EL5170ISZ-T13 [RENESAS]

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C;
EL5170ISZ-T13
型号: EL5170ISZ-T13
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40° to 85°C

文件: 总14页 (文件大小:711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
EL5170, EL5370  
100MHz Differential Twisted-Pair Drivers  
FN7309  
Rev 10.00  
August 14, 2015  
The EL5170 and EL5370 are single and triple high bandwidth  
amplifiers with a fixed gain of 2. They are primarily targeted for  
applications such as driving twisted-pair lines in component video  
applications. The inputs signal can be in either single-ended or  
differential form but the outputs are always in differential form.  
Features  
• Fully differential inputs and outputs  
• Differential input range ±2.3V typ.  
• 100MHz 3dB bandwidth at fixed gain of 2  
• 1100V/µs slew rate  
The output common mode level for each channel is set by the  
associated V  
pin, which have a -3dB bandwidth of over  
REF  
• Single 5V or dual ±5V supplies  
• 50mA maximum output current  
• Low power - 7.4mA per channel  
• Pb-free available (RoHS compliant)  
70MHz. Generally, these pins are grounded but can be tied to  
any voltage reference.  
All outputs are short circuit protected to withstand temporary  
overload condition.  
The EL5170 and EL5370 are specified for operation over the  
full -40°C to +85°C temperature range.  
Applications  
• Twisted-pair drivers  
• Differential line drivers  
• VGA over twisted-pairs  
• ADSL/HDSL drivers  
• Single ended to differential amplification  
• Transmission of analog signals in a noisy environment  
Pinouts  
EL5170  
(8 LD SOIC, MSOP)  
TOP VIEW  
EL5370  
(24 LD QSOP)  
TOP VIEW  
EN 1  
INP1 2  
INN1 3  
REF1 4  
NC 5  
24 OUT1  
23 OUT1B  
22 NC  
IN+  
EN  
1
2
3
4
8
7
6
5
OUT+  
VS-  
+
-
+
-
IN-  
VS+  
21 VSP  
20 VSN  
19 NC  
REF  
OUT-  
INP2 6  
INN2 7  
REF2 8  
NC 9  
18 OUT2  
17 OUT2B  
16 NC  
+
-
INP3 10  
INN3 11  
REF3 12  
15 OUT3  
14 OUT3B  
13 NC  
+
-
FN7309 Rev 10.00  
August 14, 2015  
Page 1 of 14  
EL5170, EL5370  
Pin Descriptions  
EL5170  
EL5370  
PIN NAME  
PIN FUNCTION  
1
2
3
4
5
6
7
8
IN+  
Non-inverting input  
Enable  
1
EN  
IN-  
Inverting input  
REF  
OUT-  
Reference input, sets common-mode output voltage  
Inverting output  
VS+  
Positive supply  
VS-  
Negative supply  
OUT+  
Non-inverting output  
2, 6, 10  
3, 7, 11  
4, 8, 12  
14, 17, 23  
21  
INP1, INP2, INP3  
INN1, INN2, INN3  
REF1, REF2, REF3  
OUT3B, OUT2B, OUT1B  
VSP  
Non-inverting inputs  
Inverting inputs  
Reference input, sets common-mode output voltage  
Inverting outputs  
Positive supply  
20  
VSN  
Negative supply  
15,  
OUT3, OUT2, OUT1  
Non-inverting outputs  
18, 24  
5, 9, 13, 16, 19, 22  
NC  
No connects; grounded for best crosstalk performance  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
EL5170ISZ  
EL5170IYZ  
5170ISZ  
BAAVA  
5170ISZ  
BAAVA  
8 Ld SOIC (150 mil)  
M8.15E  
8 Ld MSOP (3.0mm)  
24 Ld QSOP (150 mil)  
M8.118A  
EL5370IUZ (No longer available EL5370IUZ  
or supported)  
EL5370IUZ  
MDP0040  
NOTES:  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5170, EL5370. For more information on MSL please see tech brief  
TB363.  
FN7309 Rev 10.00  
August 14, 2015  
Page 2 of 14  
 
 
 
 
EL5170, EL5370  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage (V + to V -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6V  
Supply Voltage Rate-of-rise (dV/dT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+135°C  
Recommended Operating Temperature . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
Input Voltage (IN+, IN- to V +, V -) . . . . . . . . . . . . . V - - 0.3V to V + + 0.3V  
S
S
S
S
Differential Input Voltage (IN+ to IN-). . . . . . . . . . . . . . . . . . . . . . . . . . ±4.8V  
Maximum Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, A = 2, R = 200, C = 1pF, Unless Otherwise  
S
S
A
IN  
V
LD  
LD  
Specified.  
MIN  
(Note 4)  
MAX  
(Note 4)  
PARAMETER  
AC PERFORMANCE  
DESCRIPTION  
CONDITIONS  
TYP  
UNIT  
BW  
BW  
SR  
-3dB Bandwidth  
100  
12  
MHz  
MHz  
V/µs  
ns  
± 0.1dB Bandwidth  
Slew Rate  
V
V
= 2V , 20% to 80%  
P-P  
800  
1100  
20  
OUT  
t
t
Settling Time to 0.1%  
= 2V  
P-P  
STL  
OUT  
Output Overdrive Recovery time  
40  
ns  
OVR  
V
V
V
V
BW (-3dB)  
SR+  
V
V
V
-3dB Bandwidth  
Slew Rate - Rise  
Slew Rate - Fall  
A =1, C = 2.7pF  
70  
MHz  
V/µs  
V/µs  
nV/Hz  
dBc  
dBc  
dBc  
dBc  
%
REF  
REF  
REF  
N
REF  
REF  
REF  
V
LD  
V
V
= 2V , 20% to 80%  
125  
65  
OUT  
OUT  
P-P  
SR-  
= 2V , 20% to 80%  
P-P  
Input Voltage Noise  
f = 10kHz  
28  
HD2  
HD2  
HD3  
HD3  
dG  
Second Harmonic Distortion  
Second Harmonic Distortion  
Third Harmonic Distortion  
Third Harmonic Distortion  
Differential Gain at 3.58MHz  
Differential Phase at 3.58MHz  
V
V
V
V
= 2V , 1MHz  
P-P  
-79  
-65  
-62  
-43  
0.14  
0.38  
85  
OUT  
OUT  
OUT  
OUT  
= 2V , 10MHz  
P-P  
= 2V , 1MHz  
P-P  
= 2V , 10MHz  
P-P  
R
= 300, A = 2  
V
LD  
LD  
d  
R
= 300, A = 2  
°
V
e
Channel Separation - For EL5370 only  
INPUT CHARACTERISTICS  
Input Referred Offset Voltage  
Input Bias Current (V , V  
at f = 1MHz  
dB  
S
V
±6  
-6  
±25  
-2  
mV  
µA  
µA  
µA  
V
OS  
I
)
IN INB  
-10  
0.5  
-1  
IN  
REF  
I
Input Bias Current at REF Pin  
V
V
V
= +3.2V  
= -3.2V  
1.25  
0
3
REF  
+1  
REF  
Gain  
Gain Accuracy  
= ±1V  
1.98  
2
2.02  
IN  
R
Differential Input Resistance  
Differential Input Capacitance  
Differential Mode Input Range  
300  
1
k  
pF  
V
IN  
C
IN  
DMIR  
CMIR+  
CMIR-  
±2.1  
3.2  
±2.3  
3.4  
-4.5  
Common Mode Positive Input Range at V +, V  
-
V
IN IN  
Common Mode Negative Input Range at V +, V  
IN  
-
-4.2  
V
IN  
FN7309 Rev 10.00  
August 14, 2015  
Page 3 of 14  
EL5170, EL5370  
Electrical Specifications V + = +5V, V - = -5V, T = +25°C, V = 0V, A = 2, R = 200, C = 1pF, Unless Otherwise  
S
S
A
IN  
V
LD  
LD  
Specified. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
CONDITIONS  
(Note 4)  
TYP  
3.8  
-3.3  
60  
(Note 4)  
UNIT  
V
V
V
Reference Input Voltage Range - Positive  
Reference Input Voltage Range - Negative  
V
+ = V - = 0V  
IN  
3.4  
REFIN  
IN  
-3  
V
Output Offset Relative to V  
-140  
65  
+140  
mV  
dB  
REFOS  
REF  
Input Common Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
CMRR  
V
= ±2.5V  
84  
IN  
V
Positive Output Voltage Swing  
Negative Output Voltage Swing  
Maximum Output Current  
R
= 200  
3.3  
3.6  
-3.3  
±80  
±85  
60  
V
OUT  
LD  
-3  
V
I
(Max)  
R = 10(EL5170)  
±50  
±70  
mA  
mA  
m  
OUT  
L
R = 10(EL5370)  
L
R
Output Impedance  
OUT  
SUPPLY  
V
Supply Operating Range  
V + to V -  
4.75  
6
11  
8.4  
100  
-90  
5
V
SUPPLY  
S
S
I
I
I
I
I
Power Supply Current - Per Channel  
Positive Power Supply Current - Disabled  
Negative Power Supply Current - Disabled  
Positive Power Supply Current - Disabled  
Negative Power Supply Current - Disabled  
Power Supply Rejection Ratio  
7.4  
80  
mA  
µA  
µA  
µA  
µA  
dB  
dB  
S(ON)  
+
-
EN pin tied to 4.8V (EL5170)  
EN pin tied to 4.8V (EL5370)  
60  
S(OFF)  
S(OFF)  
S(OFF)  
S(OFF)  
-150  
0.5  
-150  
70  
-120  
2
+
-
-120  
83  
-90  
PSRR  
V
V
from ±4.5V to ±5.5V (EL5170)  
from ±4.5V to ±5.5V (EL5370)  
S
65  
83  
S
ENABLE  
t
t
Enable Time  
200  
1
ns  
µs  
V
EN  
DS  
Disable Time  
V
V
EN Pin Voltage for Power-Up  
EN Pin Voltage for Shutdown  
EN Pin Input Current High - Per Channel  
EN Pin Input Current Low - Per Channel  
V + -1.5  
S
IH  
V + -0.5  
S
V
IL  
I
I
At V = 5V  
EN  
40  
-3  
50  
µA  
µA  
IH-EN  
IL-EN  
At V = 0V  
EN  
-6  
NOTE:  
4. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
FN7309 Rev 10.00  
August 14, 2015  
Page 4 of 14  
EL5170, EL5370  
Typical Performance Curves  
C
= 1pF, V  
= 200mV  
ODP-P  
V
= ±5V, A = 2, R = 200C = 1pF  
V LD LD  
LD  
S
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
R
R
= 1k  
LD  
= 500  
LD  
V
= 200mV  
OP-P  
R
= 200  
= 100  
LD  
V
= 2V  
OP-P  
R
LD  
V
= 1V  
OP-P  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 2. SMALL SIGNAL FREQUENCY RESPONSE vs R  
FIGURE 1. FREQUENCY RESPONSE  
LD  
V
= ±5V, R = 200V  
LD  
= 200mV  
ODP-P  
S
4
3
2
11  
10  
9
C
= 75pF  
= 40pF  
LD  
V
= 200mV  
P-P  
1
0
REF  
C
LD  
8
7
-1  
-2  
-3  
-4  
-5  
-6  
6
C
= 20pF  
LD  
C
5
V
= 1V  
P-P  
REF  
4
= 0pF  
LD  
3
2
1
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
FIGURE 4. FREQUENCY RESPONSE vs V  
FIGURE 3. SMALL SIGNAL FREQUENCY RESPONSE vs C  
REF  
LD  
100  
V
INCM  
+
V
-
V
ODM  
100  
OCM  
0
-10  
-20  
-30  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-40  
-50  
V
/V  
OCM INCM  
PSRR-  
-60  
-70  
V
/V  
PSRR+  
ODM INCM  
-80  
-90  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. POWER SUPPLY REJECTION RATIO vs FREQUENCY  
FIGURE 6. COMMON MODE REJECTION vs FREQUENCY  
FN7309 Rev 10.00  
August 14, 2015  
Page 5 of 14  
EL5170, EL5370  
Typical Performance Curves (Continued)  
100  
V
IN  
+
-
R
V
V
CM  
T
ODM  
R
100  
1000  
100  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
V
/V  
OCM ODM  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 8. INPUT VOLTAGE NOISE vs FREQUENCY  
FIGURE 7. DIFFERENTIAL MODE OUTPUT BALANCE ERROR vs  
FREQUENCY  
R
= 200  
LD  
110  
105  
-40  
-50  
CH2 <=> CH1  
CH3 <=> CH2  
CH2 <=> CH3  
CH1<=> CH2  
-60  
100  
95  
-70  
-80  
-90  
90  
CH3 <=> CH1  
85  
80  
-100  
-110  
CH1 <=> CH3  
10M  
FREQUENCY (Hz)  
100k  
1M  
100M  
4
5
6
7
8
9
10  
11  
12  
V
(V)  
S
FIGURE 10. BANDWIDTH vs SUPPLY VOLTAGE  
FIGURE 9. CHANNEL ISOLATION vs FREQUENCY  
V
= ±5V, R = 200V  
LD  
= 2V  
S
OP-P  
-30  
-40  
-50  
-60  
-70  
7.78  
7.76  
7.74  
7.72  
7.70  
7.68  
7.66  
7.64  
7.62  
HD3  
I +  
S
I -  
S
HD2  
-80  
-90  
7.60  
7.58  
0M 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M  
4
5
6
7
8
9
10  
11  
FREQUENCY (Hz)  
V
(V)  
S
FIGURE 12. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN7309 Rev 10.00  
August 14, 2015  
Page 6 of 14  
EL5170, EL5370  
Typical Performance Curves (Continued)  
500mV/DIV  
0.5V/DIV  
20ns/DIV  
40ns/DIV  
FIGURE 14. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 13. V  
COM  
TRANSIENT RESPONSE  
100mV/DIV  
20ns/DIV  
FIGURE 15. SMALL SIGNAL TRANSIENT RESPONSE  
FIGURE 16. DISABLED RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.2  
1.0  
870mW  
0.8  
0.6  
QSOP24  
625mW  
= +115°C/W  
JA  
SO8  
= +160°C/W  
JA  
0.4 486mW  
MSOP8  
= +206°C/W  
0.2  
0
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 18. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 17. ENABLED RESPONSE  
FN7309 Rev 10.00  
August 14, 2015  
Page 7 of 14  
EL5170, EL5370  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.136W  
QSOP24  
909mW  
= +88°C/W  
JA  
SO8  
870mW  
= +110°C/W  
JA  
MSOP8/10  
= +115°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
Simplified Schematic  
200  
V +  
S
R
R
3
4
R
R
2
1
R
R
7
8
IN+  
IN-  
FBP  
FBN  
V
V
B1  
OUT+  
OUT-  
R
R
CD  
CD  
REF  
10  
R
R
9
B2  
C
C
C
C
R
R
5
6
V -  
S
200  
400  
FN7309 Rev 10.00  
August 14, 2015  
Page 8 of 14  
 
EL5170, EL5370  
logic signal is relative to V + pin. Letting the EN pin float or  
S
Description of Operation and  
Application Information  
Product Description  
applying a signal that is less than 1.5V below V + will enable  
S
the amplifier. The amplifier will be disabled when the signal at  
EN pin is above V + -0.5V.  
S
The EL5170 and EL5370 are wide bandwidth, low power and  
single/differential ended to differential output amplifiers. They  
have a fixed gain of 2. The EL5170 is a single channel  
differential amplifier. The EL5370 is a triple channel  
differential amplifier. The EL5170 and EL5370 have a -3dB  
bandwidth of 100MHz while driving a 200differential load.  
The EL5170 and EL5370 are available with a power-down  
feature to reduce the power while the amplifiers are disabled.  
Output Drive Capability  
The EL5170 and EL5370 have internal short circuit protection.  
Its typical short circuit current is ±80mA. If the output is  
shorted indefinitely, the power dissipation could easily  
increase such that the part will be destroyed. Maximum  
reliability is maintained if the output current never exceeds  
±60mA. This limit is set by the design of the internal metal  
interconnect.  
Input, Output and Supply Voltage Range  
Power Dissipation  
The EL5170 and EL5370 have been designed to operate with a  
single supply voltage of 5V to 10V or split supplies with its total  
voltage from 5V to 10V. The amplifiers have an input common  
mode voltage range from -4.5V to 3.4V for ±5V supply. The  
differential mode input range (DMIR) between the two inputs  
is from -2.3V to +2.3V. The input voltage range at the REF pin is  
from -3.3V to 3.8V. If the input common mode or differential  
mode signal is outside the above-specified ranges, it will cause  
the output signal to become distorted.  
With the high output drive capability of the EL5170 and EL5370  
it is possible to exceed the +125°C absolute maximum junction  
temperature under certain load current conditions. Therefore, it  
is important to calculate the maximum junction temperature for  
the application to determine if the load conditions or package  
types need to be modified for the amplifier to remain in the safe  
operating area.  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
The output of the EL5170 and EL5370 can swing from -3.3V to  
3.6V at 200differential load at ±5V supply. As the load  
resistance becomes lower, the output swing is reduced.  
T
T  
AMAX  
JMAX  
(EQ. 1)  
--------------------------------------------  
PD  
=
MAX  
JA  
Differential and Common Mode Gain  
Settings  
Where:  
T
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
As shown in the “Simplified Schematic” on page 8, since the  
T
AMAX  
feedback resistors R and the gain resistor are integrated with  
F
200and 400, the EL5170 and EL5370 have a fixed gain of  
2. The common mode gain is always one.  
= Thermal resistance of the package  
JA  
The maximum power dissipation actually produced by an IC is  
the total quiescent supply current times the total power supply  
voltage, plus the power in the IC due to the load, or as  
expressed in Equation 2:  
Driving Capacitive Loads and Cables  
The EL5170 and EL5370 can drive 75pF differential capacitor  
in parallel with 200differential load with less than 3.5dB of  
peaking. If less peaking is desired in applications, a small  
series resistor (usually between 5to 50) can be placed in  
series with each output to eliminate most peaking. However,  
this will reduce the gain slightly.  
V  
O
(EQ. 2)  
-----------  
PD = i V  
I  
+ V  
V    
STOT  
SMAX  
STOT  
O
R
LD  
Where:  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, a back-termination series resistor at the  
amplifier’s output will isolate the amplifier from the cable and  
allow extensive capacitive drive. However, other applications  
may have high capacitive loads without a back-termination  
resistor. Again, a small series resistor at the output can help to  
reduce peaking.  
V
= Total supply voltage = V + - V -  
S S  
STOT  
I
= Maximum quiescent supply current per channel  
SMAX  
V = Maximum differential output voltage of the  
application  
O
R
= Differential load resistance  
LD  
I
= Load current  
LOAD  
Disable/Power-Down  
The EL5170 and EL5370 can be disabled and their outputs  
placed in a high impedance state. The turn-off time is about  
1µs and the turn-on time is about 200ns. When disabled, the  
i = Number of channels  
By setting the two PDMAX equations equal to each other, we  
can solve the output current and RLOAD to avoid the device  
overheat.  
amplifier’s supply current is reduced to 2µA for I + and 120µA  
S
for I - typically, thereby effectively eliminating the power  
S
consumption. The amplifier’s power-down can be controlled by  
standard CMOS signal levels at the ENABLE pin. The applied  
FN7309 Rev 10.00  
August 14, 2015  
Page 9 of 14  
 
 
EL5170, EL5370  
For good AC performance, parasitic capacitance should be kept  
to minimum. Use of wire wound resistors should be avoided  
because of their additional series inductance. Use of sockets  
should also be avoided if possible. Sockets add parasitic  
inductance and capacitance that can result in compromised  
performance. Minimizing parasitic capacitance at the amplifier’s  
inverting input pin is very important. The feedback resistor  
should be placed very close to the inverting input pin. Strip line  
design techniques are recommended for the signal traces.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, a good printed circuit board  
layout is necessary for optimum performance. Lead lengths  
should be as sort as possible. The power supply pin must be well  
bypassed to reduce the risk of oscillation. For normal single  
supply operation, where the V - pin is connected to the ground  
S
plane, a single 4.7µF tantalum capacitor in parallel with a 0.1µF  
ceramic capacitor from V + to GND will suffice. This same  
S
capacitor combination should be placed at each supply pin to  
ground if split supplies are to be used. In this case, the V - pin  
S
becomes the negative supply rail.  
Typical Applications  
0  
50  
V
V
FB  
IN+  
50  
50  
IN  
EL5170/  
EL5370  
EL5172/  
EL5372  
V
OUT  
50  
V
V
INB  
IN-  
Z
= 100  
O
REF  
FIGURE 20. TWISTED PAIR DRIVER  
0  
50  
50COAX  
50COAX  
V
V
IN  
V
FB  
IN  
V
IN+  
OUT  
50  
50  
+
V
EL5170/EL5370  
V
IN  
EL5172/EL5372  
V
V
OUT  
-
OUTB  
IN-  
INB  
V
REF  
V
REF  
50  
FIGURE 21. DUAL COAXIAL CABLE DRIVER  
10V  
10k  
10k  
50  
V
IN  
IN+  
TWISTED PAIR  
EL5170/EL5370  
IN-  
100  
V
OUT  
Z
= 100  
O
V
REF  
50  
10k  
10k  
FIGURE 22. SINGLE SUPPLY TWISTED PAIR DRIVER  
FN7309 Rev 10.00  
August 14, 2015  
Page 10 of 14  
EL5170, EL5370  
EL5172/  
EL5372  
A
B
50  
50  
IN+  
50  
50  
TWISTED PAIR  
A
B
EL5170/EL5370  
IN-  
Z
= 100  
O
V
REF  
EL5172  
FIGURE 23. DUAL SIGNAL TRANSMISSION CIRCUIT  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
CHANGE  
August 14, 2015  
FN7309.10  
Updated Ordering Information table onpage 2.  
Added Revision History and About Intersil sections.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
FN7309 Rev 10.00  
August 14, 2015  
Page 11 of 14  
EL5170, EL5370  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7309 Rev 10.00  
August 14, 2015  
Page 12 of 14  
EL5170, EL5370  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
0.18 ± 0.05  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
PLANE  
H
C
0.25  
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3.  
Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
TYPICAL RECOMMENDED LAND PATTERN  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
FN7309 Rev 10.00  
August 14, 2015  
Page 13 of 14  
EL5170, EL5370  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
INCHES  
D
(N/2)+1  
N
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not in-  
cluded.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
© Copyright Intersil Americas LLC 2002-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7309 Rev 10.00  
August 14, 2015  
Page 14 of 14  

相关型号:

EL5170ISZ-T7

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170ISZ-T7

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5170ISZT13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY-T13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IY-T7

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ-T13

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ-T13

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5170IYZ-T7

100MHz Differential Twisted-Pair Drivers
INTERSIL

EL5170IYZ-T7

100MHz Differential Twisted-Pair Drivers; MSOP8, SOIC8; Temp Range: -40&deg; to 85&deg;C
RENESAS

EL5170IYZT13

100MHz Differential Twisted-Pair Drivers
INTERSIL