCS = Low Unsigned Arithmetic.  
TCS = High Two's Complement Arithmetic.  
The TCS signal is synchronously loaded into the X register in the same way as the DIN0-7  
inputs.  
DIENB  
I
A low on this enables the data sample input bus (DIN0-7) to all the filter cells. A rising edge of the  
CLK signal occurring while DIENB is low will load the X register of every filter cell with the 8-bit value  
present on DIN0-7. A high on this input forces all the bits of the data sample input bus to zero; a  
rising CLK edge when DIENB is high will load the X register of every filter cell with all zeros. This  
signal is latched inside the DF, delaying its effect by one clock internal to the DF. Therefore, it must  
be low during the clock cycle immediately preceding presentation of the desired data on the  
DIN0-7 inputs. Detailed operation is shown in later timing diagrams.  
CIN0-7  
TCCI  
B9-11,  
C10-11, D10,  
E9-10  
I
I
These eight inputs are used to input the 8-bit coefficients. The coefficients are synchronously load-  
ed into the C register of filter CELL 0 if a rising edge of CLK occurs while CIENB is low. The CIENB  
signal is delayed by one clock as discussed below.  
A9  
The TCCI input determines the number system interpretation of the coefficient inputs on pins CIN07  
as follows:  
TCCI = LOW E Unsigned Arithmetic.  
TCCI = HIGH E Two's Complement Arithmetic.  
The TCCI signal is synchronously loaded into the C register in the same way as the CIN0-7 inputs.  
CIENB  
B8  
I
A low on this input enable the C register of every filter cell and the D registers (decimation) of every  
filter cell according to the state of the DCM0-1 inputs. A rising edge of the CLK signal occurring while  
CIENB is low will load the C register and appropriate D registers with the coefficient data present at  
their inputs. This provides the mechanism for shifting the coefficients from cell to cell through the  
device. A high on this input freezes the contents of the C register and the D registers ignoring the  
CLK signal. This signal is latched and delayed by one clock internal to the DF. Therefore, it must be  
low during the clock cycle immediately preceding presentation of the desired coefficient of the CIN0-  
7 inputs. Detailed operation is shown in the Timing Diagrams Section.  
COUT0-7  
B2, C1-2,  
D1-2, E1, E3,  
F2  
O
These eight three-state outputs are used to output the 8-bit coefficients from filter cell 7. These out-  
puts are enabled by the COENB signal low. These outputs may be tied to the CIN0-7 inputs of the  
same DF to recirculate the coefficients, or they may be tied to the CIN0-7 inputs of another DF to  
cascade DFs for longer filter lengths.  
TCCO  
B3  
A2  
O
I
The TCCO three-state output determines the number system representation of the coefficients out-  
put on COUTO-7. It tracks the TCCI signal to this same DF. It should be tied to the TCCI input of the  
next DF in a cascade of DFs for increased filter lengths. This signal is enabled by COENB low.  
COENB  
A low on the COENB input enables the COUT0-7 and the TCCO output. A high on this input places  
all these outputs in their high impedance state.  
4
HSP43881  
Pin Description (Continued)  
PIN  
SYMBOL  
NUMBER  
TYPE  
DESCRIPTION  
These two inputs determine the use of the internal decimation registers as follows:  
DCM0-1  
G2, L1  
DCM1  
DCM0  
Decimation Function  
0
0
1
1
0
1
0
1
Decimation Registers not used.  
One Decimation Register is used.  
Two Decimation Registers are used.  
Three Decimation Registers are used.  
The coefficients pass from cell to cell at a rate determined by the number of decimation registers  
used. When no decimation registers are used, coefficients move from cell to cell on each clock.  
When one decimation register is used, coefficients move from cell to cell on every other clock, etc.  
These signals are latched and delayed by one clock internal to the DF.  
SUM0-25  
J2, J5-8, J10,  
K2, K5-11,  
L-26, L8,  
O
These 26 three-state outputs are used to output the results of the internal filter cell computations.  
Individual filter cell results or the result of the shift and add output stage can be output. If an individ-  
ual filter cell result is to be output, the ADR0-2 signals select the filter cell result. The SHADD signal  
determines whether the selected filter cell result or the output stage adder result is output. The sig-  
nals SENBH and SENBL enable the most significant and least significant bits of the SUM0-25 result,  
respectively. Both SENBH and SENBL may be enabled simultaneously if the system has a 26-bit or  
larger bus. However, individual enables are provided to facilitate use with a 16-bit bus.  
L10-11  
SENBH  
SENBL  
ADR0-2  
K1  
E11  
I
I
I
A low on this input enables result bits SUM16-25. A high on this input places these bits in their high  
impedance state.  
A low on this input enables result bits SUM0-15. A high on this input places these bits in their high  
impedance state.  
G1, H1-2  
These inputs select the one cell whose accumulator will be read through the output bus (SUM0-25)  
or added to the output stage accumulator. They also determine which accumulator will be cleared  
when ERASE is low. For selection of which accumulator to read through the output bus (SUM0-25)  
or which to add to the output stage accumulator, these inputs are latched in the DF and delayed by  
one clock internal to the device. If the ADR0-2 lines remain at the same address for more than one  
clock, the output at SUM0-25 will not change to reflect any subsequent accumulator updates in the  
addressed cell. Only the result available during the first clock, when ADR0-1 selects the cell, will be  
output. This does not hinder normal operation since the ADR0-1 lines are changed sequentially.  
This feature facilitates the interface with slow memories where the output is required to be fixed for  
more than one clock.  
SHADD  
RESET  
F3  
A4  
I
I
I
The SHADD input controls the activation of the shift-and-add operation in the output stage. This  
signal is latched in the DF and delayed by one clock internal to the device. A detailed explanation is  
given in the DF Output Stage Section.  
A low on this input synchronously clears all the internal registers, except the cell accumulators. It  
can be used with ERASE to also clear all the accumulators simultaneously. This signal is latched in  
the DF and delayed by one clock internal to the DF.  
ERASE  
B4  
C3  
A low on this input synchronously clears the cell accumulator selected by the ADR0-1 signals. If  
RESET is also low simultaneously, all cell accumulators are cleared.  
ALIGN PIN  
Used for aligning chip in socket or printed circuit board. Must be left as a no connect in circuit.  
COUT0-7. With no decimation, the coefficient moves directly  
from the C register to the output, and is valid on the clock  
following its entrance. When decimation is selected the  
coefficient exit is delayed by 1, 2 or 3 clocks by passing through  
one or more decimation registers (D1, D2 or D3).  
Functional Description  
The Digital Filter Processor (DF) is composed of eight filter cells  
cascaded together and an output stage for combining or  
selecting filte5r cell outputs (See Block Diagram). Each filter cell  
contains a multiplier accumulator and several registers (Figure  
1). Each 8-bit coefficient is multiplied by an 8-bit data sample,  
with the result added to the 26-bit accumulator contents. The  
coefficient output of each cell is cascaded to the coefficient  
input of the next cell to its right.  
The combination of D registers through which the coefficient  
passes is determined by the state of DCM0 and DCM1. The  
output signals (COUT0-7) are connected to the CIN0-7 inputs  
of the next cell to its right. The COENB input signal enables the  
COUT0-7 outputs of the right most cell to the COUT-07 pins of  
the device.  
DF Filter Cell  
An 8-bit coefficient (CIN0-7) enters each cell through the C  
register on the left and exits the cell on the right as signals  
The C and D registers are enabled for loading by CIENB.  
Loading is synchronous with CLK when CIENB is low. Note that  
5
HSP43881  
CIENB is latched internally. It enables the register for loading  
after the next CLK following the onset of CIENB low. Actual  
loading occurs on the second CLK following the onset of  
CIENB low. Therefore, CIENB must be low during the clock  
cycle immediately preceding presentation of the coefficient on  
the CIN0-7 inputs. In most basic FIR operations, CIENB will be  
low throughout the process, so this latching and delay  
sequence is only important during the initialization phase.  
When CIENB is high, the coefficients are frozen.  
decoded from ADR0-2 and the ERASE signal enable clearing  
of the accumulator on the next CLK.  
The ERASE and RESET signals clear the DF internal  
registers and states as follows:  
ERASE RESET  
CLEARING EFFECT  
1
1
No clearing occurs, internal state remains  
same.  
1
0
RESET only active, all registers except accu-  
mulators are cleared, including the internal  
pipeline registers.  
These registers are cleared synchronously under control of  
RESET, which is latched and delayed exactly like CIENB. The  
output of the C register (C0-8) is one input to 8 x 8 multiplier.  
0
0
1
0
ERASE only active, the accumulator whose  
address is given by the ADR0-2 inputs is  
cleared.  
The other input to the 8 x 8 multiplier comes from the output of  
the X register. This register is loaded with a data sample from  
the device input signals DIN0-7 discussed above. The X  
register is enabled for loading by DIENB. Loading is  
Both RESET and ERASE active, all accumula-  
tors, as well as all other registers are cleared.  
synchronous with CLK when DIENB is low. Note that DIENB is  
latched internally. It enables the register for loading after the  
next CLK following the onset of DIENB low. Actual loading  
occurs on the second CLK following the onset of DIENB low;  
therefore, DIENB must be low during the clock cycle  
The DF Output Stage  
The output stage consists of a 26-bit adder, 26-bit register,  
feedback multiplexer from the register to the adder, an output  
multiplexer and a 26-bit three-state driver stage (Figure 2).  
immediately preceding presentation of the data sample on the  
DIN0-7 inputs. In most basic FIR operations, DIENB will be low  
throughout the process, so this latching and delay sequence is  
only important during the initialization phase. When DIENB is  
high, the X register is loaded with all zeros.  
The 26-bit output adder can add any filter cell accumulator  
result to the 18 most significant bits of the output buffer. This  
result is stored back in the output buffer. This operation takes  
place in one clock period. The eight LSBs of the output buffer  
are lost. The filter cell accumulator is selected by the ADR0-2  
inputs.  
The multiplier is pipelined and is modeled as a multiplier core  
followed by two pipeline registers, MREG0 and MREG1 (Figure  
1). The multiplier output is sign extended and input as one  
operand of the 26-bit adder. The other adder operand is the  
output of the 26-bit accumulator. The adder output is loaded  
synchronously into both the accumulator and the TREG.  
The 18 MSBs of the output buffer actually pass through the  
zero mux on their way to the output adder input. The zero mux  
is controlled by the SHADD input signal and selects either the  
output buffer 18 MSBs or all zeros for the adder input. A low  
on the SHADD input selects zero. A high on the SHADD input  
selects the output buffer MSBs, thus, activating the shift and  
add operation. The SHADD signal is latched and delayed by  
one clock internally.  
The TREG loading is disabled by the cell select signal,  
CELLn, where n is the cell number. The cell select is decoded  
from the ADR0-2 signals to generate the TREG load enable.  
The cell select is inverted and applied as the load enable to  
the TREG. Operation is such that the TREG is loaded  
whenever the cell is not selected. Therefore, TREG is loaded  
every clock except the clock following cell selection. The  
purpose of the TREG is to hold the result of a sum of products  
calculation during the clock when the accumulator is cleared  
to prepare for the next sum of products calculation. This  
allows continuous accumulation without wasting clocks.  
The accumulator is loaded with the adder output every clock  
unless it is cleared. It is cleared synchronously in two ways.  
When RESET and ERASE are both low, the accumulator is  
cleared along with all other registers on the device. Since  
ERASE and RESET are latched and delayed one clock  
internally, clearing occurs on the second CLK following the  
onset of both ERASE and RESET low.  
The second accumulator clearing mechanism clears a single  
accumulator in a selected cell. The cell select signal, CELLn,  
6
HSP43881  
DCM1.D  
DCM0.D  
RESET.D  
CIENB.D  
TCCI  
THREE-STATE BUFFERS  
ON CELL 7 ONLY  
C.TCCI  
LD CLR  
C REG  
LD CLR  
D1 REG  
LD CLR  
D2 REG  
LD CLR  
D3 REG  
1
1
C0-7  
0-7  
7
TCCO  
CIN0-7  
MUX  
MUX  
D.TCCI  
D0-7  
CLK  
CLK  
CLK  
COUT0-7  
0
0
C0-8  
B
RESET.D  
DIENB.D  
COENB  
LD CLR  
X REG  
TCS  
C
X0-8  
7
MULTIPLIER  
CORE  
X
DIN0-7  
P0-17  
CLK  
MREG0  
CLR  
LATCHES  
RESET.D  
CLK  
DCM1  
DCM0  
RESET  
DIENB  
CIENB  
ADR0  
DCM1.D  
DCM0.D  
RESET.D  
DIENB.D  
CIENB.D  
ADR0.D  
ADR1.D  
ADR2.D  
ERASE.D  
MREG1  
CLR  
ADR1  
0-17 SIGN EXTENSION  
18-25  
ACC.D0-25  
ADR2  
ERASE  
ADDER  
CLK  
ACC0-25  
CLK  
ERASE.D  
CELLn  
ACC  
CLR  
ADR0  
ADR1  
ADR2  
CELL 0  
CELL 1  
DECODER  
T REG  
LD  
CELLn  
CLK  
D
Q
CELL 7  
AOUT0-25  
FIGURE 1. FILTER CELL  
7
HSP43881  
0
1
6
7
26  
26  
26  
26  
3
CELL RESULT  
MUX  
ADR0.D-ADR2.D  
0-18  
18  
SIGN EXT  
18-25  
8
26  
RESET.D  
CLR  
18 (LSBs)  
0-17  
+
26  
SHADD  
SHADD.D  
ZERO  
MUX  
RESET.D  
D
Q
OUTPUT  
BUFFER  
CLK  
0
1
26  
26  
8-25  
18  
CLK  
0
18 MSBs SHIFTED  
8 BITS TO RIGHT  
(BITS 0 - 17)  
1
0
OUTPUT  
MUX  
RESET.D  
26  
CLR  
Q
2
SENBL  
SENBH  
THREE-STATE  
BUFFER  
D
26  
CLK  
SUM0-25  
FIGURE 2. DF OUTPUT STAGE  
The 26 least significant bits (LSBs) from either a cell  
accumulator or the output buffer are output on the SUM0-25  
bus. The output mux determines whether the cell  
accumulator selected by ADR0-2 or the output buffer is  
output to the bus. This mux is controlled by the SHADD input  
signal. Control is based on the state of the SHADD during  
two successive clocks; in other words, the output mux  
selection contains memory. If SHADD is low during a clock  
cycle and was low during the previous clock, the output mux  
selects the contents of the filter cell accumulator addressed  
by ADR0-2. Otherwise the output mux selects the contents  
of the output buffer.  
The SUM0-25 output bus is controlled by the SENBH and  
SENBL signals. A low on SENBL enables bits SUM0-15. A  
low on SENBH enables bits SUM16-25. Thus, all 26 bits can  
be output simultaneously if the external system has a 26-bit  
or larger bus. If the external system bus is only 16 bits, the  
bits can be enabled in two groups of 16 and 10 bits (sign  
extended).  
DF Arithmetic  
Both data samples and coefficients can be represented as  
either unsigned or two's complement numbers. The TCS and  
TCCI inputs determine the type of arithmetic representation.  
Internally all values are represented by a 9-bit two's  
complement number. The value of the additional ninth bit  
depends on the arithmetic representation selected. For two's  
complement arithmetic, the sign is extended into the ninth  
bit. For unsigned arithmetic, bit-9 is 0.  
If the ADR0-2 lines remain at the same address for more  
than one clock, the output at SUM0-25 will not change to  
reflect any subsequent accumulator updates in the  
addressed cell. Only the result available during the first clock  
when ADR0-2 selects the cell will be output. This does not  
hinder normal FIR operation since the ADR0-2 lines are  
changed sequentially. This feature facilitates the interface  
with slow memories where the output is required to be fixed  
for more than one clock.  
The multiplier output is 18 bits and the accumulator is 26  
bits. The accumulator width determines the maximum  
possible number of terms in the sum of products without  
8
HSP43881  
overflow. The maximum number of terms depends also on  
For practical FIR filters, the coefficients are never all near  
maximum value, so even larger vectors are possible in  
practice.  
the number system and the distribution of the coefficient and  
data values. Then maximum numbers of terms in the sum  
products are:  
Basic FIR Operation  
MAX #  
A simple, 30MHz 8-tap filter example serves to illustrate  
more clearly the operation of the DF. The sequence table  
(Table 1) shows the results of the multiply accumulate in  
each cell after each clock. The coefficient sequence, Cn,  
enters the DF on the left and moves from left to right through  
the cells. The data sample sequence, Xn, enters the DF from  
the top, with each cell receiving the same sample  
NUMBER SYSTEM  
Two Unsigned Vectors  
OF TERMS  
1032  
Two Two's Complement:  
Two Positive Vectors  
2080  
2047  
• Negative Vectors  
• One Positive and One Negative Vector  
2064  
simultaneously. Each cell accumulates the sum of products  
for one output point. Eight sums of products are calculated  
simultaneously, but staggered in time so that a new output is  
available every system clock.  
One Unsigned and One Two's Complement  
Vector:  
• Positive Two's Complement Vector  
1036  
1028  
• Negative Two's Complement Vector  
TABLE 1. 30MHz, 8-TAP FIR FILTER SEQUENCE  
X ...X  
X
...X  
X
X
1, 0  
15  
9, 8,  
7
HSP43881  
C ...C  
C
C ...C  
6,  
C
Y
...Y ...Y  
15 14,  
Y
8, 7  
0
6, 7,  
0
7
CLK  
0
CELL 0  
x X  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
0
0
0
-
7
0
1
+C x X  
C
x X  
1
0
0
-
6
1
2
3
4
5
6
7
7
2
+C x X  
+C x X  
C
x X  
2
0
-
5
6
2
3
4
7
3
+C x X  
+C x X  
+C x X  
C
x X  
3
-
4
5
6
3
4
7
4
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
4
-
3
4
5
6
4
5
7
5
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
C
x X  
5
-
2
3
5
4
5
5
6
5
6
7
6
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
6
-
1
2
6
7
8
3
6
4
6
5
6
6
7
7
7
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
7
Cell 0 (Y7)  
Cell 1 (Y8)  
Cell 2 (Y9)  
Cell 3 (Y10)  
Cell 4 (Y11)  
Cell 5 (Y12)  
Cell 6 (Y13)  
Cell 7 (Y14)  
Cell 0 (Y15)  
0
1
2
7
3
7
4
7
5
6
7
7
8
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
6
7
8
0
1
8
2
8
3
8
4
8
5
8
8
9
+C x X  
C
x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
5
6
9
7
9
0
9
1
9
2
9
3
9
4
9
9
10  
11  
12  
13  
14  
15  
+C x X  
+C x X  
C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
4
5
10  
11  
12  
13  
14  
15  
6
10  
11  
12  
13  
14  
15  
7
10  
0
10  
1
10  
2
10  
11  
12  
3
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
+C x X  
+C x X  
+C x X  
C x X  
+C x X  
+C x X  
+C x X  
+C x X  
3
4
5
6
11  
12  
13  
14  
15  
7
11  
0
11  
1
2
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
+C x X  
+C x X  
+C x X  
2
3
4
5
6
12  
13  
14  
15  
7
12  
0
1
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C
x X  
+C x X  
+C x X  
1
2
3
4
5
6
13  
14  
15  
7
13  
0
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
0
1
2
3
4
5
6
14  
7
+C x X  
+C x X  
1
+C x X  
+C x X  
+C x X  
+C x X  
+C x X  
C x X  
7 15  
0
2
3
4
5
15  
6
9
HSP43881  
SAMPLE  
DATA IN  
(X )  
n
3-BIT  
COUNTER  
30MHz  
+5V  
CLOCK  
Y
Y
Y
1 0  
2
ADR2 ADR1 ADR0  
V
SHADD SENBH SENBL  
CC  
8
DIN0-7  
DIENB  
TCS  
SUM  
OUT  
26  
SUM0-25  
(Y )  
n
HSP43881  
TCCO  
NC  
NC  
CLK  
A2 A1 A0  
D0-D7  
TCCI  
8
COUT0-7  
COENB  
8
CIN0-7  
8 x 8 COEFF.  
RAM/ROM  
CIENB DCM1 DCM0 RESET ERASE  
V
SS  
SYSTEM  
RESET  
ERASE  
FIGURE 3. 30MHZ, 8 TAP FIR FILTER APPLICATION SCHEMATIC  
Detailed operation of the DF to perform a basic 8-tap, 8-bit  
coefficient, 8-bit data, 30MHz FIR filter is best understood by  
observing the schematic (Figure 3) and timing diagram  
(Figure 4). The internal pipeline length of the DF is four (4)  
clock cycles, corresponding to the register levels CREG (or  
XREG), MREG0, MREG1, and TREG (Figures 1 and 2).  
Therefore, the delay from presentation of data and  
coefficients at the DIN0-7 and CIN0-7 inputs to a sum  
appearing at the SUM0-25 output is:  
Extended FIR Filter Length  
Filter lengths greater that eight taps can be created by either  
cascading together multiple DF devices or “reusing” a single  
device. Using multiple devices, an FIR filter of over 1000-  
taps can be constructed to operate at a 30MHz sample rate.  
Using a single device clocked at 30MHz, a FIR filter of over  
1000 taps can be constructed to operate at less than a  
30MHz sample rate. Combinations of these two techniques  
are also possible.  
k + Td  
Where:  
k = filter length  
Td = 4, the internal pipeline delay of DF  
After the pipeline has filled, a new output sample is available  
every clock. The delay to last sample output from last  
sample input is Td.  
The output sums, Yn, shown in the Timing Diagram are  
derived from the sum of products equation:  
Y(n) = C(0) x X(n) + C(1) x X(n1) + C(2) x X(n -2) + C(3)  
x X(n -3) + C(4) x X(n -4) + C(5) x X(n -5) + C(6) x X(n -6)  
+ C(7) x X(n -7)  
10  
HSP43881  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
CLK  
RESET  
ERASE  
X
X
X
C
X
X
X
X
C
X
X
C
X
C
X
X
X
X
X
X
X
X
X
17 18  
DIN0-7  
DIENB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
5
CIN0-7  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
CIENB  
ADR0-2  
0
1
2
3
4
5
6
7
0
Y
Y
Y
Y
Y
Y
Y
Y
13 14  
SUM0-24  
SHADD  
7
8
9
10  
11  
12  
SENBL  
SENBH  
DCM0-1  
0
7
Y
=
C
× X  
N
K
N K  
K = 0  
FIGURE 4. 30MHz, 8-TAP FIR FILTER TIMING  
11  
SAMPLE  
DATA IN  
(X )  
n
C
D
Q
Q
30MHz  
CLOCK  
2
+5V  
+5V  
ADR1 ADR0 ADR2  
V
SHADD SENBH SENBL  
SUM0-24  
ADR1 ADR0 ADR2  
V
SHADD SENBH SENBL  
SUM0-24  
CC  
CC  
25  
8
25  
8
DIN0-7  
DIENB  
TCS  
DIN0-7  
DIENB  
TCS  
HSP43881  
DF0  
HSP43881  
DF1  
8
TCCO  
NC  
NC  
CLK  
CLK  
8x16 COEFF.  
RAM/ROM  
CLK  
TCCI  
TCCO  
TCCI  
Y0  
A0  
8
8
8
D0-D7  
A1  
CIN0-7  
COUT0-7  
CIN0-7  
COUT0-7  
COENB  
4-BIT  
COUNTER  
Y1  
Y2  
Y3  
A2  
A3  
CIENB DCM1 DCM0 RESET ERASE  
V
COENB  
CIENB DCM1 DCM0 RESET ERASE V  
SS  
SS  
RESET  
SUM  
OUT  
SYSTEM  
RESET  
(Y )  
n
FIGURE 5. 30MHz, 16-TAP FIR FILTER CASCADE APPLICATION SCHEMATIC  
HSP43881  
Extended Coefficient and Data Sample  
Cascade Configuration  
Word Size  
To design a filter length L>8, L/8 DFs are cascaded by  
connecting the COUT0-7 outputs of the (i)th DF to the CIN0-  
7 inputs of the (i+1)th DF. The DIN0-7 inputs and SUM0-25  
outputs of all the DFs are also tied together. A specific  
example of two cascaded DFs illustrates the technique  
(Figure 5). Timing (Figure 6) is similar to the simple 8-tap  
FIR, except the ERASE and SENBL/SENBH signals must be  
enabled independently for the two DFs in order to clear the  
correct accumulators and enable the SUM0-25 output  
signals at the proper times.  
The sample and coefficient word size can be extended by  
utilizing several DFs in parallel to get the maximum sample  
rate or a single DF with resulting lower sample rates. The  
technique is to compute partial products of 8 x 8 and  
combine these partial products by shifting and adding to  
obtain the final result. The shifting and adding can be  
accomplished with external adders (at full speed) or with the  
DF's shift and add mechanism contained in its output stage  
(at reduced speed).  
Single DF Configuration  
Decimation/Resampling  
Using a single DF, a lter of length L>8 can be constructed  
by processing in L/8 passes as illustrated in the following  
table (Table 2) for a 16-tap FIR. Each pass is composed of  
Tp = 7 + L cycles and computes eight output samples. In  
pass i, the sample with indices i*8 to i*8 +(L1) enter the  
The HSP43881 DF provides a mechanism for decimating by  
factors of 2, 3, or 4. From the DF filter cell block diagram  
(Figure 1), note the three D registers and two multiplexers in  
the coefficient path through the cell. These allow the  
coefficients to be delayed by 1, 2, or 3 clocks through the  
cell. The sequence table (Table 3) for a decimate by two filter  
illustrates the technique (internal cell pipelining ignored for  
simplicity).  
DIN0-7 inputs. The coefficients C -C  
enter the CIN0-7  
0
L -1  
inputs, followed by seven zeros. As these zeros are entered,  
the result samples are output and the accumulators reset.  
Initial filing of the pipeline is not shown in this sequence  
table. Filter outputs can be put through a FIFO to even out  
the sample rate.  
Detailed timing for a 30MHz input sample rate, 15MHz  
output sample rate (i.e., decimate by two), 16-tap FIR filter,  
including pipelining, is shown in Figure 7. This filter requires  
only a single HSP43881 DF.  
13  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
0
1
2
3
4
5
CLK  
RESET  
DF0 ERASE  
DF1 ERASE  
DIN0-7  
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X X X X X X X  
31 32 33 34 35 36 37  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15 16 17 18 19 20  
21 22 23 24 25 26 27 28 29 30  
DIENB  
CIN0-7  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C C C C C C  
15 14 13 12 11 10  
15  
14 13 12  
11 10  
9
8
7
6
5
4
3
2
1
0
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
8
CIENB  
ADR0-2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
Y
Y Y  
31 32 33  
Y
Y
Y
Y
Y
Y
Y
Y
DF0 SUM0-25  
DF1 SUM0-25  
SHADD  
15 16 17 18 19 20  
21 22  
Y
Y
Y
Y
Y
Y Y Y  
27 28 29 30  
23 24 25 26  
DF0 SENBL/H  
DF1 SENBL/H  
DCM0-1  
0
15  
Y
=
C
× X  
K N K  
N
K = 0  
FIGURE 6. 16-TAP 30MHz FIR FILTER TIMING USING TWO CASCADED HSP43881s  
HSP43881  
TABLE 2. 16-TAP FIR FILTER SEQUENCE USING A SINGLE DF  
Data  
Sequence  
Input  
X
...X , X  
30  
X
...X  
X
1, 0  
9
8, 22  
Coefficient  
Sequence  
Input  
HSP43881  
CELL 4  
C ...C , C  
14 15,  
0...0, C ...C  
0
C
...0, Y ...Y  
30 23,  
0...0, Y ...Y  
22,  
0...0  
15,  
0
14, 15  
CLK  
6
CELL 0  
CELL 1  
CELL 2  
CELL 3  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
x X  
0
0
0
0
0
0
-
15  
0
7
+C x X  
C
x X  
-
14  
1
2
3
4
5
15  
1
8
+C x X  
C
x X  
2
-
13  
15  
9
+C x X  
C
x X  
3
-
12  
15  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
+C x X  
+C x X  
C
x X  
4
-
11  
14  
4
5
6
7
8
15  
+C x X  
+C x X  
C
x X  
5
-
10  
13  
15  
+C x X  
+C x X  
C
x X  
-
9
6
12  
15  
6
+C x X  
+C x X  
C
C
C
x X  
x X  
x X  
-
8
7
11  
15  
14  
13  
7
+C x X  
+C x X  
-
7
8
10  
+C9 x X  
8
+C x X  
-
6
9
9
9
+C x X  
+C x X  
C
C
C
x X  
x X  
x X  
-
5
10  
11  
12  
13  
14  
15  
8
10  
11  
12  
13  
14  
15  
16  
12  
11  
10  
10  
11  
12  
13  
14  
15  
16  
+C x X  
+C x X  
-
4
7
+C x X  
+C x X  
-
3
6
+C x X  
+C x X  
C
x X  
x X  
x X  
x X  
-
2
5
9
8
7
6
+C x X  
+C x X  
C
-
1
4
+C x X  
0
+C x X  
C
C
CELL 0 (Y15)  
CELL 1 (Y16)  
3
0
+C x X  
2
+C x X  
0
16  
23  
24  
25  
26  
27  
28  
0
0
0
0
0
0
0
0
0
0
0
0
C
x X  
17  
+C x X  
C
C
x X  
x X  
CELL 2 (Y17)  
CELL 3 (Y18)  
CELL 4 (Y19)  
CELL 5 (Y20)  
CELL 6 (Y21)  
CELL 7 (Y22)  
0
1
17  
5
17  
18  
19  
20  
21  
22  
0
0
0
0
0
+C x X  
0
18  
4
C
x X  
19  
0
C x X  
3
0
C
x X  
20  
0
0
0
C
x X  
x X  
0
0
0
0
2
1
C x X  
0
0
0
C
21  
0
C x X  
0
15  
HSP43881  
TABLE 2. 16-TAP FIR FILTER SEQUENCE USING A SINGLE DF (Continued)  
Data  
Sequence  
Input  
X
...X , X  
30  
X
...X  
X
1, 0  
9
8, 22  
Coefficient  
Sequence  
Input  
HSP43881  
C ...C , C  
14 15,  
0...0, C ...C  
0
C
...0, Y ...Y  
30 23,  
0...0, Y ...Y  
22,  
0...0  
15,  
0
14, 15  
CLK  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
CELL 0  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
x X  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
15  
8
0
0
0
+C x X  
C
x X  
0
-
14  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
15  
9
0
+C x X  
+C x X  
15 10  
0
-
13  
+C x X  
-
12  
+C x X  
C
x X  
12  
-
11  
15  
+C x X  
C
x X  
15 13  
-
10  
+C x X  
C
x X  
15 14  
-
9
+C x X  
C
C
C
C
C
C
x X  
x X  
x X  
x X  
x X  
x X  
-
8
15  
14  
13  
12  
11  
10  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
+C x X  
-
7
+C x X  
-
6
+C x X  
-
5
+C x X  
-
4
+C x X  
-
3
+C x X  
C
x X  
x X  
x X  
x X  
-
2
9
8
7
6
+C x X  
C
-
1
+C x X  
0
C
C
CELL 0 (Y23)  
CELL 1 (Y24)  
0
C
x X  
24  
0
46  
47  
0
0
0
0
C
x X  
0
C
x X  
CELL 2 (Y25)  
CELL 3 (Y26)  
0
25  
C
x X  
5
25  
0
26  
C x X  
4
26  
48  
0
0
0
C x X  
C
x X  
CELL 4 (Y27)  
0
27  
3
27  
16  
HSP43881  
TABLE 3. 16-TAP DECIMATE BY TWO FIR FILTER SEQUENCE; 30MHz IN, 15MHz OUT  
Data  
Sequence ...X , X  
X
0
2
1,  
Input  
Coefficient  
Sequence  
Input  
HSP43881  
...C , C , ...C  
15  
C
, C  
...Y , -, ...Y -, Y  
19 17, 15  
0
13, 14 15  
CLK  
6
CELL 0  
x X  
CELL 1  
CELL 2  
CELL 3  
CELL 4  
CELL 5  
CELL 6  
CELL 7  
SUM/CLR  
C
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
15  
0
7
+C x X  
14  
-
1
2
3
4
5
8
+C x X  
13  
C
x X  
-
15  
2
9
+C x X  
12  
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
+C x X  
11  
C
x X  
-
15  
4
+C x X  
-
10  
+C x X  
C
x X  
6
-
9
6
15  
+C x X  
-
8
7
+C x X  
C
x X  
8
-
7
8
15  
+C x X  
-
6
9
+C x X  
C x X  
15 10  
-
5
10  
11  
12  
13  
14  
15  
16  
+C x X  
-
4
+C x X  
C
x X  
-
3
15 12  
+C x X  
-
2
+C x X  
C
x X  
-
1
15 14  
+C x X  
+C x X  
14  
CELL 0 (Y15)  
0
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
C
x X  
+C x X  
13  
-
15  
+C x X  
+C x X  
12  
CELL 1 (Y17)  
14  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
+C x X  
+C x X  
11  
-
13  
+C x X  
+C x X  
10  
CELL 2 (Y19)  
12  
+C x X  
+C x X  
-
11  
9
+C x X  
+C x X  
CELL 3 (Y21)  
10  
8
+C x X  
+C x X  
-
9
7
+C x X  
+C x X  
CELL 4 (Y23)  
8
6
+C x X  
+C x X  
-
7
5
+C x X  
+C x X  
CELL 5 (Y25)  
6
4
+C x X  
+C x X  
-
5
3
+C x X  
+C x X  
CELL 6 (Y27)  
4
2
+C x X  
+C x X  
-
3
1
+C x X  
+C x X  
CELL 7 (Y29)  
-
2
0
+C x X  
C
x X  
1
15  
+C x X  
14 31  
+C x X  
14 31  
+C x X  
14 31  
+C x X  
14 31  
+C x X  
14 31  
+C x X  
14  
31  
+C x X  
+C x X  
CELL 8 (Y31)  
0
14 31  
17  
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
0
1
2
3
4
5
CLK  
RESET  
ERASE  
X
X
X
X
X
X
X
X
X
X
X X X X X X X X X X X X X X X X X X X X X X X X X X X X  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37  
DIN0-7  
0
1
2
3
4
5
6
7
8
9
8
DIENB  
CIN0-7  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C C C C C C  
15 14 13 12 11 10  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
CIENB  
ADR0-2  
0
1
2
3
4
5
6
7
0
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
33  
SUM0-25  
SHADD  
15  
17  
19  
21  
23  
25  
27  
29  
31  
8
SENBL  
SENBH  
DCM0-1  
1
FIGURE 7. 16-TAP DECIMATE-BY-TWO FIR FILTER TIMING; 30MHz, 15MHz OUT  
HSP43881  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0V  
Input, Output Voltage . . . . . . . . . . . . . . . . . . . GND -0.5 to V 0.5V  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 1  
Thermal Resistance (Typical, Note 1)  
PLCC Package . . . . . . . . . . . . . . . . . .  
PGA Package . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
34  
36  
N/A  
7
CC  
o
PLCC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C  
PGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 C  
Maximum Storage Temperature Range. . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 300 C  
Operating Conditions  
o
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±5%  
o
o
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
o
(PLCC - Lead Tips Only)  
Die Characteristics  
Gate Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17,763 Gates  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
DC Electrical Specifications  
PARAMETER  
SYMBOL  
NOTES  
TEST CONDITIONS  
= Max  
MIN  
MAX  
UNITS  
Power Supply Current  
I
Notes 2, 4  
V
-
140  
mA  
CCOP  
CC  
CLK Frequency 20MHz  
Standby Power Supply Current  
Input Leakage Current  
Output Leakage Current  
Logical One Input Voltage  
Logical Zero Input Voltage  
Logical One Output Voltage  
Logical Zero Output Voltage  
Clock Input High  
I
Note 4  
V
V
V
V
V
= Max  
-
-10  
-10  
2.0  
-
500  
10  
10  
-
µA  
µA  
µA  
V
CCSB  
CC  
CC  
CC  
CC  
CC  
I
= Max, Input = 0V or V  
= Max, Input = 0V or V  
= Max  
I
CC  
I
O
CC  
V
IH  
V
= Min  
0.8  
-
V
IL  
V
I
I
= 400µA, V  
= Min  
= Min  
2.6  
-
V
OH  
OH  
CC  
V
= 2mA, V  
CC  
0.4  
-
V
OL  
OL  
V
V
V
= Max  
= Min  
3.0  
-
V
IHC  
CC  
CC  
Clock Input Low  
V
0.8  
V
ILC  
Input Capacitance PLCC  
PGA  
C
Note 3  
CLK Frequency 1MHz  
All measurements referenced to  
-
10  
15  
pF  
pF  
IN  
GND  
Output CapacitancePLCC  
PGA  
C
-
10  
15  
pF  
pF  
o
OUT  
T = 25 C  
A
NOTES:  
2. Operating supply current is proportional to frequency. Typical rating is 7mA/MHz.  
3. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design  
changes.  
4. Output load per test load circuit and C = 40pF.  
L
19  
HSP43881  
o
o
AC Electrical Specifications  
V
= 5V ±5%, T = 0 C to + 70 C  
CC  
A
-20 (20MHz)  
-25 (25.6MHz)  
-30 (30MHz)  
PARAMETER  
TEST CONDITIONS  
SYMBOL  
NOTES  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
ns  
Clock Period  
t
t
t
50  
20  
20  
16  
0
-
-
39  
16  
16  
14  
0
-
-
33  
13  
13  
13  
0
-
-
CP  
CL  
CH  
Clock Low  
ns  
Clock High  
-
-
-
ns  
Input Setup  
t
-
-
-
ns  
IS  
IH  
Input Hold  
t
-
-
-
ns  
CLK to Coefficient Output Delay  
Output Enable Delay  
Output Disable Delay  
CLK to SUM Output Delay  
Output Rise  
t
t
t
t
-
24  
20  
20  
27  
6
-
20  
15  
15  
25  
6
-
18  
15  
15  
21  
6
ns  
ODC  
OED  
ODD  
ODS  
-
-
-
ns  
Note 5  
-
-
-
ns  
-
-
-
ns  
t
t
Note 5  
Note 5  
-
-
-
ns  
OR  
OF  
Output Fall  
-
6
-
6
-
6
ns  
NOTE:  
5. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design  
changes.  
Test Load Circuit  
S
1
DUT  
(NOTE 6) C  
L
I
1.5V  
I
OL  
±
OH  
EQUIVALENT CIRCUIT  
NOTES:  
6. Includes stray and jig capacitance.  
7. Switch S Open for I and I Tests.  
CCOP  
1
CCSB  
20  
HSP43881  
Waveforms  
4.0V  
0.0V  
2.0V  
IS  
t
CP  
CLK  
3.0V  
t
t
IH  
t
t
CL  
CH  
1.5V  
1.5V  
INPUT  
2.0V  
CLK  
2.0V  
2.0V  
0.0V  
Input includes: DIN0-7, CIN0-7, DIENB, CIENB, ERASE,  
RESET,DCM0-1, ADRO-2, TCS, TCCI, SHADD  
FIGURE 8. CLOCK AC PARAMETERS  
2.0V  
FIGURE 9. INPUT SETUP AND HOLD  
CLK  
SUM0-25  
2.0V  
0.8V  
t
t
ODC, ODS  
1.5V  
COUT0-7  
TCCO  
t
OR  
t
OF  
SUM-25, COUTO-7, TCCO are assumed not to be in high-  
impedance state.  
FIGURE 10. SUM0-25, COUT0-7, TCCO OUTPUT DELAYS  
FIGURE 11. OUTPUT RISE AND FALL TIMES  
SENBL  
SENBH  
COENB  
DEVICE  
UNDER  
TEST  
3.0V  
0.0V  
1.5V  
1.5V OUTPUT  
INPUT  
1.5V  
1.5V  
t
t
ODD  
OED  
SUM0-25  
COUT0-7  
TCCO  
1.7V  
1.3V  
NOTE: AC Testing: Inputs are driven at 3.0V for Logic and “1” and  
0.0V for Logic “0”. Input and output timing measurements are made  
at 1.5 for both a Logic “1” and “0”. CLK is driven at 4.0 and 0V and  
measured at 2.0V.  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
FIGURE 12. OUTPUT ENABLE, DISABLE TIMING  
FIGURE 13. AC TESTING INPUT, OUTPUT WAVEFORM  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
21  

相关型号:

HSP43881/883

Digital Filter
INTERSIL

HSP43881883

Digital Filter
INTERSIL

HSP43881GC-20

Digital Filter
INTERSIL

HSP43881GC-25

Digital Filter
INTERSIL

HSP43881GC-30

Digital Filter
INTERSIL

HSP43881GM-20/883

IC,DIGITAL FILTER,CMOS,PGA,84PIN,CERAMIC
RENESAS

HSP43881GM-25/883

Digital Filter
INTERSIL

HSP43881JC-20

Digital Filter
INTERSIL

HSP43881JC-25

Digital Filter
INTERSIL

HSP43881JC-30

Digital Filter
INTERSIL

HSP43881QM-20/883

Digital Filter
ETC

HSP43881QM-25/883

Digital Filter
ETC