EL5170ISZ [INTERSIL]

100MHz Differential Twisted-Pair Drivers; 100MHz的差分双绞线驱动器
EL5170ISZ
型号: EL5170ISZ
厂家: Intersil    Intersil
描述:

100MHz Differential Twisted-Pair Drivers
100MHz的差分双绞线驱动器

驱动器 PC
文件: 总13页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5170, EL5370  
®
Data Sheet  
October 29, 2004  
FN7309.5  
100MHz Differential Twisted-Pair Drivers  
Features  
The EL5170 and EL5370 are single and triple high  
bandwidth amplifiers with a fixed gain of 2. They are  
primarily targeted for applications such as driving twisted-  
pair lines in component video applications. The inputs signal  
can be in either single-ended or differential form but the  
outputs are always in differential form.  
• Fully differential inputs and outputs  
• Differential input range ±2.3V typ.  
• 100MHz 3dB bandwidth at fixed gain of 2  
• 1200V/µs slew rate  
• Single 5V or dual ±5V supplies  
• 50mA maximum output current  
• Low power - 7.4mA per channel  
• Pb-Free Available (RoHS Compliant)  
The output common mode level for each channel is set by  
the associated V  
over 70MHz. Generally, these pins are grounded but can be  
tied to any voltage reference.  
pin, which have a -3dB bandwidth of  
REF  
All outputs are short circuit protected to withstand temporary  
overload condition.  
Applications  
• Twisted-pair drivers  
The EL5170 and EL5370 are specified for operation over the  
full -40°C to +85°C temperature range.  
• Differential line drivers  
• VGA over twisted-pairs  
Ordering Information  
• ADSL/HDSL drivers  
PART  
NUMBER  
PACKAGE  
8-Pin SO  
8-Pin SO  
8-Pin SO  
TAPE & REEL PKG. DWG. #  
• Single ended to differential amplification  
• Transmission of analog signals in a noisy environment  
EL5170IS  
-
7”  
13”  
-
MDP0027  
MDP0027  
MDP0027  
MDP0027  
EL5170IS-T7  
EL5170IS-T13  
Pinouts  
EL5170  
(8-PIN SO, MSOP)  
TOP VIEW  
EL5370  
(24-PIN QSOP)  
TOP VIEW  
EL5170ISZ  
(See Note)  
8-Pin SO  
(Pb-free)  
EL5170ISZ-T7  
(See Note)  
8-Pin SO  
(Pb-free)  
7”  
MDP0027  
MDP0027  
EN 1  
24 OUT1  
IN+  
EN  
1
8
7
6
5
OUT+  
VS-  
+
-
+
-
INP1 2  
INN1 3  
REF1 4  
NC 5  
23 OUT1B  
22 NC  
2
3
4
EL5170ISZ-  
T13 (See Note)  
8-Pin SO  
(Pb-free)  
13”  
IN-  
VS+  
21 VSP  
20 VSN  
19 NC  
EL5170IY  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
-
7”  
13”  
-
MDP0043  
MDP0043  
MDP0043  
MDP0043  
REF  
OUT-  
EL5170IY-T7  
EL5170IY-T13  
INP2 6  
INN2 7  
REF2 8  
NC 9  
EL5170IYZ  
(See Note)  
8-Pin MSOP  
(Pb-free)  
18 OUT2  
17 OUT2B  
16 NC  
+
-
EL5170IYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-free)  
7”  
MDP0043  
MDP0043  
INP3 10  
INN3 11  
REF3 12  
15 OUT3  
14 OUT3B  
13 NC  
EL5170IYZ-  
T13 (See Note)  
8-Pin MSOP  
(Pb-free)  
13”  
+
-
EL5370IU  
24-Pin QSOP  
24-Pin QSOP  
-
MDP0040  
MDP0040  
MDP0040  
EL5370IU-T7  
7”  
EL5370IU-T13 24-Pin QSOP  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved.  
All other trademarks mentioned are the property of their respective owners.  
EL5170, EL5370  
Absolute Maximum Ratings (T = 25°C)  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6V  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
Recommended Operating Temperature . . . . . . . . . .-40°C to +85°C  
S
S
Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, A = 2, R = 200, C = 1pF, unless otherwise specified.  
S
S
A
IN  
V
LD  
LD  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
BW  
SR  
-3dB Bandwidth  
± 0.1dB Bandwidth  
100  
12  
MHz  
MHz  
V/µs  
ns  
Slew Rate  
V
V
= 2V , 20% to 80%  
P-P  
800  
1100  
20  
OUT  
OUT  
T
T
Settling Time to 0.1%  
= 2V  
P-P  
STL  
Output Overdrive Recovery time  
40  
ns  
OVR  
V
V
V
V
BW (-3dB)  
SR+  
V
V
V
-3dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
A =1, C = 2.7pF  
V LD  
70  
MHz  
V/µs  
V/µs  
nV/Hz  
dBc  
dBc  
dBc  
dBc  
%
REF  
REF  
REF  
N
REF  
REF  
REF  
V
V
= 2V , 20% to 80%  
P-P  
125  
65  
OUT  
OUT  
SR-  
= 2V , 20% to 80%  
P-P  
Input Voltage Noise  
f = 10kHz  
28  
HD2  
HD2  
HD3  
HD3  
dG  
Second Harmonic Distortion  
Second Harmonic Distortion  
Third Harmonic Distortion  
Third Harmonic Distortion  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
Channel Separation - For EL5370 only  
V
V
V
V
= 2V , 1MHz  
P-P  
-79  
-65  
-62  
-43  
0.14  
0.38  
85  
OUT  
OUT  
OUT  
OUT  
= 2V , 10MHz  
P-P  
= 2V , 1MHz  
P-P  
= 2V , 10MHz  
P-P  
R
R
= 300, A = 2  
LD  
LD  
V
dθ  
= 300, A = 2  
°
V
e
at f = 1MHz  
dB  
S
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
Input Bias Current (V , V  
V
±6  
-6  
±25  
-2  
mV  
µA  
µA  
µA  
V
OS  
I
I
)
IN INB  
-10  
0.5  
-1  
IN  
REF  
Input Bias Current at REF Pin  
V
V
V
= +3.2V  
= -3.2V  
1.25  
0
3
REF  
REF  
+1  
Gain  
Gain Accuracy  
= ±1V  
1.98  
2
2.02  
IN  
R
C
Differential Input Resistance  
Differential Input Capacitance  
Differential Mode Input Range  
Common Mode Positive Input Range at  
300  
1
kΩ  
pF  
V
IN  
IN  
DMIR  
±2.1  
3.2  
±2.3  
3.4  
CMIR+  
V
V
+, V -  
IN IN  
CMIR-  
Common Mode Negative Input Range at  
+, V  
-4.5  
-4.2  
-3  
V
V
-
IN  
IN  
V
Reference Input Voltage Range - Positive V + = V - = 0V  
3.4  
3.8  
V
V
REFIN  
IN IN  
Reference Input Voltage Range -  
Negative  
-3.3  
FN7309.5  
2
EL5170, EL5370  
Electrical Specifications V + = +5V, V - = -5V, T = 25°C, V = 0V, A = 2, R = 200, C = 1pF, unless otherwise specified.  
S
S
A
IN  
V
LD  
LD  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
-140  
65  
TYP  
MAX  
UNIT  
V
Output Offset Relative to V  
60  
+140  
mV  
REFOS  
CMRR  
REF  
Input Common Mode Rejection Ratio  
V
= ±2.5V  
84  
dB  
IN  
OUTPUT CHARACTERISTICS  
V
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Maximum Output Current  
R
= 200Ω  
LD  
3.3  
3.6  
-3.3  
±80  
±85  
60  
V
OUT  
-3  
V
I
(Max)  
OUT  
R
R
= 10(EL5170)  
= 10(EL5370)  
±50  
±70  
mA  
mA  
mΩ  
L
L
R
Output Impedance  
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
6
11  
8.4  
100  
-90  
V
SUPPLY  
S
S
I
I
I
Power Supply Current - Per channel  
7.4  
80  
mA  
µA  
µA  
S(ON)  
+
-
Positive Power Supply Current - Disabled EN pin tied to 4.8V (EL5170)  
60  
S(OFF)  
S(OFF)  
Negative Power Supply Current -  
Disabled  
-150  
-120  
I
I
+
-
Positive Power Supply Current - Disabled EN pin tied to 4.8V (EL5370)  
0.5  
2
5
µA  
µA  
S(OFF)  
S(OFF)  
Negative Power Supply Current -  
Disabled  
-150  
-120  
-90  
PSRR  
Power Supply Rejection Ratio  
V
V
from ±4.5V to ±5.5V (EL5170)  
from ±4.5V to ±5.5V (EL5370)  
70  
65  
83  
83  
dB  
dB  
S
S
ENABLE  
t
t
Enable Time  
200  
1
ns  
µs  
V
EN  
DS  
Disable Time  
V
EN Pin Voltage for Power-up  
V + -  
S
IH  
1.5  
V
EN Pin Voltage for Shut-down  
V + -  
S
V
IL  
0.5  
I
I
EN Pin Input Current High - per channel At V  
EN Pin Input Current Low - per channel At V  
= 5V  
= 0V  
40  
-3  
50  
µA  
µA  
IH-EN  
IL-EN  
EN  
EN  
-6  
Pin Descriptions  
EL5170  
EL5370  
2, 6, 10  
1
PIN NAME  
PIN FUNCTION  
1
2
3
4
5
6
7
8
IN+, INP1, 2, 3  
EN  
Non-inverting inputs  
Enable  
3, 7, 11  
IN-, INN1, 2, 3  
REF1, 2, 3  
Inverting inputs  
4, 8, 12  
14, 17, 23  
21  
Reference input, sets common-mode output voltage  
OUT-, OUT1B, 2B, 3B Inverting outputs  
VS+, VSP  
VS-, VSN  
Positive supply  
20  
Negative supply  
15, 18, 24  
5, 9, 13, 16, 19, 22  
OUT+, OUT1, 2, 3  
NC  
Non-inverting outputs  
No connects, grounded for best crosstalk performance  
FN7309.5  
3
Connection Diagrams  
EL5170  
R
-5V  
S1  
50Ω  
R
RT2  
LOADP  
LOADN  
INP  
EN  
INP  
EN  
1
2
3
4
OUT 8  
50Ω  
VSN 7  
VSP 6  
INN  
REF  
INN  
R
RT2  
REF  
OUTB 5  
50Ω  
R
R
S2  
50Ω  
S3  
+5V  
50Ω  
EL5370  
+5V  
R
RT1  
ENABLE  
LD1  
1
EN  
OUT1 24  
50Ω  
R
RT1B  
INP1  
INN1  
REF1  
LD1B  
2
3
4
5
6
7
8
9
INP1 OUT1B 23  
50Ω  
INN1  
REF1  
NC  
NC 22  
VSP 21  
VSN 20  
NC 19  
INP2  
INN2  
REF2  
INP2  
INN2  
R
RT2  
LD2  
OUT2 18  
50Ω  
R
RT2B  
LD2B  
REF2 OUT2B 17  
50Ω  
NC  
NC 16  
R
RT3  
LD3  
INP3  
INN3  
REF3  
10 INP3  
OUT3 15  
50Ω  
R
RT3B  
LD3B  
11 INN3 OUT3B 14  
12 REF3 NC 13  
50Ω  
R
R
R
R
R
R
R
R
R
SP1  
50Ω  
SN1  
50Ω  
SR1  
50Ω  
SP2  
50Ω  
SN2  
50Ω  
SR2  
50Ω  
SP3  
50Ω  
SN3  
50Ω  
SR3  
50Ω  
-5V  
EL5170, EL5370  
Typical Performance Curves  
C
= 1pF, V  
= 200mV  
ODP-P  
V
= ±5V, A = 2, R = 200Ω, C = 1pF  
LD  
S
V
LD  
LD  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
R
= 1kΩ  
LD  
= 500Ω  
LD  
V
= 200mV  
OP-P  
R
= 200Ω  
= 100Ω  
LD  
V
= 2V  
OP-P  
R
LD  
V
= 1V  
OP-P  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. SMALL SIGNAL FREQUENCY RESPONSE vs R  
FIGURE 1. FREQUENCY RESPONSE  
LD  
V
= ±5V, R = 200Ω, V  
LD  
= 200mV  
ODP-P  
S
4
3
2
11  
10  
9
C
= 75pF  
= 40pF  
LD  
V
= 200mV  
P-P  
1
0
REF  
C
LD  
8
7
-1  
-2  
-3  
-4  
-5  
-6  
6
C
= 20pF  
LD  
C
5
V
= 1V  
P-P  
REF  
4
= 0pF  
LD  
3
2
1
1M  
10M  
FREQUENCY (Hz)  
100M  
100K  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 4. FREQUENCY RESPONSE vs V  
FIGURE 3. SMALL SIGNAL FREQUENCY RESPONSE vs C  
REF  
LD  
100Ω  
V
INCM  
+
V
-
ODM  
100Ω  
V
OCM  
0
-10  
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
-50  
V
/V  
OCM INCM  
PSRR-  
-60  
-70  
-80  
-90  
PSRR+  
10M  
V
/V  
ODM INCM  
100K  
1M  
100M  
100K  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. POWER SUPPLY REJECTION RATIO vs  
FREQUENCY  
FIGURE 6. COMMON MODE REJECTION vs FREQUENCY  
FN7309.5  
5
EL5170, EL5370  
Typical Performance Curves (Continued)  
100Ω  
V
IN  
+
R
-
R
V
V
CM  
T
ODM  
100Ω  
1000  
0
-10  
-20  
-30  
100  
10  
-40  
-50  
-60  
V
/V  
OCM ODM  
10  
100  
1K  
10K  
100K  
1M  
10M  
100K  
1M  
10M  
100M  
FREQENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. INPUT VOLTAGE NOISE vs FREQUENCY  
FIGURE 7. DIFFERENTIAL MODE OUTPUT BALANCE  
ERROR vs FREQUENCY  
R
= 200Ω  
LD  
-40  
110  
105  
-50  
CH2<=>CH1  
CH3<=>CH2  
-60  
100  
95  
CH2<=>CH3  
-70  
CH1<=>CH2  
-80  
90  
-90  
CH3<=>CH1  
-100  
85  
80  
CH1<=>CH3  
-110  
100K  
1M  
10M  
100M  
4
6
8
9
12  
5
7
10  
11  
FREQENCY (Hz)  
V
(V)  
S
FIGURE 9. CHANNEL ISOLATION vs FREQUENCY  
FIGURE 10. BANDWIDTH vs SUPPLY VOLTAGE  
V
= ±5V, R = 200Ω, V  
LD  
= 2V  
S
OP-P  
-30  
-40  
-50  
-60  
-70  
7.78  
7.76  
7.74  
7.72  
7.7  
HD3  
I +  
S
I -  
S
HD2  
7.68  
7.66  
7.64  
7.62  
-80  
-90  
7.6  
7.58  
4
14 16  
FREQUENCY (MHz)  
0
2
6
8
10 12  
18  
20  
4
6
8
9
11  
5
7
10  
V
(V)  
S
FIGURE 12. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN7309.5  
6
EL5170, EL5370  
Typical Performance Curves (Continued)  
500mV/DIV  
0.5V/DIV  
20ns/DIV  
40ns/DIV  
FIGURE 14. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 13. V  
TRANSIENT RESPONSE  
COM  
100mV/DIV  
20ns/DIV  
FIGURE 16. DISABLED RESPONSE  
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
1
870mW  
0.8  
0.6  
QSOP24  
=115°C/W  
625mW  
θ
JA  
SO8  
=160°C/W  
θ
JA  
0.4 486mW  
0.2  
MSOP8  
=206°C/W  
θ
JA  
0
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 18. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 17. ENABLED RESPONSE  
FN7309.5  
7
EL5170, EL5370  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1
1.136W  
QSOP24  
JA  
909mW  
870mW  
θ
=88°C/W  
0.8  
0.6  
0.4  
0.2  
0
SO8  
=110°C/W  
θ
JA  
MSOP8/10  
JA  
θ
=115°C/W  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
Simplified Schematic  
200Ω  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
V
B1  
OUT+  
OUT-  
R
R
CD  
CD  
REF  
10  
R
R
9
B2  
C
C
C
C
R
R
5
6
V -  
S
200Ω  
400Ω  
Input, Output and Supply Voltage Range  
Description of Operation and Application  
Information  
Product Description  
The EL5170 and EL5370 are wide bandwidth, low power  
and single/differential ended to differential output amplifiers.  
They have a fixed gain of 2. The EL5170 is a single channel  
differential amplifier. The EL5370 is a triple channel  
differential amplifier. The EL5170 and EL5370 have a –3dB  
bandwidth of 100MHz while driving a 200differential load.  
The EL5170 and EL5370 are available with a power down  
feature to reduce the power while the amplifiers are  
disabled.  
The EL5170 and EL5370 have been designed to operate  
with a single supply voltage of 5V to 10V or a split supplies  
with its total voltage from 5V to 10V. The amplifiers have an  
input common mode voltage range from -4.5V to 3.4V for  
±5V supply. The differential mode input range (DMIR)  
between the two inputs is from –2.3V to +2.3V. The input  
voltage range at the REF pin is from –3.3V to 3.8V. If the  
input common mode or differential mode signal is outside the  
above-specified ranges, it will cause the output signal  
distorted.  
The output of the EL5170 and EL5370 can swing from –3.3V  
to 3.6V at 200differential load at ±5V supply. As the load  
resistance becomes lower, the output swing is reduced.  
FN7309.5  
8
EL5170, EL5370  
The maximum power dissipation allowed in a package is  
determined according to:  
Differential and Common Mode Gain Settings  
As shown at the simplified schematic, since the feedback  
resistors RF and the gain resistor are integrated with 200Ω  
and 400, the EL5170 and EL5370 have a fixed gain of 2.  
The common mode gain is always one.  
T
T  
AMAX  
Θ
JMAX  
PD  
= --------------------------------------------  
MAX  
JA  
Where:  
Driving Capacitive Loads and Cables  
The EL5170 and EL5370 can drive 75pF differential  
capacitor in parallel with 200differential load with less than  
3.5dB of peaking. If less peaking is desired in applications, a  
small series resistor (usually between 5to 50) can be  
placed in series with each output to eliminate most peaking.  
However, this will reduce the gain slightly.  
• T  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
θ = Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC  
is the total quiescent supply current times the total power  
supply voltage, plus the power in the IC due to the load, or:  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier’s output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help  
to reduce peaking.  
V  
O
-----------  
PD = i × V × I  
+ V ×  
S
S
SMAX  
R
LD  
Where:  
• V = Total supply voltage  
S
• I  
= Maximum quiescent supply current per channel  
SMAX  
Disable/Power-Down  
V = Maximum differential output voltage of the  
O
application  
The EL5170 and EL5370 can be disabled and placed their  
outputs in a high impedance state. The turn off time is about  
1µs and the turn on time is about 200ns. When disabled, the  
• R = Differential load resistance  
LD  
• I  
= Load current  
LOAD  
amplifier’s supply current is reduced to 2µA for I + and  
S
• i = Number of channels  
120µA for I - typically, thereby effectively eliminating the  
S
power consumption. The amplifier’s power down can be  
controlled by standard CMOS signal levels at the ENABLE  
By setting the two PDMAX equations equal to each other, we  
can solve the output current and RLOAD to avoid the device  
overheat.  
pin. The applied logic signal is relative to V + pin. Letting the  
S
EN pin float or applying a signal that is less than 1.5V below  
Power Supply Bypassing and Printed Circuit  
Board Layout  
V + will enable the amplifier. The amplifier will be disabled  
S
when the signal at EN pin is above V + -0.5V.  
S
As with any high frequency device, a good printed circuit  
board layout is necessary for optimum performance. Lead  
lengths should be as sort as possible. The power supply pin  
must be well bypassed to reduce the risk of oscillation. For  
Output Drive Capability  
The EL5170 and EL5370 have internal short circuit  
protection. Its typical short circuit current is ±80mA. If the  
output is shorted indefinitely, the power dissipation could  
easily increase such that the part will be destroyed.  
Maximum reliability is maintained if the output current never  
exceeds ±60mA. This limit is set by the design of the internal  
metal interconnect.  
normal single supply operation, where the V - pin is  
S
connected to the ground plane, a single 4.7µF tantalum  
capacitor in parallel with a 0.1µF ceramic capacitor from V +  
S
to GND will suffice. This same capacitor combination should  
be placed at each supply pin to ground if split supplies are to  
be used. In this case, the V - pin becomes the negative  
Power Dissipation  
S
supply rail.  
With the high output drive capability of the EL5170 and  
EL5370 it is possible to exceed the 125°C absolute  
maximum junction temperature under certain load current  
conditions. Therefore, it is important to calculate the  
maximum junction temperature for the application to  
determine if the load conditions or package types need to be  
modified for the amplifier to remain in the safe operating  
area.  
For good AC performance, parasitic capacitance should be  
kept to minimum. Use of wire wound resistors should be  
avoided because of their additional series inductance. Use  
of sockets should also be avoided if possible. Sockets add  
parasitic inductance and capacitance that can result in  
compromised performance. Minimizing parasitic capacitance  
at the amplifier’s inverting input pin is very important. The  
feedback resistor should be placed very close to the  
inverting input pin. Strip line design techniques are  
recommended for the signal traces.  
FN7309.5  
9
EL5170, EL5370  
Typical Applications  
0Ω  
50  
50  
V
V
FB  
IN+  
50Ω  
50Ω  
IN  
EL5170/  
EL5370  
IN-  
EL5172/  
EL5372  
V
OUT  
V
V
INB  
Z
= 100Ω  
O
REF  
FIGURE 20. TWISTED PAIR DRIVER  
0Ω  
V
FB  
IN  
+
EL5170/  
EL5370  
IN+  
IN-  
V
EL5172/  
EL5372  
V
OUT  
V
V
-
INB  
REF  
FIGURE 21. DUAL COAXIAL CABLE DRIVER  
10V  
V
IN  
IN+  
EL5170/  
EL5370  
IN-  
FIGURE 22. SINGLE SUPPLY TWISTED PAIR DRIVER  
FN7309.5  
10  
EL5170, EL5370  
EL5172/  
EL5372  
IN+  
EL5170/  
EL5370  
IN-  
EL5172  
FIGURE 23. DUAL SIGNAL TRANSMISSION CIRCUIT  
SO Package Outline Drawing  
FN7309.5  
11  
EL5170, EL5370  
MSOP Package Outline Drawing  
FN7309.5  
12  
EL5170, EL5370  
QSOP Package Outline Drawing  
NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at  
http://www.intersil.com/design/packages/index.asp  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7309.5  
13  

相关型号:

EL5170ISZ-T

LINE DRIVER
RENESAS

EL5170ISZ-T13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170ISZ-T13

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5170ISZ-T7

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170ISZ-T7

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5170ISZT13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY-T13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY-T7

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ-T13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ-T13

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS