EL5221CW-T7 [INTERSIL]

Dual 12MHz Rail-to-Rail Input-Output Buffer; 双12MHz的轨至轨输入,输出缓冲器
EL5221CW-T7
型号: EL5221CW-T7
厂家: Intersil    Intersil
描述:

Dual 12MHz Rail-to-Rail Input-Output Buffer
双12MHz的轨至轨输入,输出缓冲器

放大器 光电二极管 局域网
文件: 总11页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5221  
®
Data Sheet  
Augus t 2, 2005  
FN7187.1  
Dual 12MHz Rail-to-Rail Input-Output  
Buffer  
Features  
• 12MHz -3dB bandwidth  
• Unity gain buffer  
The EL5221 is a dual, low power, high voltage rail-to-rail  
input-output buffer. Operating on supplies ranging from 5V to  
15V, while consuming only 500µA per channel, the EL5221  
has a bandwidth of 12MHz -(-3dB). The EL5221 also  
provides rail-to-rail input and output ability, giving the  
maximum dynamic range at any supply voltage.  
• Supply voltage = 4.5V to 16.5V  
• Low supply current (per buffer) = 500µA  
• High slew rate = 10V/µs  
• Rail-to-rail operation  
The EL5221 also features fast slewing and settling times, as  
well as a high output drive capability of 30mA (sink and  
source). These features make the EL5221 ideal for use as  
voltage reference buffers in Thin Film Transistor Liquid  
Crystal Displays (TFT-LCD). Other applications include  
battery power, portable devices, and anywhere low power  
consumption is important.  
Pb-Free plus anneal available (RoHS compliant)  
Applications  
• TFT-LCD drive circuits  
• Electronics notebooks  
• Electronics games  
The EL5221 is available in space-saving 6-pin SOT-23 and  
8-pin MSOP packages and operates over a temperature  
range of -40°C to +85°C.  
• Personal communication devices  
• Personal Digital Assistants (PDA)  
• Portable instrumentation  
• Wireless LANs  
Ordering Information  
TAPE &  
PART NUMBER  
EL5221CW-T7  
EL5221CW-T7A  
PACKAGE  
REEL  
PKG. DWG. #  
MDP0038  
• Office automation  
6-Pin SOT-23* 7” (3K pcs)  
6-Pin SOT-23* 7” (250 pcs)  
• Active filters  
MDP0038  
• ADC/DAC buffer  
EL5221CWZ-T7  
(See Note)  
6-Pin SOT-23* 7” (3K pcs)  
(Pb-free)  
MDP0038  
Pinouts  
EL5221CWZ-T7A 6-Pin SOT-23* 7” (250 pcs)  
MDP0038  
EL5221  
(6-PIN SOT-23)  
TOP VIEW  
(See Note)  
(Pb-free)  
EL5221CY  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
EL5221CY-T7  
EL5221CY-T13  
VINA  
VS-  
1
2
3
6
5
4
VOUTA  
VS+  
EL5221CYZ  
(See Note)  
8-Pin MSOP  
(Pb-free)  
VINB  
VOUTB  
EL5221CYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-free)  
7”  
MDP0043  
MDP0043  
EL5221  
(8-PIN MSOP)  
TOP VIEW  
EL5221CYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-free)  
13”  
*EL5221CW symbol is .Mxxx where xxx represents date code.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
VOUTA  
NC  
1
2
3
4
8
VS+  
7
6
5
VOUTB  
NC  
VINA  
VS-  
VINB  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2002, 2005. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5221  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . .+18V  
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
ESD Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
S
S
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V - - 0.5V, V + +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 30mA  
Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .+125°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 10kand C = 10pF to 0V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 0V  
2
5
12  
mV  
µV/°C  
nA  
OS  
CM  
(Note 1)  
= 0V  
TCV  
OS  
I
V
2
50  
B
CM  
R
C
1
GΩ  
IN  
IN  
V
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
-4.5V V  
4.5V  
0.995  
4.85  
60  
1.005  
-4.85  
V/V  
OUT  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -5mA  
-4.92  
4.92  
V
V
OL  
L
I = 5mA  
L
OH  
I
Short to GND  
±120  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Buffer)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from ±2.25V to ±7.75V  
80  
dB  
µA  
S
I
No load  
500  
750  
S
-4.0V V  
4.0V, 20% to 80%  
7
10  
500  
12  
V/µs  
ns  
OUT  
t
Settling to +0.1%  
-3dB Bandwidth  
V = 2V step  
O
S
BW  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over the operating temperature range  
2. Slew rate is measured on rising and falling edges  
2
EL5221  
Electrical Specifications V + = +5V, V - = 0V, R = 10kand C = 10pF to 2.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 2.5V  
2
5
10  
mV  
µV/°C  
nA  
OS  
CM  
(Note 1)  
= 2.5V  
TCV  
OS  
I
V
2
50  
B
CM  
R
1
GΩ  
IN  
IN  
V
C
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
0.5 V  
4.5V  
0.995  
4.85  
60  
1.005  
150  
V/V  
OUT  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
4.92  
±120  
OH  
L
I
Short to GND  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Buffer)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No Load  
500  
750  
S
1V V  
4V, 20% to 80%  
7
10  
500  
12  
V/µs  
ns  
OUT  
V = 2V Step  
O
t
Settling to +0.1%  
-3dB Bandwidth  
S
BW  
R = 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over the operating temperature range  
2. Slew rate is measured on rising and falling edges  
3
EL5221  
Electrical Specifications V + = +15V, V - = 0V, R = 10kand C = 10pF to 7.5V, T = 25°C unless otherwise specified.  
S
S
L
L
A
PARAMETER  
DESCRIPTION  
CONDITION  
MIN  
TYP  
MAX  
UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
Average Offset Voltage Drift  
Input Bias Current  
Input Impedance  
V
= 7.5V  
CM  
2
5
14  
mV  
µV/°C  
nA  
OS  
TCV  
(Note 1)  
= 7.5V  
OS  
I
V
2
50  
B
CM  
R
1
GΩ  
IN  
IN  
V
C
Input Capacitance  
Voltage Gain  
1.35  
pF  
A
0.5 V  
OUT  
14.5V  
0.995  
14.85  
60  
1.005  
150  
V/V  
OUTPUT CHARACTERISTICS  
V
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -5mA  
80  
mV  
V
OL  
L
I = 5mA  
14.92  
±120  
OH  
L
I
Short to GND  
mA  
SC  
POWER SUPPLY PERFORMANCE  
PSRR Power Supply Rejection Ratio  
Supply Current (Per Buffer)  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 2)  
V
is moved from 4.5V to 15.5V  
80  
dB  
µA  
S
I
No Load  
500  
750  
S
1V V  
14V, 20% to 80%  
V = 2V Step  
O
7
10  
500  
12  
V/µs  
ns  
OUT  
t
Settling to +0.1%  
-3dB Bandwidth  
S
BW  
R
= 10k, C = 10pF  
MHz  
dB  
L
L
CS  
Channel Separation  
f = 5MHz  
75  
NOTES:  
1. Measured over the operating temperature range  
2. Slew rate is measured on rising and falling edges  
4
EL5221  
Typical Performance Curves  
Input Offset Voltage Distribution  
2000  
Input Offset Voltage Drift  
35  
30  
25  
20  
15  
10  
5
V
T
=±5V  
=25°C  
V
T
=±5V  
S
=25°C  
Typical  
Production  
Distribution  
Typical  
Production  
Distribution  
S
A
A
1600  
1200  
800  
400  
0
0
Input Offset Voltage (mV)  
Input Offset Voltage, TCVOS (µV/°C)  
Input Offset Voltage vs Temperature  
Input Bias Current vs Temperature  
10  
5
4
2
V
=±5V  
V =±5V  
S
S
0
0
-2  
-4  
-5  
-10  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Output Low Voltage vs Temperature  
Output High Voltage vs Temperature  
-4.91  
-4.92  
-4.93  
-4.94  
-4.95  
-4.96  
-4.97  
4.97  
4.96  
4.95  
4.94  
4.93  
V
I
=±5V  
V
I
=±5V  
S
S
=5mA  
=-5mA  
OUT  
OUT  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
5
EL5221  
Typical Performance Curves (Continued)  
Slew Rate vs Temperature  
Voltage Gain vs Temperature  
1.001  
13  
12.5  
12  
V
=±5V  
S
1.0005  
V
=±5V  
S
1.0000  
0.9995  
0.999  
11.5  
11  
10.5  
10  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Supply Current per Channel vs Temperature  
Supply Current per Channel vs Supply Voltage  
0.55  
0.5  
650  
550  
450  
350  
250  
V
=±5V  
S
T
=25°C  
A
0.45  
0.4  
-50  
0
50  
100  
150  
0
5
10  
Supply Voltage (V)  
15  
20  
Temperature (°C)  
Frequency Response for Various C  
Frequency Response for Various R  
L
L
5
0
20  
10  
R =10kΩ  
L
10kΩ  
1kΩ  
V
=±5V  
S
12pF  
50pF  
0
560Ω  
150Ω  
C =10pF  
L
S
-5  
V
=±5V  
-10  
-20  
-30  
100pF  
-10  
1000pF  
-15  
1M  
Frequency (Hz)  
100M  
100k  
10M  
1M  
Frequency (Hz)  
100M  
100k  
10M  
6
EL5221  
Typical Performance Curves (Continued)  
Output Impedance vs Frequency  
200  
Maximum Output Swing vs Frequency  
12  
10  
8
V
=±5V  
S
A
160  
120  
80  
T
=25°C  
V
T
=±5V  
=25°C  
S
A
6
R =10kΩ  
C =12pF  
L
L
4
Distortion <1%  
40  
2
0
0
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
PSRR vs Frequency  
Input Voltage Noise Spectral Density vs Frequency  
80  
60  
40  
20  
0
600  
100  
PSRR+  
PSRR-  
10  
V
=±5V  
S
A
T
=25°C  
1
1k  
10k  
Frequency (Hz)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
100  
10M  
Frequency (Hz)  
Total Harmonic Distortion + Noise vs Frequency  
Channel Separation vs Frequency Response  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
-60  
Dual measured Channel A to B  
Quad measured Channel A to D or B to C  
Other combinations yield improved  
-80 rejection.  
V
=±5V  
S
R =10kΩ  
V
L
=220mV  
IN  
RMS  
-100  
-120  
-140  
V
=±5V  
S
L
R =10kΩ  
V
=1V  
IN  
RMS  
1k  
10k  
100k  
1M  
6M  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
7
EL5221  
Typical Performance Curves (Continued)  
Small-Signal Overshoot vs Load Capacitance  
100  
Settling Time vs Step Size  
5
4
V
=±5V  
S
L
L
V
=±5V  
S
R =10kΩ  
C =12pF  
T
80  
60  
40  
20  
0
3
R =10kΩ  
L
IN  
0.1%  
0.1%  
V
T
=±50mV  
=25°C  
2
A
=25°C  
A
1
0
-1  
-2  
-3  
-4  
-5  
10  
100  
1000  
0
200  
400  
600  
800  
Load Capacitance (pF)  
Settling Time (nS)  
Large Signal Transient Response  
Small Signal Transient Response  
50mV  
200ns  
1V  
1µS  
V
T
=±5V  
=25°C  
S
A
L
R =10kΩ  
C =12pF  
L
V
T
=±5V  
=25°C  
S
A
R =10kΩ  
C =12pF  
L
L
8
EL5221  
Pin Des criptions  
SOT23-6  
MSOP-8  
PIN NAME  
FUNCTION  
Buffer A Input  
EQUIVALENT CIRCUIT  
1
3
VINA  
V
+
S
V
-
S
Circuit 1  
2
3
4
4
5
7
VS-  
VINB  
Negative Supply Voltage  
Buffer B Input  
(Reference Circuit 1)  
VOUTB  
Buffer B Output  
V
V
+
S
-
S
GND  
Circuit 2  
5
6
8
1
VS+  
Positive Supply Voltage  
Buffer A Output  
VOUTA  
(Reference Circuit 2)  
input is a 10V  
approximately 9.985V  
sinusoid. The output voltage is  
Applications Information  
P-P  
.
P-P  
Product Des cription  
The EL5221 unity gain buffer is fabricated using a high  
voltage CMOS process. It exhibits rail-to-rail input and  
output capability and has low power consumption (500µA  
per buffer). These features make the EL5221 ideal for a wide  
range of general-purpose applications. When driving a load  
of 10kand 12pF, the EL5221 has a -3dB bandwidth of  
12MHz and exhibits 10V/µs slew rate.  
5V  
10µS  
V
T
=±5V  
=25°C  
=10V  
S
A
V
IN P-P  
Operating Voltage, Input, and Output  
5V  
The EL5221 is specified with a single nominal supply voltage  
from 5V to 15V or a split supply with its total range from 5V  
to 15V. Correct operation is guaranteed for a supply range of  
4.5V to 16.5V. Most EL5221 specifications are stable over  
both the full supply range and operating temperatures of  
-40°C to +85°C. Parameter variations with operating voltage  
and/or temperature are shown in the typical performance  
curves.  
FIGURE 1. OPERATION WITH RAIL-TO-RAIL INPUT AND  
OUTPUT  
Short Circuit Current Limit  
The EL5221 will limit the short circuit current to ±120mA if  
the output is directly shorted to the positive or the negative  
supply. If an output is shorted indefinitely, the power  
dissipation could easily increase such that the device may  
be damaged. Maximum reliability is maintained if the output  
continuous current never exceeds ±30mA. This limit is set by  
the design of the internal metal interconnects.  
The output swings of the EL5221 typically extend to within  
80mV of positive and negative supply rails with load currents  
of 5mA. Decreasing load currents will extend the output  
voltage range even closer to the supply rails. Figure 1 shows  
the input and output waveforms for the device. Operation is  
from ±5V supply with a 10kload connected to GND. The  
Output Phas e Revers al  
The EL5221 is immune to phase reversal as long as the  
input voltage is limited from V - -0.5V to V + +0.5V. Figure  
S
S
2 shows a photo of the output of the device with the input  
9
EL5221  
voltage driven beyond the supply rails. Although the device's  
output will not change phase, the input's overvoltage should  
be avoided. If an input voltage exceeds supply voltage by  
more than 0.6V, electrostatic protection diodes placed in the  
input stage of the device begin to conduct and overvoltage  
damage could occur.  
where:  
i = 1 to 2 for dual buffer  
V = Total supply voltage  
S
I
= Maximum supply current per channel  
SMAX  
V
i = Maximum output voltage of the application  
OUT  
1V  
10µS  
I
i = Load current  
LOAD  
If we set the two P  
can solve for R  
LOAD  
equations equal to each other, we  
i to avoid device overheat. Figure 3 and  
DMAX  
Figure 4 provide a convenient way to see if the device will  
overheat. The maximum safe power dissipation can be  
found graphically, based on the package type and the  
ambient temperature. By using the previous equation, it is a  
V
T
V
=±2.5V  
=25°C  
S
A
=6V  
IN  
P-P  
1V  
simple matter to see if P  
exceeds the device's power  
DMAX  
derating curves. To ensure proper operation, it is important  
to observe the recommended derating curves shown in  
Figure 3 and Figure 4.  
FIGURE 2. OPERATION WITH BEYOND-THE-RAILS INPUT  
Power Dis s ipation  
Package Mounted on a JEDEC JESD51-7 High  
Effective Thermal Conductivity Test Board  
With the high-output drive capability of the EL5221 buffer, it  
is possible to exceed the 125°C 'absolute-maximum junction  
temperature' under certain load current conditions.  
Therefore, it is important to calculate the maximum junction  
temperature for the application to determine if load  
conditions need to be modified for the buffer to remain in the  
safe operating area.  
1
870mW  
MAX T =125°C  
J
0.8  
0.6  
0.4  
0.2  
0
435mW  
The maximum power dissipation allowed in a package is  
determined according to:  
T
- T  
AMAX  
JMAX  
0
25  
50  
75 85 100  
125  
150  
P
= --------------------------------------------  
DMAX  
Θ
Ambient Temperature (°C)  
JA  
where:  
FIGURE 3. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
T
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
Package Mounted on a JEDEC JESD51-3 Low  
Effective Thermal Conductivity Test Board  
0.6  
Θ
= Thermal resistance of the Package  
= Maximum power dissipation in the package  
JA  
P
MAX T =125°C  
DMAX  
J
486mW  
0.5  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the loads, or:  
391mW  
0.4  
0.3  
0.2  
0.1  
0
P
= Σi[V × I  
+ (V + - V  
i) × I  
i]  
LOAD  
DMAX  
S
SMAX  
S
OUT  
when sourcing, and:  
0
25  
50  
75 85 100  
125  
150  
Ambient Temperature (°C)  
P
= Σi[V × I  
+ (V  
i - V -) × I  
i]  
LOAD  
DMAX  
S
SMAX  
OUT  
S
FIGURE 4. PACKAGE POWER DISSIPATION VS AMBIENT  
TEMPERATURE  
when sinking.  
10  
EL5221  
Unus ed Buffers  
It is recommended that any unused buffer have the input tied  
to the ground plane.  
Driving Capacitive Loads  
The EL5221 can drive a wide range of capacitive loads. As  
load capacitance increases, however, the -3dB bandwidth of  
the device will decrease and the peaking increase. The  
buffers drive 10pF loads in parallel with 10kwith just 1.5dB  
of peaking, and 100pF with 6.4dB of peaking. If less peaking  
is desired in these applications, a small series resistor  
(usually between 5and 50) can be placed in series with  
the output. However, this will obviously reduce the gain  
slightly. Another method of reducing peaking is to add a  
"snubber" circuit at the output. A snubber is a shunt load  
consisting of a resistor in series with a capacitor. Values of  
150and 10nF are typical. The advantage of a snubber is  
that it does not draw any DC load current or reduce the gain  
Power Supply Bypas s ing and Printed Circuit  
Board Layout  
The EL5221 can provide gain at high frequency. As with any  
high frequency device, good printed circuit board layout is  
necessary for optimum performance. Ground plane  
construction is highly recommended, lead lengths should be  
as short as possible, and the power supply pins must be well  
bypassed to reduce the risk of oscillation. For normal single  
supply operation, where the V - pin is connected to ground,  
S
a 0.1µF ceramic capacitor should be placed from V + to pin  
S
to V - pin. A 4.7µF tantalum capacitor should then be  
S
connected in parallel, placed in the region of the buffer. One  
4.7µF capacitor may be used for multiple devices. This same  
capacitor combination should be placed at each supply pin  
to ground if split supplies are to be used.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
11  

相关型号:

EL5221CW-T7A

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CWZ-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CWZ-T7A

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CY

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CY-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC

EL5221CY-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CY-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC

EL5221CY-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CYZ

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CYZ-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CYZ-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221_07

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL