LXT970ATC [INTEL]

Dual-Speed Fast Ethernet Transceiver; 双速快速以太网收发器
LXT970ATC
型号: LXT970ATC
厂家: INTEL    INTEL
描述:

Dual-Speed Fast Ethernet Transceiver
双速快速以太网收发器

以太网
文件: 总74页 (文件大小:1002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT970A  
Dual-Speed Fast Ethernet Transceiver  
Datasheet  
The LXT970A is an enhanced derivative of the LXT970 10/100 Mbps Fast Ethernet PHY  
Transceiver that supports selectable driver strength capabilities and link-loss criteria. The  
LXT970A supports 100BASE-TX, 10BASE-T, and 100BASE-FX applications. It provides a  
Media Independent Interface (MII) for easy attachment to 10/100 Media Access Controllers  
(MAC)s and a pseudo-ECL interface for use with 100BASE-FX fiber networks.  
The LXT970A supports full-duplex operation at 10 and 100 Mbps. Its operating condition is set  
using auto-negotiation, parallel detection or manual control. The encoder may be bypassed for  
symbol mode applications.  
The LXT970A is fabricated with an advanced CMOS process and requires only a single 5V  
power supply. The MII may be operated independently with either a 5V or a 3.3V supply.  
Applications  
Combination 10BASE-T/100BASE-TX  
100BASE-FX Network Interface Cards  
Network Interface Cards (NICs)  
(NICs)  
10/100 Switches, 10/100 Printservers  
Product Features  
IEEE 802.3 Compliant:  
Configurable for DTE or switch  
applications.  
10BASE-T and 100BASE-TX using a  
single RJ-45 connection.  
CMOS process with single 5Vsupply  
operation  
Supports auto-negotiation and parallel  
detection for legacy systems.  
with provision for interface to 3.3V MII  
bus.  
MII interface with extended register  
capability.  
Integrated LED drivers.  
Integrated supply monitor and line  
Robust baseline wander correction  
disconnect during low supply fault.  
performance.  
Available in:  
100BASE-FX fiber optic capable.  
64-pin TQFP (LXT970ATC)  
Standard CSMA/CD or full-duplex  
64-pin PQFP (LXT970AQC)  
operation.  
Commercial temperature range (0 - 70oC  
Configurable via MII serial port or external  
ambient).  
control pins.  
As of January 15, 2001, this document replaces the Level One document  
LXT970A — Dual-Speed Fast Ethernet Transceiver.  
Order Number: 249099-001  
January 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT970A may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
Dual-Speed Fast Ethernet Transceiver — LXT970A  
Contents  
1.0  
2.0  
Pin Assignments and Signal Descriptions....................................................10  
Functional Description...........................................................................................18  
2.1  
2.2  
Introduction..........................................................................................................18  
Interfaces (Network Media/Protocol Support) .....................................................19  
2.2.1 Twisted-Pair Interface ............................................................................19  
2.2.2 Fiber Interface ........................................................................................19  
2.2.3 MII Interface ...........................................................................................20  
2.2.3.1 Selectable Driver Levels............................................................20  
2.2.3.2 MII Data Interface......................................................................21  
2.2.3.3 Repeater Mode..........................................................................24  
2.2.3.4 MII Management Interface ........................................................24  
2.2.4 Hardware Control Interface ....................................................................26  
Operating Requirements .....................................................................................27  
2.3.1 Power Supply Requirements..................................................................27  
2.3.1.1 Optional MII Power Supply........................................................27  
2.3.2 Reference Clock Requirements .............................................................27  
2.3.2.1 Master Clock Mode ...................................................................28  
2.3.2.2 Slave Clock Mode .....................................................................28  
2.3.3 Bias Circuit Requirements......................................................................29  
Initialization..........................................................................................................29  
2.4.1 Control Mode Selection..........................................................................29  
2.4.1.1 MDIO Control Mode ..................................................................29  
2.4.1.2 Manual Control Mode................................................................29  
2.4.2 Link Configuration ..................................................................................29  
2.4.2.1 Manual Configuration ................................................................30  
2.4.2.2 Auto-Negotiation/Parallel Detection ..........................................30  
Monitoring Operational Status.............................................................................31  
2.5.1 Monitoring Status via MII Registers........................................................31  
2.5.2 Monitoring Status via Indicator Pins.......................................................32  
100BASE-X Operation ........................................................................................32  
2.6.1 100BASE-X MII Operations....................................................................32  
2.6.2 100BASE-X Network Operations ...........................................................33  
10BASE-T Operation...........................................................................................35  
2.7.1 10BASE-T MII Operations......................................................................35  
2.7.2 10BASE-T Network Operations..............................................................35  
Protocol Sublayer Operations .............................................................................35  
2.8.1 PCS Sublayer.........................................................................................35  
2.8.1.1 100X Preamble Handling ..........................................................36  
2.8.1.2 10T Preamble Handling.............................................................36  
2.8.1.3 Data Errors (100X Only)............................................................36  
2.8.1.4 Collision Indication ....................................................................37  
2.8.1.5 SQE (10T Only).........................................................................38  
2.8.1.6 Jabber (10T Only) .....................................................................38  
2.8.2 PMA Layer..............................................................................................38  
2.8.2.1 100TX Link Options...................................................................38  
2.8.2.2 10T Link Test.............................................................................38  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
Datasheet  
3
LXT970A — Dual-Speed Fast Ethernet Transceiver  
2.8.2.3 Carrier Sense (CRS) .................................................................38  
2.8.3 Twisted-Pair PMD Layer ........................................................................39  
2.8.3.1 Scrambler/Descrambler (100TX Only) ......................................39  
2.8.3.2 Baseline Wander Correction  
(100TX Only)39  
2.8.3.3 Polarity Correction.....................................................................39  
2.8.4 Fiber PMD Layer....................................................................................39  
2.8.5 Additional Operating Features ...............................................................40  
2.8.6 Low-Voltage-Fault Detect.......................................................................40  
2.8.7 Power Down Mode.................................................................................40  
2.8.8 Software Reset.......................................................................................40  
2.8.9 Hardware Reset .....................................................................................40  
3.0  
Application Information.........................................................................................41  
3.1  
3.2  
3.3  
Magnetics Information.........................................................................................41  
Crystal Information..............................................................................................41  
Design Recommendations..................................................................................42  
3.3.1 General Design Guidelines ....................................................................42  
3.3.2 Power Supply Filtering ...........................................................................42  
3.3.3 Ground Noise.........................................................................................43  
3.3.4 Power and Ground Plane Layout Considerations..................................43  
3.3.5 Interfaces for Twisted-Pair /Fiber...........................................................43  
3.3.5.1 Twisted-Pair ..............................................................................43  
3.3.5.2 Fiber..........................................................................................44  
3.3.6 Interface for the MII................................................................................44  
3.3.6.1 Transmit Hold Time Adjustment................................................44  
3.3.6.2 MII Terminations........................................................................44  
3.3.7 Typical Application .................................................................................45  
3.3.7.1 Voltage Divider For MF Inputs...................................................45  
4.0  
5.0  
6.0  
Test Specifications..................................................................................................47  
Register Definitions ................................................................................................63  
Mechanical Specifications ...................................................................................73  
4
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figures  
1
2
3
4
5
6
7
8
LXT970A Block Diagram.......................................................................................9  
LXT970A Pin Assignments .................................................................................10  
Network Interface Card (NIC) Application ..........................................................18  
MII Interface .......................................................................................................20  
MII Data Interface ...............................................................................................21  
Loopback Paths ..................................................................................................23  
Repeater Block Diagram ....................................................................................24  
MDIO Interrupt Signaling ....................................................................................25  
Management Interface - Read Frame Structure .................................................25  
Management Interface - Write Frame Structure .................................................25  
LXT970A Initialization Sequence .......................................................................30  
Auto-Negotiation Operation ................................................................................31  
100BASE-TX Frame Structure ...........................................................................33  
100BASE-TX Data Flow .....................................................................................33  
LXT970A Protocol Sublayers .............................................................................36  
100BASE-TX Reception with No Errors .............................................................37  
100BASE-TX Reception with Invalid Symbol ....................................................37  
100BASE-TX Transmission with No Errors .......................................................37  
100BASE-TX Transmission with Collision .........................................................37  
Voltage Divider ...................................................................................................45  
Typical Interface Circuitry ...................................................................................46  
MII - 100BASE-TX Receive Timing / 4B Mode ...................................................51  
MII - 100BASE-TX Transmit Timing / 4B Mode .................................................52  
MII - 100BASE-TX Receive Timing / 5B Mode ...................................................53  
100BASE-TX Transmit Timing / 5B Mode ..........................................................54  
MII - 100BASE-FX Receive Timing / 4B Mode ...................................................55  
MII - 100BASE-FX Transmit Timing / 4B Mode ..................................................56  
MII - 10BASE-T Receiving Timing ......................................................................57  
MII - 10BASE-T Transmit Timing .......................................................................58  
10BASE-T SQE (Heartbeat) Timing ...................................................................59  
10BASE-T Jab and Unjab Timing ......................................................................59  
Auto Negotiation and Fast Link Pulse Timing ....................................................60  
Fast Link Pulse Timing .......................................................................................60  
MDIO Timing when Sourced by STA .................................................................61  
MDIO Timing when Sourced by PHY .................................................................61  
Power-Down Recovery Timing (Over Recommended Range) ...........................62  
PHY Identifier Bit Mapping .................................................................................66  
64-Pin QFP Package Diagram ...........................................................................73  
64-Pin TQFP Package Diagram .........................................................................74  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Datasheet  
5
LXT970A Dual-Speed Fast Ethernet Transceiver  
Tables  
1
2
3
4
5
6
7
8
9
LXT970A Power Supply Signal Descriptions ......................................................10  
LXT970A MII Signal Descriptions .......................................................................11  
LXT970A Fiber Interface Signal Descriptions .....................................................12  
LXT970A Twisted-Pair Interface Signal Descriptions .........................................13  
LXT970A LED Indicator Signal Descriptions.......................................................13  
LXT970A Miscellaneous Signal Descriptions......................................................13  
LXT970A Hardware Control Interface Signal Descriptions .................................14  
MF Pin Function Settings1, 3..............................................................................16  
LXT970A Auto-Negotiation Operating Speed/Full-Duplex  
Advertisement Settings .......................................................................................17  
Test Loopback Operation....................................................................................23  
Carrier Sense, Loopback, and Collision Conditions............................................23  
Configuring the LXT970A via Hardware Control.................................................26  
LXT970A Operating Configurations / Auto-Negotiation Enabled ........................26  
LXT970A Operating Configurations / Auto-Negotiation Disabled .......................27  
Mode Control Settings.........................................................................................29  
LXT970A Status using FDS/LED Pins ................................................................32  
4B/5B Coding......................................................................................................34  
Magnetics Requirements ....................................................................................41  
Crystal Requirements..........................................................................................41  
Crystal Component Manufacturers .....................................................................41  
Absolute Maximum Ratings ................................................................................47  
Operating Conditions ..........................................................................................47  
Digital I/O Characteristics1..................................................................................48  
Digital I/O Characteristics - MultiFunction Pins MF<4:0>....................................48  
Required Clock Characteristics...........................................................................48  
Low Voltage Fault Detect Characteristics ...........................................................49  
100BASE-TX Transceiver Characteristics ..........................................................49  
100BASE-FX Transceiver Characteristics ..........................................................49  
10BASE-T Transceiver Characteristics...............................................................50  
10BASE-T Link Integrity Timing Characteristics .................................................50  
MII - 100BASE-TX Receive Timing Parameters / 4B Mode................................51  
MII - 100BASE-TX Transmit Timing Parameters / 4B Mode...............................52  
MII - 100BASE-TX Receive Timing Parameters / 5B Mode................................53  
MII - 100BASE-TX Transmit Timing Parameters / 5B Mode...............................54  
MII - 100BASE-FX Receive Timing Parameters / 4B Mode................................55  
MII - 100BASE-FX Transmit Timing Parameters / 4B Mode...............................56  
MII - 10BASE-T Receive Timing Parameters......................................................57  
MII - 10BASE-T Transmit Timing Parameters.....................................................58  
10BASE-T SQE (Heartbeat) Timing Parameters................................................59  
10BASE-T Jab and Unjab Timing Parameters....................................................59  
Auto Negotiation and Fast Link Pulse Timing Parameters..................................60  
MDIO Timing Parameters ...................................................................................61  
Power-Down Recovery Timing Parameters........................................................62  
Register Set ........................................................................................................63  
Control Register (Address 0)...............................................................................64  
Status Register (Address 1)................................................................................65  
PHY Identification Register 1 (Address 2)...........................................................66  
PHY Identification Register 2 (Address 3)...........................................................66  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
6
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
49  
50  
51  
52  
53  
54  
55  
56  
Auto Negotiation Advertisement Register (Address 4)........................................67  
Auto Negotiation Link Partner Ability Register (Address 5).................................68  
Auto Negotiation Expansion (Address 6) ............................................................69  
Mirror Register (Address 16, Hex 10)..................................................................69  
Interrupt Enable Register (Address 17, Hex 11) .................................................70  
Interrupt Status Register (Address 18, Hex 12) ..................................................70  
Configuration Register (Address 19, Hex 13)......................................................71  
Chip Status Register (Address 20, Hex 14) ........................................................72  
Datasheet  
7
LXT970A Dual-Speed Fast Ethernet Transceiver  
Revision History  
Revision  
Date  
Description  
8
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 1. LXT970A Block Diagram  
TX_EN  
+
FIBOP  
ECL  
Driver  
MII  
TX  
TX_ER  
Manchester  
Encoder  
10  
Parallel  
to Serial  
Converter  
FIBON  
TXD<0:4>  
Pulse  
Shaper  
-
Scrambler  
& Encoder  
100  
TX_CLK  
MF<0:4>  
CFG<0:1>  
FDE  
10Mbps  
Loopback  
+
TPOP  
TPON  
TP  
Driver  
Hardware  
Interface  
Auto  
Management/  
Mode Select  
Logic  
TRSTE  
Negotiation  
-
RESET  
FDS/MDINT  
MDIO  
100Mbps  
Loopback  
LED  
Drivers  
MII  
MGMT  
LED_  
MDDIS  
MDC  
Clock  
Generator  
+
Crystal Osc  
& PLL  
FIBIP  
FIBIN  
XTALI/O  
RX_CLK  
ECL  
Rcvr  
2
Manchester  
Decoder  
Serial to  
Parallel  
Baseline  
Wander  
RXD<0:4>  
-
10  
Slicer  
MII  
RX  
Converter  
Correction  
Decoder &  
Descrambler  
100  
+
TPIP  
TPIN  
CRS  
COL  
Carrier Sense  
Collision Detect  
Data Valid  
TP  
Rcvr  
RX_DV  
RX_ER  
PwrDown/  
-
Error Detect  
Line Energy  
Monitor  
PWR_DWN  
Datasheet  
9
LXT970A Dual-Speed Fast Ethernet Transceiver  
1.0  
Pin Assignments and Signal Descriptions  
Figure 2. LXT970A Pin Assignments  
CRS  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RXD2  
RXD3  
RXD4  
MDC  
FDS/MDINT  
TRSTE  
MF4  
2
3
4
MF3  
5
MDIO  
GNDD  
LEDR  
LEDT  
LEDL  
LEDC  
LEDS  
VCCR  
N/C  
MF2  
6
MF1  
7
MF0  
8
Part # LXT970AQC/ATC XX  
LOT # XXXXXX  
FPO # XXXXXXXX  
Rev #  
VCCD  
TEST  
XO  
9
10  
11  
12  
13  
14  
15  
16  
XI  
FDE  
CFG0  
MDDIS  
RESET  
N/C  
PWRDWN  
CFG1  
Table 1. LXT970A Power Supply Signal Descriptions  
Pin#1  
Pin Name  
I/O  
Signal Description  
19, 22  
37, 31  
24, 26  
9, 43  
VCCT, GNDT  
VCCR, NDR  
-
-
-
-
-
Transmitter Supply (+5V) and Ground. (Analog plane)  
Receiver Supply (+5V) and Ground. (Analog plane)  
Analog Supply (+5V) and Ground.  
VCCA, NDA  
VCCD, GNDD  
VCCIO, GNDIO  
Digital Supply (+5V) and Ground.  
53, 52  
MII Supply (+3.3V or +5V) and Ground. (Digital plane)  
1. Pin numbers apply to all package types.  
10  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 2. LXT970A MII Signal Descriptions  
Pin#1  
Pin Name  
I/O2,3  
Signal Description4  
MII Data Interface Pins  
63  
62  
61  
60  
59  
TXD4  
TXD3  
TXD2  
TXD1  
TXD0  
Transmit Data. The Media Access Controller (MAC) drives data to the  
LXT970A using these inputs. TXD4 is monitored only in Symbol (5B) Mode.  
These signals must be synchronized to the TX_CLK.  
I
Transmit Enable. The MAC asserts this signal when it drives valid data on the  
TXD inputs. This signal must be synchronized to the TX_CLK.  
58  
TX_EN  
I
Transmit Clock. Normally the LXT970A drives TX_CLK; in Slave Clock Mode,  
TX_CLK is an input. Refer to the Clock Requirements discussion in the  
Functional Description section on page 18.  
57  
TX_CLK  
I/O  
25 MHz for 100 Mbps operation.  
2.5 MHz for 10 Mbps operation.  
Transmit Coding Error. The MAC asserts this input when an error has  
occurred in the transmit data stream. When the LXT970A is operating at 100  
Mbps, the LXT970A responds by sending invalid code symbols on the line.  
56  
TX_ER  
I
46  
47  
48  
49  
50  
RXD4  
RXD3  
RXD2  
RXD1  
RXD0  
Receive Data. The LXT970A drives received data on these outputs,  
synchronous to RX_CLK.  
O
RXD4 is driven only in Symbol (5B) Mode.  
Receive Data Valid. The LXT970A asserts this signal when it drives valid data  
on RXD. This output is synchronous to RX_CLK.  
51  
55  
RX_DV  
RX_ER  
O
O
Receive Error. The LXT970A asserts this output when it receives invalid  
symbols from the network. This signal is synchronous to RX_CLK.  
Receive Clock. This continuous clock provides reference for RXD, RX_DV, and  
RX_ER signals. Refer to the Clock Requirements discussion in the Functional  
Description section.  
54  
RX_CLK  
O
25 MHz for 100 Mbps operation.  
2.5 MHz for 10 Mbps operation.  
Collision Detected. The LXT970A asserts this output when detecting a  
collision. This output remains High for the duration of the collision.  
64  
1
COL  
CRS  
O
O
This signal is asynchronous and inactive during full-duplex operation.  
Carrier Sense. During half-duplex operation (bit 0.8 = 0), the LXT970A asserts  
this output when either transmit or receive medium is non-idle. During full-  
duplex operation (bit 0.8 = 1) or repeater operation  
(bit 19.13 = 1), CRS is asserted only when the receive medium is non-idle.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
3. If bit 17.3 = 0, 55series termination resistors are recommended on all output signals to avoid undershoot/overshoot, even  
on short traces.  
If bit 17.3 = 1, termination resistors are not required.  
4. The LXT970A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-6 or 16-20) and Y is the bit number (0-15).  
Datasheet  
11  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 2. LXT970A MII Signal Descriptions (Continued)  
Pin#1  
Pin Name  
I/O2,3  
Signal Description4  
Tri-state. In DTE Mode (19.13 = 0), when TRSTE input is High, the LXT970A  
isolates itself from the MII Data Interface, and controls the MDIO register bit  
0.10 (Isolate bit).  
When MDDIS is High, TRSTE provides continuous control over bit 0.10. When  
MDDIS is Low, TRSTE sets initial (default) values only and reverts control back  
to the MDIO interface.  
3
TRSTE  
I
In Repeater Mode (19.13 = 1), when TRSTE input is High, the LXT970A tri-  
states the receive outputs of the MII (RXD<4:0>, RX_DV, RX_ER, RX_CLK).  
MII Control Interface Pins  
Management Disable. When MDDIS is High, the MDIO is restricted to Read  
Only and the MF<4:0>, CFG<1:0>, and FDE pins provide continual control of  
their respective bits. When MDDIS is Low at power up or Reset, the MF<4:0>,  
CFG<1:0>, and FDE pins control only the initial or defaultvalues of their  
respective register bits. After the power-up/reset cycle is complete, bit control  
reverts to the MDIO serial channel.  
15  
MDDIS  
I
Management Data Clock. Clock for the MDIO serial data channel. Maximum  
frequency is 2.5 MHz.  
45  
44  
MDC  
I
Management Data Input/Output. Bidirectional serial data channel for PHY/  
STA communication.  
MDIO  
I/O  
Full-Duplex Status. When bit 17.1 = 0 (default), this pin indicates full-duplex  
status. (High = full-duplex, Low = half-duplex)  
This pin can drive a high efficiency LED. (See Table 23 for detail specifications).  
2
FDS/MDINT  
OD  
Management Data Interrupt. When bit 17.1 = 1, an active Low output on this  
pin indicates status change.  
Interrupt is cleared by sequentially reading Register 1, then Register 18.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
3. If bit 17.3 = 0, 55series termination resistors are recommended on all output signals to avoid undershoot/overshoot, even  
on short traces.  
If bit 17.3 = 1, termination resistors are not required.  
4. The LXT970A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an X.Ynotation,  
where X is the register number (0-6 or 16-20) and Y is the bit number (0-15).  
Table 3. LXT970A Fiber Interface Signal Descriptions  
Pin#1  
Pin Name  
I/O2  
Signal Description  
17  
18  
FIBOP  
FIBON  
Fiber Output, Positive and Negative. Differential pseudo-ECL driver pair compatible with  
standard fiber transceiver for 100BASE-FX.  
O
27  
28  
FIBIP  
FIBIN  
Fiber Input, Positive and Negative. Differential pseudo-ECL receive pair compatible with  
standard fiber transceiver for 100BASE-FX.  
I
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
12  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 4. LXT970A Twisted-Pair Interface Signal Descriptions  
Pin#1  
Pin Name  
I/O2  
Signal Description  
21  
23  
TPOP  
TPON  
Twisted-Pair Output, Positive and Negative. Differential driver pair produces 802.3-  
compliant pulses for either 100BASE-TX or 10BASE-T transmission.  
AO  
AO  
AI  
20  
TREF  
Transmit Reference. Tie to center tap of output transformer.  
29  
30  
TPIP  
TPIN  
Twisted-Pair Input, Positive and Negative. Differential input pair for either 100BASE-TX  
or 10BASE-T reception.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog  
Table 5. LXT970A LED Indicator Signal Descriptions  
Pin#1  
Pin Name  
I/O2  
Signal Description3  
38  
42  
41  
LEDS  
LEDR  
LEDT  
O
O
O
Speed LED. Active Low output indicates 100 Mbps operation is selected.  
Receive LED. Active Low output indicates that receiver is active.  
Transmit LED. Active Low output indicates transmitter is active.  
Link LED. Active Low output;  
40  
39  
LEDL  
LEDC  
O
O
During 100 Mbps operation, indicates scrambler lock and receipt of valid Idle codes.  
During 10 Mbps operation, indicates Link Valid status.  
Collision LED. In default mode, active Low output indicates collision. However, LEDC is  
programmable and may be set for other indications. For programming options, see  
Configuration Register 19 in Table 55, Configuration Register (Address 19, Hex 13)on  
page 71.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
3. LEDs are read at power-up to determine scrambler seed values.  
Table 6. LXT970A Miscellaneous Signal Descriptions  
Pin#1  
Pin Name  
I/O2  
Signal Description  
10  
TEST  
I
Test. Must be tied Low.  
Crystal Input and Output. Use a clock at XI or connect a 25 MHz crystal oscillator across  
XI and XO. Refer to the Functional Description section for detailed clock requirements on  
page 18.  
12  
11  
XI  
I
XO  
O
Bias Control. Controls operating circuit bias via an external 22.1 kΩ, 1% resistor to  
ground.  
25  
16  
34  
RBIAS  
RESET  
PWRDWN  
N/C  
AI  
I
Reset. This active Low input is ORed with the control register Reset bit (0.15). The  
LXT970A reset cycle is extended 300 µs (nominal) after Reset is de-asserted.  
Power Down. When High, forces LXT970A into power down mode. This pin is ORed with  
the Power Down bit (0.11). Refer to Table 45 for more information.  
I
32, 35,  
36  
-
No Connection. Leave open.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
Datasheet  
13  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 7. LXT970A Hardware Control Interface Signal Descriptions  
Pin#1  
Pin Name  
I/O2  
Signal Description3  
Multi-Function (MF). Five dual-function configuration inputs. Each pin accepts one of four  
input voltage levels (VMF1 = 5V, VMF2 = 3.5V, VMF3 = 1.5V, VMF4 = 0V).  
A simple resistor divider network, as shown in Figure 20 on page 45, is required to establish  
Mid-level (VMF2 and VMF3) settings. VMF1 and VMF4 (default) settings, can be established  
with the LXT970A standard power supply and do not require a voltage divider. One voltage  
divider may be used to drive the MF pins in designs using multiple LXT970As.  
Each MF pin internally drives two different configuration functions. The first function  
determines the 5-bit address that the LXT970A responds to on the MDIO line. The second  
function determines a particular operational mode of the LXT970A. Each MF pin also  
determines the state of a particular bit in the MII registers. The MDDIS input determines if this  
effect occurs only at initialization (MDDIS = 0) or continuously (MDDIS = 1). The relationship  
between the input levels and the two configuration functions are shown in Table 8 on page 16  
and Table 9 on page 17.  
8
7
6
5
4
MF0  
MF1  
MF2  
MF3  
MF4  
The operating functions of MF4, CFGO, and CFG1 change depending on the state of MF0  
(Auto-Negotiation enabled or disabled). The functions of MF4, CFG1 and FDE are  
interrelated.  
I
The functions of the five MF inputs are as follows:  
Pin  
MII Address MII Bit  
Operating Function  
MF0  
MF1  
MF2  
MF3  
0
1
2
3
0.12  
Auto-Negotiation  
19.13 Repeater Mode (Disabling DTE Mode)  
19.4  
19.3  
5B Symbol Mode (Disabling 4B Nibble Mode)  
Scrambler Operation (Disabling Scrambler)  
4.7  
4.8  
Auto-Negotiation Enabled - Advertise 100 Mbps  
Auto-Negotiation Disabled - Selects TX/FX  
MF4  
4
19.2  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
3. FDE, CFG0, and CFG1 are affected by the MDDIS input pin. When MDDIS = 0, these inputs determine only the initial state  
of the function they control. When MDDIS = 1, these inputs provide continuous hardware control over their corresponding  
functions.  
14  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 7. LXT970A Hardware Control Interface Signal Descriptions (Continued)  
Pin#1  
Pin Name  
I/O2  
Signal Description3  
Full-Duplex Enable.  
When A/N is enabled, FDE determines full-duplex advertisement capability in combination  
with MF4 and CFG1.  
13  
FDE  
I
When A/N is disabled, FDE directly affects full-duplex operation and determines the value of  
bit 0.8 (Duplex Mode).  
When FDE is High, full-duplex is enabled and 0.8 = 1.  
When FDE is Low, full-duplex is disabled and 0.8 = 0.  
Configuration Control 0.  
When A/N is enabled, Low-to-High transition on CFG0 causes auto-negotiate to re-start and  
0.9 = 1.  
14  
33  
CFG0  
CFG1  
I
I
When A/N is disabled, this input selects operating speed and directly affects bit 0.13.  
When CFG0 is High, 100 Mbps is selected and 0.13 = 1. If FX Operation is selected, this  
input must be tied High.  
When CFG0 is Low, 10 Mbps is selected and 0.13 = 0.  
Configuration Control 1.  
When A/N is enabled, CFG1 determines operating speed advertisement capabilities in  
combination with MF4.  
When A/N is disabled, CFG1 enables 10 Mbps link test function and directly affects bit 19.8.  
When CFG1 is High, 10 Mbps link test is disabled and 19.8 = 1.  
When CFG1 is Low, 10 Mbps link test is enabled and 19.8 = 0.  
1. Pin numbers apply to all package types.  
2. I/O Column Coding: I = Input, O = Output, OD = Open Drain, A = Analog.  
3. FDE, CFG0, and CFG1 are affected by the MDDIS input pin. When MDDIS = 0, these inputs determine only the initial state  
of the function they control. When MDDIS = 1, these inputs provide continuous hardware control over their corresponding  
functions.  
Datasheet  
15  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 8 summarizes the relationship between input voltage levels (VMF1, VMF2, VMF3, VMF4) and  
the configuration function for each of the MF input pins. Each MF pin shows two configuration  
inputs; configuration function and MII address. The initial setting of the corresponding bit is also  
shown.  
Table 8. MF Pin Function Settings1, 3  
Input Voltage Levels2  
VMF2 (3.5V) VMF3 (1.5V)  
Pin  
Function  
MII Address Bit 0  
VMF1 (5V)  
1
VMF4 (0V)  
0
1
0
MF0  
Auto-Negotiation  
Sets the initial value of bit  
0.12  
Disabled  
Enabled  
Enabled  
Disabled  
(0.12 = 0)  
(0.12 = 1)  
(0.12 = 1)  
(0.12 = 0)  
MII Address Bit 1  
1
1
0
0
MF1  
MF2  
MF3  
Repeater / DTE Mode  
Sets the initial value of bit  
19.13  
DTE  
Repeater  
Repeater  
DTE  
(19.13 = 0)  
(19.13 = 1)  
(19.13 = 1)  
(19.13 = 0)  
MII Address Bit 2  
1
1
0
0
Nibble (4B) / Symbol (5B) Mode  
Sets the initial value of bit  
19.4  
Nibble (4B)  
(19.4 = 0)  
Symbol (5B)  
(19.4 = 1)  
Symbol (5B)  
(19.4 = 1)  
Nibble (4B)  
(19.4 = 0)  
MII Address Bit 3  
1
1
0
0
Scrambler Operation  
Sets the initial value of bit  
19.3  
Enabled  
Bypassed  
(19.3 = 1)  
Bypassed  
(19.3 = 1)  
Enabled  
(19.3 = 0)  
(19.3 = 0)  
MII Address Bit 4  
1
1
0
0
If Auto-Negotiate Enabled via  
MF0, MF4 works in combination  
with CFG1 to control operating  
speed and duplex advertisement  
capabilities via bits 4.5 - 4.8.  
See Table 9 for details.  
MF4  
If Auto-Negotiate Disabled via  
MF0, MF4 selects either  
100TX  
(19.2 = 0)  
100FX  
(19.2 = 1)  
100FX  
(19.2 = 1)  
100TX  
(19.2 = 0)  
TX or FX Mode  
Sets the initial value of bit  
19.2  
1. In MDIO Control Mode, the MF pins control only the initial or default value for the respective register bits. In Manual Control  
mode, the MF pins provide continuous control of the respective register bits.  
2. Input Voltage Levels (VMF1, VMF2, VMF3, VMF4) for MF pins.  
3. See Table 12 through Table 14 for operating configuration set-up.  
16  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 9. LXT970A Auto-Negotiation Operating Speed/Full-Duplex  
Advertisement Settings  
Input Value  
CFG1  
Desired Configuration  
MDIO Registers  
MF4  
FDE  
Advertise all capabilities  
VMF1, VMF4  
Low  
Sets 4.5, 4.6, 4.7 and 4.8 = 1  
Ignore FDE  
Sets 4.5 = 1  
Advertise 10 Mbps only  
Advertise FD  
VMF1, VMF4  
High  
High  
Low  
High  
Low  
Sets 4.7 and 4.8 = 0  
Sets 4.6 = 1  
Sets 4.5 = 1  
Advertise 10 Mbps only  
Do Not Advertise FD  
Sets 4.7 and 4.8 = 0  
Sets 4.6 = 0  
Sets 4.7 = 1  
Advertise 100 Mbps only  
Advertised FD  
VMF2, VMF3  
Low  
Sets 4.5 and 4.6 = 0  
Sets 4.8 = 1  
Sets 4.7 = 1  
Advertise 100 Mbps only  
Do Not Advertise FD  
Sets 4.5 and 4.6 = 0  
Sets 4.8 = 0  
Advertise 10/100 Mbps  
Advertise FD  
Sets 4.5 and 4.7 = 1  
Sets 4.6 and 4.8 = 1  
VMF2, VMF3  
High  
High  
Low  
Advertise 10/100 Mbps  
Do Not Advertise FD  
Sets 4.5 and 4.7 = 1  
Sets 4.6 and 4.8 = 0  
Datasheet  
17  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.0  
Functional Description  
2.1  
Introduction  
The LXT970A, a new-generation version of the LXT970 10/100 PHY Fast Ethernet Transceiver  
incorporates several functional enhancements for a more robust Ethernet solution. The LXT970A  
supports optional MII driver strength capabilities and link-loss criteria selectable via the MDIO  
register set.  
The LXT970A can directly drive a twisted-pair cable for up to 100 meters. The LXT970A also  
provides a pseudo-ECL interface for driving a 100BASE-FX fiber connection. On power-up, the  
LXT970A uses auto-negotiation with parallel detection to automatically determine line operating  
conditions. If the PHY device on the other side of the link supports auto-negotiation, the  
LXT970A auto-negotiates using Fast Link Pulse (FLP) bursts. If the PHY partner does not support  
auto-negotiation, the LXT970A automatically detects the presence of either link pulses (10 Mbps  
PHY) or Idle symbols (100 Mbps PHY) and set its operating speed accordingly. When the line  
speed selection is made via the parallel detection method, the duplex mode sets to half. The user  
may later select full-duplex operation by subsequent writes to the appropriate MDIO register. Line  
operation can also be set using the Hardware Control Interface.  
The LXT970A interfaces to a 10/100 MAC through the MII interface. The LXT970A performs all  
functions of the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sublayer  
as defined in the IEEE 802.3 100BASE-X specification. It also performs all Physical Media  
Dependent (PMD) sublayer functions for 100BASE-TX connections. The MII speed is  
automatically set once line operating conditions have been determined.  
See Figure 3 for a typical Network Interface Card (NIC). The LXT970A supports NIC, repeater,  
and switch applications. It provides half- and full-duplex operation at 100 Mbps and 10 Mbps. The  
LXT970A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using  
an X.Ynotation, where X is the register address (0-6 or 16-20) and Y is the bit number (0:15).  
Figure 3. Network Interface Card (NIC) Application  
PC Bus (EISA,PCI)  
RJ-45  
Connection  
MAC Controller  
LXT970A  
Magnetic  
18  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.2  
Interfaces (Network Media/Protocol Support)  
The LXT970A provides the following interfaces:  
A Twisted-Pair Interface which directly supports 100BASE-TX and 10BASE-T applications.  
A pseudo-ECL (PECL) Fiber Interface which supports 100BASE-FX applications through an  
external fiber transceiver.  
An MII (Media Independent Interface) for interfacing 10/100 Media Access Controllers  
(MACs).  
A Hardware Control Interface to configure various operating characteristics.  
2.2.1  
Twisted-Pair Interface  
The Twisted-Pair Interface directly supports both 100BASE-TX and 10BASE-T applications. The  
interface is capable of directly driving an RJ-45 interface through magnetics and termination  
resistors. The interface uses two signal pairs - one for transmit and one for receive. A third output,  
TREF, connects to the center-tap of the transmit transformer. The same signal pairs, magnetics, and  
termination resistors are used for both 10 and 100 Mbps operation.  
When the LXT970A is operating as a 100 Mbps device, it transmits and receives a 125 Mbps, 5B-  
encoded, scrambled MLT-3 waveform on this interface. The MLT-3 waveform is continuous.  
When there is no data to send, IDLEsymbols are sent and received.  
When the LXT970A is operating as a 10 Mbps device, it transmits and receives 10 Mbps  
Manchester-encoded data. The waveform is not continuous. When there is no data to send, the  
line is left in an idle state. Link pulses are transmitted periodically to keep the link up.  
The LXT970A supports both fixed operation and auto-negotiation with parallel detection on this  
interface. Fixed operation allows the designer to specify the line speed and duplex mode. With  
auto-negotiation enabled, the LXT970A automatically determines line speed and duplex state by  
exchanging capability pageswith its link partner.  
A 4 kpassive load is always present across the twisted-pair inputs. When enabled, the twisted-  
pair inputs are actively biased to approximately 2.8V.  
In applications where the Twisted-Pair Interface is not used, the inputs and outputs may be left  
unconnected.  
The Twisted-Pair Interface is disabled in power down mode, when the Fiber Interface is selected,  
or when the transmit disconnect (bit 19.0) is set. When the Twisted-Pair Interface is disabled its  
outputs are tri-stated and inputs are unbiased.  
2.2.2  
Fiber Interface  
The pseudo-ECL Fiber Interface is suitable for driving 100BASE-FX applications through an  
external fiber transceiver. This interface consists of a transmit and receive pair. The LXT970A  
sends and receives a continuous 125 Mbps, 5B-encoded NRZI stream on this interface.  
Scrambling and MLT-3 are not used in fiber connections.  
There is no industry standard for auto-negotiation on 100BASE-FX. The LXT970A only supports  
forced operation on the Fiber Interface. The LXT970A does not support 10FL (10 Mbps fiber)  
applications.  
Datasheet  
19  
LXT970A Dual-Speed Fast Ethernet Transceiver  
The LXT970A does not support the Signal Detect Function. However, the PMA functions of the  
LXT970A guarantee that it will detect invalid link conditions and break down a link, even without  
the Signal Detect function.  
In applications where the Fiber Interface is not used, the inputs and outputs may be left  
unconnected. The Fiber Interface is disabled in power down mode and when the Twisted-Pair  
Interface is enabled. When the Fiber Interface is disabled its outputs are pulled to ground.  
2.2.3  
MII Interface  
The LXT970A implements the Media Independent Interface (MII) as defined in the IEEE 802.3.  
This interface consists of a data interface and a management interface as shown in Figure 4. The  
data interface is used for exchanging data between a 10/100 802.3 compliant Ethernet Media  
Access Controller (MAC) and the LXT970A. The management portion of the interface allows  
network management functions to control and monitor the LXT970A.  
2.2.3.1  
Selectable Driver Levels  
The LXT970A supports two options for driver-strength capabilities that can be selected via bit  
17.3.  
High-strength (bit 17.3 = 0, default) MII driver level can effectively source 50 - 60 mA. To avoid  
undershoot or overshoot, series termination resistors are recommended on all output signals when  
this driver level is selected.  
Reduced (bit 17.3 = 1) MII driver level relaxes the pull-down strength of the MII signals by a  
factor of ten and the pull-up strength by a factor of eight. Termination resistors are not required on  
the MII outputs when this driver level is selected.  
Figure 4. MII Interface  
Media Access Controller  
Media Independent  
Interface (MII)  
Mgmt  
Data  
LXT970A  
20  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.2.3.2  
MII Data Interface  
Figure 5 shows the data portion of the MII interface. Separate channels are provided for  
transmitting data from the MAC to the LXT970A (TXD), and for receiving data (RXD) from the  
line.  
Each channel has its own clock, data bus and control signals. The LXT970A supplies both clock  
signals as well as separate outputs for carrier sense and collision.  
Normal data transmission across the MII is implemented in 4-bit wide nibbles known as 4B Nibble  
Mode. In 5B Symbol Mode, a fifth bit allows 5-bit symbols to be sent across the MII. Refer to the  
100 Mbps Operation section on page 32 for additional information.  
Figure 5. MII Data Interface  
TX_CLK  
TX_EN  
TXD<3:0>  
TX_ER  
Media Access  
Controller  
MAC  
LXT970A  
RX_CLK  
RX_DV  
RXD<3:0>  
RX_ER  
CRS  
COL  
Transmit Clock  
The transmit clock (TX_CLK) is normally generated by the LXT970A from the master 25 MHz  
reference source at the XI input. However, when the XI input is grounded, TX_CLK becomes the  
master reference clock input.  
The transmit data and control signals must always be synchronized to TX_CLK by the MAC. The  
LXT970A normally samples these signals on the rising edge of TX_CLK. However, Advanced  
TX_CLK Mode is available by setting MII register bit 19.5=1. In this mode, the LXT970A  
samples the transmit data and control signals on the falling edge of TX_CLK.  
Further details of clock modes can be found in the Operating Requirements section on page 27.  
Receive Clock  
The source of the receive clock varies depending on operating conditions. For 100BASE-TX and  
100BASE-FX links, receive clock is continuously recovered from the line. If the link goes down,  
and auto-negotiation is disabled, receive clock operates off the master input clock (XI or  
TX_CLK).  
For 10T links, receive clock is recovered from the line while carrier is active and operates from the  
master input clock when the line is idle.  
Datasheet  
21  
LXT970A Dual-Speed Fast Ethernet Transceiver  
The LXT970A synchronizes the receive data and control signals to RX_CLK. The LXT970A  
always changes these signals on the falling edge of RX_CLK in order to stabilize the signals at the  
rising edge of the clock with 10 ns setup and hold times.  
Transmit Enable  
The MAC must assert TX_EN the same time as the first nibble of preamble, and de-assert TX_EN  
after the last bit of the packet.  
Receive Data Valid  
The LXT970A asserts RX_DV when it receives a valid packet. Timing changes depend on line  
operating speed and MII mode:  
For 100TX and 100FX links with the MII in 4B mode, RX_DV is asserted from the first nibble  
of preamble to the last nibble of the data packet.  
For 100TX and 100FX links with the MII in 5B mode, RX_DV is asserted starting with the /K  
symbol and ending with the /T symbol.  
For 10BT links, the entire preamble is truncated. RX_DV is asserted with the first nibble of  
the SFD 5Dand remains asserted until the end of the packet.  
Error Signals  
In 100TX mode, when the LXT970A receives an errored symbol from the network, it asserts  
RX_ER and drives 1110(4B) or 01110(5B) on the RXD pins.  
When the MAC asserts TX_ER, the LXT970A drives Hsymbols out on the line.  
There are no error functions in 10T mode.  
Carrier Sense  
Carrier sense (CRS) is an asynchronous output. It is always generated when a packet is received  
from the line and in some modes when a packet is transmitted.  
On transmit CRS is asserted on a 10BT, half-duplex link when MII Register 19.11 = 0 (default  
state), or on any 100 Mbps half-duplex link. Carrier sense is not generated on transmit when the  
link operation is full-duplex, or with 10BT half-duplex links when 19.11=1.  
Usage of CRS for Interframe Gap (IFG) timing is not recommended for the following reasons:  
De-assertion time for CRS is slightly longer than assertion time. This causes the IFG interval  
to appear somewhat shorter to the MAC than it actually is on the wire.  
CRS de-assertion is not aligned with TX_EN de-assertion on transmit loopbacks in half-  
duplex mode.  
Operational Loopback  
Operational loopback is provided for 10 Mbps half-duplex links when bit 19.11 = 0. Data  
transmitted by the MAC will be looped back on the receive side of the MII. Operational loopback  
is not provided for 100 Mbps links, full-duplex links, or when 19.11 = 1.  
22  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Test Loopback  
A test loopback function is provided for diagnostic testing of the LXT970A. During test loopback  
the twisted-pair interface is disabled. Data transmitted by the MAC is internally looped back by  
the LXT970A and returned to the MAC.  
Test loopback is available for 100 Mbps and 10 Mbps operation. Loopback paths for the two modes  
of operation are shown in Figure 6.  
Test loopback is enabled by setting bit 0.14 = 1 (loopback), bit 0.8 = 1 (full-duplex), and bit 0.12 =  
0 (disable auto-negotiation). The desired mode of operation for test loopback is set using bits 0.13  
and 19.2 as shown in Table 10.  
Table 10. Test Loopback Operation  
Bit  
Mode of Operation  
19.2  
0.13  
10 Mbps Test Loopback  
100 Mbps Test Loopback  
0
1
0
1
1. Also set bit 0.14 = 1, bit 0.8 = 1, and 0.12 = 0 to enable Test  
Loopback.  
Figure 6. Loopback Paths  
100 Mbps  
Loopback  
10 Mbps  
Loopback  
FX  
Driver  
Digital  
Block  
Analog  
Block  
MII  
TX  
Driver  
Collision  
The LXT970A asserts its collision signal, asynchronously to any clock, whenever the line state is  
half-duplex and the transmitter and receiver are active at the same time. Table 11 summarizes the  
conditions for assertion of carrier sense, collision, and data loopback signals.  
Table 11. Carrier Sense, Loopback, and Collision Conditions  
Operational  
Loopback  
Speed & Duplex Condition  
Carrier Sense  
Collision  
Full-Duplex at 10 Mbps or 100 Mbps  
Repeater Mode  
Receive only  
None  
None  
100 Mbps, Half-Duplex  
Transmit or Receive  
Transmit or Receive  
Receive only  
None  
Yes  
Transmit and Receive  
Transmit and Receive  
Transmit and Receive  
10 Mbps, Half-Duplex, 19.11 = 0  
10 Mbps, Half-Duplex, 19.11 = 1  
None  
Datasheet  
23  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.2.3.3  
Repeater Mode  
The LXT970A MII normally operates in DTE Mode (19.13 = 0). An alternative operating mode is  
available for repeater applications (19.13 = 1).  
In Repeater Mode, the Carrier Sense (CRS) and Tri-state (TRSTE) signals request and grant bus  
access. The TRSTE pin controls only the receive channel of the MII (RX_DV, RX_ER, RX_CLK,  
and RXD).  
As shown in Figure 7, a central Repeater State Machine (RSM) is required to perform arbitration  
and determine which LXT970A drives the MII Data Interface. The RSM is responsible for  
enforcing collisions, and ensuring packets are not transmitted to the port they were received from.  
This is accomplished by supplying each LXT970A with individual TX_EN outputs. Although  
repeater operation is half-duplex, the LXT970A operates the MII as a full-duplex interface in  
Repeater Mode. CRS is generated only on receive and Collision (COL) is never generated.  
Repeater Mode is normally used with Slave Clock Mode (XI = GND and TX_CLK is an input).  
Figure 7. Repeater Block Diagram  
Receive Channel (RXD)  
CRS  
TX_EN  
LXT970A  
TRSTE  
CRS  
TX_EN  
TRSTE  
LXT970A  
Repeater  
State Machine  
(RSM)  
CRS  
TX_EN  
TRSTE  
LXT970A  
LXT970A  
CRS  
TX_EN  
TRSTE  
Transmit Channel (TXD)  
2.2.3.4  
MII Management Interface  
The LXT970A supports the IEEE 802.3 MII Management Interface also known as the  
Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to  
monitor and control the state of the LXT970A. MDIO interface consists of a physical connection, a  
specific protocol which runs across the connection, and an internal set of addressable registers. The  
physical interface consists of a data line (MDIO) and clock line (MDC), a control line (MDDIS)  
24  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
and an optional interrupt line (MDINT). The LXT970A can signal an interrupt using the MDIO  
signal as shown in Figure 8. The user can also assign a separate pin for this function. If bit 17.1 = 1,  
pin 2 (FDS/MDINT) will be used as an MDINT pin.  
The protocol allows one controller to communicate with multiple LXT970A devices. The MF pins  
control one bit each of the 5-bit address setting. Each LXT970A is assigned an MII address  
between 0 and 31. Details of the MF inputs are shown in Table 7 on page 14. Timing for the MDIO  
Interface is shown in Table 42 on page 61. Read and write operations are shown in Figure 9 and  
Figure 10. Operation of this interface is controlled by the MDDIS input pin. When MDDIS is High,  
the MDIO operates as a read-only interface. When MDDIS is Low, read and write are enabled.  
The LXT970A supports twelve 16-bit MDIO registers. Registers 0-6 are required and their  
functions are specified by the IEEE 802.3 specification. Additional registers are included for  
expanded functionality. The MDIO Register set for the LXT970A is described in Table 45 through  
Table 56. Specific bits in the registers are referenced using an X.Ynotation, where X is the  
register number (0-6 or 16-20) and Y is the bit number (0-15).  
MII Management Interrupt  
The MDINT/FDS pin functions as a management data interrupt on the MII when 17.1 = 1. An  
active Low on this pin indicates a status change on the LXT970A. The interrupt is activated when  
changes are made to the following conditions:  
Link Status  
Duplex Status  
This interrupt is cleared by sequentially reading Register 1 and Register 18.  
Figure 8. MDIO Interrupt Signaling  
MDC  
INT  
MDIO  
Interrupt  
MDIO FRAME  
0
Z
Turn  
Around  
Read Data  
Sourced by  
LXT970A  
Idle  
Figure 9. Management Interface - Read Frame Structure  
MDC  
MDIO  
(Read)  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14 D1  
D15  
0
Z
0
32 "1"s  
0
1
1
Turn  
Around  
Data  
Read  
Idle  
Idle  
Preamble  
SFD  
Op Code  
PHY Address  
Register Address  
Write  
Figure 10. Management Interface - Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
SFD  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
Datasheet  
25  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.2.4  
Hardware Control Interface  
The Hardware Control Interface consists of MF<4:0>, CFG <1:0> and FDE input pins. This  
interface is used to configure operating characteristics of the LXT970A and to determine the  
MDIO Address. When MDDIS is Low, the Hardware Control Interface provides initial values for  
the MDIO registers, and then passes control to the MDIO Interface.  
When MDDIS is High, the Hardware Control Interface provides continuous control over the  
LXT970A. Individual chip addressing allows multiple LXT970A devices to share the MII in either  
mode. Table 12, Table 13 and Table 14 show how to set up the desired operating configurations  
using the Hardware Control Interface.  
.
Table 12. Configuring the LXT970A via Hardware Control  
Desired Configuration  
Auto-Negotiation Enabled1  
Pin Name  
Voltage Level  
MDIO Registers  
MF0  
MF0  
VMF2, VMF3  
VMF1, VMF4  
0.12 = 1  
0.12 = 0  
Auto-Negotiation Disabled2  
MF1  
MF2  
MF3  
19.13 = 0  
19.4 = 0  
19.3 = 0  
Normal Operation  
VMF1, VMF4  
(DTE Mode, Nibble Mode, Scrambler Enabled)  
Repeater Mode  
MF1  
MF2  
MF3  
VMF2, VMF3  
VMF2, VMF3  
VMF2, VMF3  
19.13 = 1  
19.4 = 1  
19.3 = 1  
Symbol Mode  
Scrambler Bypass Mode  
1. Refer to Table 13 for Hardware Control Interface functions available when auto-negotiation is enabled.  
2. Refer to Table 14 for Hardware Control Interface functions available when auto-negotiation is disabled.  
Table 13. LXT970A Operating Configurations / Auto-Negotiation Enabled  
Input Value  
CFG1  
MDIO Registers  
Desired  
Configuration1,2  
MF4  
FDE  
4.5  
4.6  
4.7  
4.8  
Advertise All  
VMF1, VMF4  
VMF2, VMF3  
VMF2, VMF3  
VMF1, VMF4  
VMF1, VMF4  
VMF2, VMF3  
VMF2, VMF3  
Low  
Low  
Low  
High  
High  
High  
High  
Ignore  
Low  
1
0
0
1
1
1
1
1
0
0
0
1
0
1
1
1
1
0
0
1
1
1
0
1
0
0
0
1
Advertise 100 HD  
Advertise 100 HD/FD  
Advertise 10 HD  
High  
Low  
Advertise 10 HD/FD  
Advertise 10/100 HD  
Advertise 10/100 HD/FD  
High  
Low  
High  
1. Refer to Table 12 for basic configurations.  
2. Refer to Table 14 for Hardware Control Interface functions available when auto-negotiation is disabled.  
26  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 14. LXT970A Operating Configurations / Auto-Negotiation Disabled  
Desired Configuration1,2  
Pin Name  
Input Value  
MDIO Registers  
Force 100FX Operation  
MF4  
CFG0  
MF3  
VMF2, VMF3  
High  
19.2 = 1  
0.13 = 1  
19.3 = 0  
19.2 = 0  
0.13 = 1  
19.2 = 0  
0.13 = 0  
0.8 = 1  
VMF1, VMF4  
VMF1, VMF4  
High  
MF4  
Force 100TX Operation  
Force 10T Operation  
CFG0  
MF4  
VMF1, VMF4  
Low  
CFG0  
FDE  
Force Full-Duplex Operation  
Disable 10T Link Test  
High  
CFG1  
CFG1  
High  
19.8 = 1  
19.8 = 0  
Enable 10T Link Test  
Low  
1. Refer to Table 12 for basic configurations.  
2. Refer to Table 13 for Hardware Control Interface functions available when auto-negotiation is enabled.  
2.3  
Operating Requirements  
2.3.1  
Power Supply Requirements  
The LXT970A requires a 5V power supply. Power should be supplied from a single source to the  
VCC, VCCA, VCCT, and VCCR power pins. A ground return path must be provided to the GND,  
GNDA, GNDT, and GNDR pins. As a matter of practice, the power supply should be as clean as  
possible. Filtering is recommended for the analog power pins (VCCA, VCCT, VCCR) at least in  
the initial design. Consult the Design Recommendations section on page 42 for details. A  
decoupling capacitor is recommended between each VCC pin and its respective GND, placed as  
close to the device as possible.  
2.3.1.1  
2.3.2  
Optional MII Power Supply  
The MII may be powered by either a 3.3V or 5V source via the VCCIO pin. To avoid power  
sequencing issues, the VCCIO pin should be supplied from the same source used to power the  
other side of the MII interface. When VCCIO is supplied with 3.3V, the MII inputs are not tolerant  
of 5V signal levels. The MDIO and MDC pins must be operated at the same voltage as the rest of  
the MII interface.  
Reference Clock Requirements  
The LXT970A requires a continuous, stable reference clock. There are two clock modes, Master  
Clock Mode and Slave Clock Mode. Depending on the mode of operation, the clock may be  
supplied at the crystal oscillator pins (XI, XO), or at the Transmit Clock pin (TX_CLK). See Table  
25 on page 48 for input clock requirements.  
Datasheet  
27  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.3.2.1  
Master Clock Mode  
The Master Clock mode is recommended in most Network Interface Cards (NICs) and switch  
applications. In Master Clock mode the LXT970A is the master clock source for data transmission,  
and requires a 25 MHz reference signal at XI. The reference clock may be supplied either from a  
crystal oscillator or from a digital clock circuit with the following specifications:  
A frequency of 25 MHz +/-100 ppm  
40/60 duty cycle or better  
CMOS voltage levels (VOH >3.2V).  
In Master Clock Mode, TX_CLK is an output and the LXT970A automatically sets the speed of  
TX_CLK to match line conditions. If the line is operating at 100 Mbps, TX_CLK will be set to 25  
MHz. If the line is operating at 10 Mbps, TX_CLK will be set to 2.5 MHz.  
External Crystal  
A crystal is typically used in NIC applications. If using a crystal oscillator, it should be  
fundamental-mode and parallel-resonant, with a drive capacity of at least 7 pF. Attach between the  
XI and XO pins. Add compensating capacitors between each leg and digital ground. The correct  
value to use is the nominal drive capacity of the crystal minus 3 pF (input capacitance of the XI and  
XO pins). One crystal can be used to drive two LXT970As. Connect the XO pin of only one 970  
to one side of the crystal, and connect the other side to both XI pins. Calculate compensation  
accordingly.  
External Clock  
An external 25 MHz clock source, rather than a crystal, is frequently used in switch applications.  
When a clock is supplied to XI, XO is left open.  
TX Clock Advance Mode  
When operating in Master Clock mode under MDIO Control, the user can advance the transmit  
clock relative to TXD<4:0> and TX_ER. When TX_CLK Advance is selected, the LXT970A  
clocks TXD data in on the falling edge of TX_CLK, instead of the rising edge.  
This mode provides an increase in timing margins of TXD, relative to TX_CLK. TX_CLK  
Advance is enabled when bit 19.5 = 1.  
2.3.2.2  
Slave Clock Mode  
The Slave Clock mode is typically used for repeater applications, where the LXT970A is not the  
master clock source for data transmissions. In Slave Clock Mode, a digital clock circuit with TTL  
levels (VOH >2.4V) must supply the TX_CLK input. The frequency may be either 25 MHz or 2.5  
MHz. Either frequency can be used during auto-negotiation. However, once link is established,  
the supplied frequency must match the link state. A 25 MHz clock must be supplied for correct  
operation of a 100TX or 100FX link, and a 2.5 MHz clock must be supplied for correct operation  
of a 10BT link. In Slave Clock mode, XI is connected to ground and XO is left open.  
28  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.3.3  
Bias Circuit Requirements  
A 22.1 k1% resistor must be tied between the RBIAS input and ground. High-speed signals  
should be kept away from this resistor. Follow the layout recommendations given in the Design  
Recommendations section on page 42.  
2.4  
Initialization  
At power-up or reset, the LXT970A performs the initialization sequence shown in Figure 11.  
2.4.1  
Control Mode Selection  
Mode control selection is provided via the MDDIS pin as shown in Table 15. When pin 15  
(MDDIS) is High, the LXT970A enters Manual Control Mode. When MDDIS is Low, MDIO  
Control Mode is enabled.  
2.4.1.1  
2.4.1.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT970A reads the Hardware Control Interface pins to set the  
initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to  
the MDIO interface.  
Manual Control Mode  
In the Manual Control Mode, LXT970A disables direct write operations to the MDIO registers via  
the MDIO Interface. The LXT970A continuously monitors the Hardware Control Interface pins  
and updates the MDIO registers accordingly.  
Table 15. Mode Control Settings  
Mode  
MDIO Control  
MDDIS  
Low  
RESET  
PWRDWN  
High  
High  
Low  
-
Low  
Low  
Low  
High  
Manual Control  
Reset  
High  
-
-
Power Down  
2.4.2  
Link Configuration  
When the LXT970A is first powered on, reset, or encounters a link failure state, it must determine  
the line speed and operating conditions to use for the network link. The LXT970A first checks the  
MDIO registers (initialized via the Hardware Control Interface or MDIO Interface) for operating  
instructions. Both control modes allow the user to either force the LXT970A to a specific  
configuration or allow it to auto-negotiate the optimum configuration with its link partner.  
Datasheet  
29  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.4.2.1  
Manual Configuration  
The LXT970A can be manually configured to force operation in the following modes:  
100FX, full-duplex  
100FX, half-duplex  
100TX, full-duplex  
100TX, half-duplex  
10T, full-duplex  
10T, half-duplex  
Refer to Table 12 through Table 14 in the Hardware Control Interface discussion for specific  
manual configuration settings.  
Figure 11. LXT970A Initialization Sequence  
Power-up or Reset  
Manual Control  
Mode  
MDIO Control  
Mode  
High  
Low  
Check Value  
MDDIS  
Read H/W Control  
Interface  
Disable MDIO Writes  
Read H/W Control  
Interface  
Initialize MDIO Registers  
Pass Control to MDIO  
Interface  
Update MDIO Registers  
Exit  
2.4.2.2  
Auto-Negotiation/Parallel Detection  
With auto-negotiation enabled at power-up or reset, the LXT970A attempts to establish link  
operating conditions with its partner by sending Fast Link Pulse (FLP) bursts.  
If the link partner is also capable of auto-negotiation, the two devices exchange FLP bursts to  
communicate their capabilities to each other. Each side finds the highest common capabilities that  
both sides can support and then begins operating in that mode.  
If the link partner is not capable of auto-negotiation, it transmits either 10 Mbps Normal Link  
Pulses (NLP) or 100 Mbps Idle symbols. When the LXT970A detects either NLPs or Idle symbols,  
it automatically configures to match the detected operating speed in half-duplex mode. This ability  
allows the LXT970A to communicate with devices that do not support auto-negotiation.  
30  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the following steps are recommended:  
After a reset or power-up (initial or from power down mode), the power down recovery time  
(refer to Table 43 on page 62) must be exhausted before proceeding.  
Set MDIO Register 4 advertisement capabilities before setting MDIO bit 0.12 = 1 to enable  
auto-negotiation.  
Figure 12. Auto-Negotiation Operation  
Power-Up, Reset,  
Link Failure  
Start  
Disable  
Enable  
Auto-Negotiation  
Auto-Neg/Parallel Detection  
Auto  
Negotiation  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Set?  
2.5  
Monitoring Operational Status  
2.5.1  
Monitoring Status via MII Registers  
The Chip Status Register (Table 56 on page 72) provides a convenient indication of several status  
conditions:  
Bit 20.13 is set to 1 once the link is established.  
Bits 20.11 and 20.12 indicate the link speed and duplex condition respectively.  
Bits 20.9 and 20.8 indicate the progress and status of auto-negotiation.  
Refer to the Register Definition section on page 63 for additional details on specific registers.  
Datasheet  
31  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.5.2  
Monitoring Status via Indicator Pins  
The LEDS, LEDR, LEDT, LEDL, and LEDC pins are CMOS digital outputs that drive LEDs.  
These pins along with the FDS/MDINT output, can also be used to externally monitor the status of  
the LXT970A. The following notes apply to the FDS/MDINT and LED pins:  
LEDR, LEDT and LEDC pulse Low to indicate receive, transmit, and collision activity  
respectively. When the LXT970A asserts these signals, it automatically extends them for 100  
ms.  
LEDL indicates link status and LEDS indicates link speed. LEDL and LEDS are active Low.  
In its default state (17.1 = 0), the MDINT/FDS output indicates duplex condition. FDS is  
active High.  
Table 16 shows the state of the LXT970A according to the status of LEDL, LEDS, and FDS pins.  
Table 16. LXT970A Status using FDS/LED Pins  
LXT970A State  
Pin Status  
LEDL  
LEDS  
FDS  
During Power-up  
High  
High  
Low  
During Auto-Negotiation or  
Link Failure  
High  
High  
Low  
Link-up; 100 Mbps; full-duplex  
Link-up; 100 Mbps; half-duplex  
Link-up; 10 Mbps; full-duplex  
Link-up; 10 Mbps; half-duplex  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
Low  
High  
Low  
2.6  
100BASE-X Operation  
2.6.1  
100BASE-X MII Operations  
The MAC exchanges data with the LXT970A over the MII interface. The LXT970A converts the  
digital data from the MAC into an analog waveform that is transmitted to the network via the  
copper (TX) or fiber (FX) interface. The LXT970A converts analog signals received from the  
network into a digital format and sends them to the MAC via the MII. Refer to the MII interface  
discussion on page 20 for details on MII control and data signals.  
The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However,  
data is normally transmitted across the MII interface in 4-bit nibbles. The LXT970A incorporates a  
4B/5B encoder/decoder circuit that translates 4-bit nibbles from the MII into 5-bit symbols for the  
100BASE-X connection, and translates 5-bit symbols from the 100BASE-X connection into 4-bit  
nibbles for the MII. Figure 14 shows the data conversion flow from nibbles to symbols. Table 17  
shows 4B/5B symbol coding (not all symbols are valid).  
In some applications it may be desirable to bypass the 4B/5B encoder/decoder circuit, and operate  
the MII as a 5-bit symbol mode interface. The LXT970A provides additional lines in both the  
receive and transmit channels (RXD4 & TXD4) to accommodate MACs that accept 5-bit symbols.  
32  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.6.2  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT970A transmits and receives 5-bit symbols across the  
network link. Figure 13 shows the structure of a standard frame packet. When the MAC is not  
actively transmitting data, the LXT970A sends out Idle symbols on the line.  
In 100TX mode, the LXT970A scrambles the data using a polynomial key, and transmits it to the  
network using MLT-3 line code. The MLT-3 signals received from the network are descrambled  
and decoded by the LXT970A, and sent across the MII to the MAC.  
In 100FX mode, the LXT970A transmits and receives NRZI signals across the pseudo-ECL  
interface. An external 100FX transceiver module is required to complete the fiber connection. To  
enable 100FX operation, auto-negotiation must be disabled and FX selected.  
Figure 13. 100BASE-TX Frame Structure  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0 P1 P6  
DA DA SA SA L1  
L2 D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End of Stream Delimiter (ESD)  
Replaced by  
Start of Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start of Stream  
Delimiter (SSD)  
Figure 14. 100BASE-TX Data Flow  
Standard Data Flow  
+1  
Parallel  
D0  
to  
Serial  
0
0
0
Scramble  
D1  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
D2  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
D3  
Symbol (5B) Mode Data Flow  
S0  
Parallel  
to  
Serial  
+1  
S1  
0
0
0
Scramble  
-1  
S2  
S0 S1 S2 S3 S4  
MLT3  
De-  
Scramble  
Serial  
to  
Parallel  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
S3  
S4  
Scrambler Bypass Data Flow  
S0  
+1  
Parallel  
to  
Serial  
S1  
0
0
0
-1  
MLT3  
S2  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
S3  
S4  
Datasheet  
33  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 17. 4B/5B Coding  
4B Code  
3 2 1 0  
5B Symbol  
4 3 2 1 0  
Code Type  
Name  
Interpretation  
0 0 0 0  
0 0 0 1  
0
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 1  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
1
0 0 1 0  
2
0 0 1 1  
3
4
0 1 0 0  
0 1 0 1  
5
0 1 1 0  
6
DATA  
0 1 1 1  
7
1 0 0 0  
8
1 0 0 1  
9
1 0 1 0  
A
1 0 1 1  
B
1 1 0 0  
C
1 1 0 1  
D
1 1 1 0  
E
1 1 1 1  
F
IDLE  
undefined  
0 1 0 1  
I 1  
Idle. Used as inter-stream fill code  
J 2  
Start-of-Stream Delimiter (SSD), part 1 of 2  
CONTROL  
0 1 0 1  
K 2  
Start-of-Stream Delimiter (SSD), part 2 of 2  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
T 3  
End-of-Stream Delimiter (ESD), part 1 of 2  
R 3  
End-of-Stream Delimiter (ESD), part 2 of 2  
H 4  
Transmit Error. Used to force signaling errors  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code-group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code-groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code-groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code-group is used to signal an error condition.  
34  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.7  
10BASE-T Operation  
2.7.1  
10BASE-T MII Operations  
The MAC transmits data to the LXT970A over the MII interface. The LXT970A converts the  
digital data from the MAC into an analog waveform that is transmitted to the network via the  
copper interface. The LXT970A converts analog signals received from the network into a digital  
format suitable for the MAC. The LXT970A sends the received data to the MAC via the MII. The  
5-bit symbol code is not used for 10BASE-T operation. The MII operates only as a 4-bit interface  
and the RXD4 & TXD4 lines are not used.  
2.7.2  
10BASE-T Network Operations  
During 10BASE-T operation, the LXT970A transmits and receives Manchester-encoded data  
across the network link. When the MAC is not actively transmitting data, the LXT970A sends out  
link pulses on the line.  
In 10BASE-T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded  
signals received from the network are decoded by the LXT970A and sent across the MII to the  
MAC.  
The LXT970A does not support fiber connections at 10 Mbps.  
2.8  
Protocol Sublayer Operations  
With respect to the 7-layer communications model, the LXT970A is a Physical Layer 1 (PHY)  
device. The LXT970A implements the Physical Coding Sublayer (PCS), Physical Medium  
Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model  
defined by the IEEE 802.3u specification. The following paragraphs discuss LXT970A operation  
from the reference model point of view.  
2.8.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the MII interface, as well as the 4B/5B encoding/  
decoding function when the MII is operating as a 4B interface.  
For 100TX and 100FX operation, the PCS layer provides IDLE symbols to the PMD-layer line  
driver as long as TX_EN is de-asserted.  
When the MII is operating in 5B mode, the encoder/decoder function is disabled, and symbol data  
presented at the MII is transparently passed downstream, and vice versa.  
For 10T operation, the PCS layer merely provides a bus interface and serialization/de-serialization  
function. 10T operation does not use the 4B/5B encoder, and is not supported when the MII is in  
5B mode.  
Datasheet  
35  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.8.1.1  
100X Preamble Handling  
When the MAC asserts TX_EN, the PCS substitutes a /J/K symbol pair, also known as the Start of  
Stream Delimiter or SSD, for the first two nibbles received across the MII. The PCS layer  
continues to encode the remaining MII data, following Table 17, until TX_EN is de-asserted. It  
then returns to supplying IDLE symbols to the line driver.  
In the receive direction, the PCS layer performs the opposite function, substituting two preamble  
nibbles for the SSD.  
2.8.1.2  
10T Preamble Handling  
In 10BASE-T Mode, the LXT970A strips the entire preamble off of received packets. CRS is  
asserted a few bit times after carrier is detected. RX_DV is held for the duration of the preamble.  
When RX_DV is asserted, the very first two nibbles driven by the LXT970A are the SFD 5Dhex  
followed by the body of the packet. In 10T loopback  
the LXT970A loops back whatever the MAC transmits to it, including the preamble.  
Figure 15. LXT970A Protocol Sublayers  
MII Interface  
LXT970A  
PCS  
Encoder/Decoder  
Serializer/De-serializer  
Layer  
PMA  
Layer  
Link/Carrier Detect  
PECL Interface  
PMD  
Layer  
Scrambler/De-  
scrambler  
Fiber Transceiver  
100BASETX  
100BASE-FX  
2.8.1.3  
Data Errors (100X Only)  
Figure 16 shows normal reception. When the LXT970A receives invalid symbols from the line, it  
asserts RX_ER, as shown in Figure 17.  
36  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
2.8.1.4  
Collision Indication  
Figure 18 shows normal transmission. The LXT970A detects a collision if transmit and receive are  
active at the same time. As shown in Figure 19 upon detection of a collision, the COL output is  
asserted and remains asserted for the duration of the collision.  
Figure 16. 100BASE-TX Reception with No Errors  
RX_CLK  
RX_DV  
preamble SFD SFD DA DA  
DA  
DA  
CRC  
CRC  
CRC  
CRC  
RXD<3:0>  
RX_ER  
Figure 17. 00BASE-TX Reception with Invalid Symbol  
RX_CLK  
RX_DV  
DA XX DA  
DA DA DA DA DA DA  
DA  
preamble SFD SFD DA DA  
RXD<3:0>  
RX_ER  
Figure 18. 00BASE-TX Transmission with No Errors  
TX_CLK  
TX_EN  
P
R
E
A
M
B
L
E
DA  
DA DA DA  
DA DA DA DA DA  
TXD<3:0>  
CRS  
COL  
1. In half-duplex mode, CRS asserts when receive or transmit are active. In full-duplex mode, CRS asserts during receive only.  
Figure 19. 00BASE-TX Transmission with Collision  
TX_CLK  
TX_EN  
P
R
E
A
M
B
L
E
JAM  
JAM  
JAM  
JAM  
TXD<3:0>  
CRS  
COL  
1. In half-duplex mode, CRS asserts when receive or transmit is active. In full-duplex mode, CRS asserts during receive only.  
Datasheet  
37  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.8.1.5  
2.8.1.6  
SQE (10T Only)  
When the SQE (heartbeat) function is enabled, the LXT970A asserts its COL output for 5-15 BT  
after each packet. By default, the SQE function is disabled on the LXT970A. To enable SQE, set  
bit 19.10 = 1. See Figure 30 on page 59 for SQE timing parameters.  
Jabber (10T Only)  
If the MAC transmission exceeds the jabber timer, the LXT970A disables the transmit and  
loopback functions and asserts the COL pin. The LXT970A automatically exits jabber mode after  
250-750 ms. This function can be disabled by setting bit 19.9 = 1. See Figure 31 on page 59 for  
Jabber timing parameters.  
2.8.2  
PMA Layer  
The Physical Medium Attachment (PMA) layer provides link and carrier status functions.  
2.8.2.1  
100TX Link Options  
The LXT970A uses standard symbol error rate criteria to establish a link and has two options for  
100TX and 100FX applications to break down a link:  
Standard (symbol error rate).  
Enhanced (scrambler lock).  
Standard link criteria (17.2 = 0 default), takes down the link when the Bit Error Rate (BER)  
exceeds the allowable standards. If the link goes down and auto-negotiation is enabled, the device  
automatically restarts the auto-negotiation process. Otherwise the device continues to monitor the  
line for a valid link. With this option both link up and link loss are based on symbol error rate.  
Enhanced link-loss criteria (17.2 = 1) works independent of symbol error rate. The loss of  
scrambler lock for more than 1 - 2 msec brings the link down. Enhanced link-loss criteria is not  
available in 5B mode.  
2.8.2.2  
10T Link Test  
For 10T operation, link is detected via Normal Link Pulses (NLPs). In 10T mode, the LXT970A  
always transmits link pulses. If the Link Test Function is enabled, it monitors the connection for  
link pulses. Once it detects 2 to 7 link pulses, data transmission will be enabled and remains  
enabled as long as the link pulses or data transmission continues. Link failure occurs if Link Test is  
enabled and link pulses are no longer received. When this condition occurs, the LXT970A returns  
to the auto-negotiation phase if auto-negotiation is enabled. If the Link Test function is disabled,  
the LXT970A transmits to the connection regardless of detected link pulses. The Link Test  
function can be disabled by setting bit 19.8 = 1 or by setting MF0 to disable auto-negotiation and  
setting CFG1 input High.  
2.8.2.3  
Carrier Sense (CRS)  
For 100TX and 100FX links, a start-of-stream delimiter or /J/K symbol pair causes assertion of  
carrier sense (CRS). An end-of-stream delimiter, or /T/R symbol pair causes deassertion of CRS.  
The PMA layer also de-asserts CRS if IDLE symbols are received without /T/R, however, in this  
case RX_ER asserts for one clock cycle when CRS is de-asserted.  
38  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
For 10T links, CRS assertion is based on reception of valid preamble, and de-assertion on reception  
of an end-of-frame (EOF) marker.  
The PMA layer in the LXT970A does not support the optional Far-End-Fault function.  
2.8.3  
Twisted-Pair PMD Layer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10T), as well as  
receiving, polarity correction, and baseline wander correction functions.  
2.8.3.1  
Scrambler/Descrambler (100TX Only)  
The scrambler spreads the signal power spectrum and reduces EMI and baseline wander.  
Scrambling is done with an 11-bit, non-data-dependent polynomial. The receiver automatically  
decodes the polynomial whenever IDLE symbols are received.  
The LXT970A provides a scrambler-bypass mode for testing purposes. Bypassing the scrambler  
causes the PCS-layer encoder to be bypassed as well, and the MII to operate in 5B mode.  
2.8.3.2  
Baseline Wander Correction  
(100TX Only)  
The LXT970A provides a baseline wander correction function that makes the device robust under  
all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is by definition  
unbalanced, which means the average DC value of the signal voltage can wandersignificantly  
over short time intervals (tenths of seconds). In less robust PHY devices, this wander can cause  
receiver errors, particularly at long line lengths (100 meters). The exact characteristics of the  
wander are completely data dependent. The LXT970A baseline wander correction circuitry allows  
error-free data recovery, even at long line lengths.  
2.8.3.3  
2.8.4  
Polarity Correction  
The LXT970A automatically detects and corrects for the condition where the receive signal (TPIP/  
N) is inverted. Reversed polarity is detected if eight inverted link pulses, or four inverted end-of-  
frame markers, are received consecutively. If link pulses or data are not received for 96-128 ms,  
the polarity state is reset to a non-inverted state.  
Fiber PMD Layer  
The LXT970A provides a pseudo-ECL interface for connection to an external fiber optic  
transceiver. (The external transceiver provides the PMD function for fiber media.) The LXT970A  
uses an NRZI format for the fiber interface. The fiber interface operates at 100 Mbps and is  
intended for 100FX applications. It does not support 10FL applications. The fiber interface does  
not support the signal detect function supplied by most fiber optic transceivers. However, the link  
detection function in the PMA layer quickly detects faults in the fiber link.  
Datasheet  
39  
LXT970A Dual-Speed Fast Ethernet Transceiver  
2.8.5  
2.8.6  
Additional Operating Features  
Low-Voltage-Fault Detect  
The LXT970A low-voltage fault detection function prevents transmission of invalid symbols when  
VCC goes below normal operating levels. If this condition occurs, the LXT970A disables the  
transmit outputs and sets 20.2 = 1. Operation is automatically restored when VCC returns to  
normal. Table 26 on page 49 indicates voltage levels that detect and clear the low-voltage fault  
condition.  
2.8.7  
Power Down Mode  
The LXT970A goes into power down mode when PWRDWN is asserted. In this mode, all  
functions are disabled except the MDIO. The power supply current is significantly reduced. This  
mode can be used for energy-efficient applications or for redundant applications where there are  
two devices and one is left as a stand-by. When the LXT970A is returned to normal operation,  
configuration settings of the MDIO registers are maintained. Refer to Table 22 on page 47 for  
power down specifications.  
2.8.8  
2.8.9  
Software Reset  
Software reset causes all state machines to be reset and the LXT970A to re-configure itself to the  
settings of the hardware configuration pins (MF<4:0>, FDE, CFG0, CFG1).  
The LXT970A is reset via software(0.15 = 1). This bit setting is maintained while the reset  
operation is running. When the reset operation is complete, the LXT70 resets bit 0.15 = 0.  
Hardware Reset  
Hardware reset causes the LXT970A to reset all of its functions and re-configure itself based on the  
hardware configuration pin settings.  
The LXT970A performs a hardware reset when a Low signal is detected at the RESET pin. All  
operational conditions must be met for this function to operate. VCC must be above 4.75V and  
stable, and the RESET signal must be asserted for two cycles of the master input clock. The  
LXT970A continues to drive an internal reset for a period of 300 µs after the RESET signal is de-  
asserted to ensure that all functions start up smoothly. MII registers are not available and the MDIO  
output is tri-stated during the internal reset period. Refer to Table 43 on page 62 for hardware reset  
specifications.  
40  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
3.0  
Application Information  
3.1  
Magnetics Information  
The LXT970A requires a 1:1 ratio for both the receive and the transmit transformers. Refer to  
Table 18 for magnetics requirements.  
A cross-reference list of magnetic manufacturers and part numbers is available in Application Note  
73, Magnetic Manufacturers, which can be found on the Intel web site (developer.intel.com/design/  
network/). Designers must test and evaluate all components for suitability in their applications.  
Table 18. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx and Tx Turns Ratio  
Insertion Loss  
0.0  
350  
1:1  
1.1  
dB  
µH  
kV  
dB  
dB  
dB  
dB  
ns  
Primary Inductance  
Transformer Isolation  
2
-40  
-35  
-17  
-15  
3.5  
.1 to 60 MHz  
60 to 100 MHz  
.1 to 60 MHz  
60 to 100 MHz  
10% to 90%  
Differential to common mode rejection  
Return Loss  
Rise Time  
2.0  
3.2  
Crystal Information  
The LXT970A requires a parallel-resonant fundamental-mode crystal that meet specifications as  
shown in Table 19. XI and XO input capacitance and voltage requirements are provided in Table 25  
on page 48.  
Crystals are available from various manufacturers. Designers should test and validate all crystals  
before committing to a specific component. Based on limited evaluation, Table 20 provides  
suitable crystal component manufacturers.  
Table 19. Crystal Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Frequency  
Frequency Stability  
25.0  
MHz  
ppm  
±100  
-40 - 85oC  
1. See Table 25 (Clock Characteristics) for additional device specifications.  
Table 20. Crystal Component Manufacturers  
Component  
Manufacturer  
Part Number  
Epson America  
MA-505-25.000M  
Crystal  
Caliber Electronics  
AA18C1-25.000MHz  
Datasheet  
41  
LXT970A Dual-Speed Fast Ethernet Transceiver  
3.3  
Design Recommendations  
The LXT970A is designed in accordance with IEEE requirements and provides outstanding  
receive Bit Error Ratio (BER) and long-line-length performance. Lab tests show that the  
LXT970A performs well beyond the required distance of 100 meters. Ensuring maximum  
performance from the LXT970A requires attention to detail and good design practices. Refer to  
the LXT970 Design and Layout Guide for detailed design and layout information.  
3.3.1  
General Design Guidelines  
Adherence to generally accepted design practices is essential to minimize noise levels on power  
and ground planes. Up to 50 mV of noise is considered acceptable. 50 to 80 mV of noise is  
considered marginal. High-frequency switching noise can be reduced, and its effects can be  
eliminated, by following these simple guidelines throughout the design:  
Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC  
or ground plane that is not located adjacent to the signal layer.  
Use ample bulk and decoupling capacitors throughout the design (a value of .01 µF is  
recommended for decoupling caps).  
Provide ample power and ground planes.  
Provide termination on all high-speed switching signals and clock lines.  
Provide impedance matching on long traces to prevent reflections.  
Route high-speed signals next to a continuous, unbroken ground plane.  
Filter and shield DC-DC converters, oscillators, etc.  
Do not route any digital signals between the LXT970A and the RJ-45 connectors at the edge of  
the board.  
Do not extend any circuit power and ground plane past the center of the magnetics or to the  
edge of the board. Use this area for chassis ground, or leave it void.  
3.3.2  
Power Supply Filtering  
Power supply ripple and digital switching noise on the VCC plane can cause EMI problems and  
degrade line performance. It is generally difficult to predict in advance the performance of any  
design, although certain factors greatly increase the risk of having these problems:  
Poorly-regulated or over-burdened power supplies.  
Wide data busses (>32-bits) running at a high clock rate.  
DC-to-DC converters.  
Many of these issues can be improved by following good general design guidelines. Intel also  
recommends filtering between the power supply and the analog VCC pins of the LXT970A.  
Filtering has two benefits. First, it keeps digital switching noise out of the analog circuitry inside  
the LXT970A, which helps line performance. Second, if the VCC planes are laid out correctly, it  
keeps digital switching noise away from external connectors, reducing EMI problems.  
42  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
The recommended implementation is to divide the VCC plane into two sections. The digital  
section supplies power to the digital VCC pin, VCCIO pin, and to the external components. The  
analog section supplies power to VCCA, VCCT, and VCCR pins of the LXT970A. The break  
between the two planes should run under the device. In designs with more than one LXT970A, a  
single continuous analog VCC plane can be used to supply them all.  
The digital and analog VCC planes should be joined at one or more points by ferrite beads. The  
beads should produce at least a 100impedance at 100 MHz. The beads should be placed so that  
current flow is evenly distributed. The maximum current rating of the beads should be at least  
150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10 µF) should  
be placed on each side of each ferrite bead to stop switching noise from traveling through the  
ferrite.  
In addition, a high-frequency bypass cap (.01µf) should be placed near each analog VCC pin.  
3.3.3  
3.3.4  
Ground Noise  
The best approach to minimize ground noise is strict use of good general design guidelines and by  
filtering the VCC plane.  
Power and Ground Plane Layout Considerations  
Great care needs to be taken when laying out the power and ground planes. The following  
guidelines are recommended:  
Follow the guidelines in the LXT970 Layout Guide for locating the split between the digital  
and analog VCC planes.  
Keep the digital VCC plane away from the TPOP/N and TPIP/N signals, away from the  
magnetics, and away from the RJ-45 connectors.  
The ground plane should be one continuous, unbroken plane.  
Place the layers so that the TPOP/N and TPIP/N signals can be routed near or next to the  
ground plane. It is more important to shield TPOP/N than TPIP/N for EMI reasons.  
3.3.5  
Interfaces for Twisted-Pair /Fiber  
Twisted-Pair  
3.3.5.1  
Figure 21 on page 46 shows the recommended termination circuits for the fiber and twisted-pair  
interfaces. The twisted-pair interface consists of magnetics and a 100termination resistance in  
parallel on the device-side of the winding. On the transmit pair, a common-mode bypass capacitor  
to ground is strongly recommended. A similar technique on the receive side can improve  
performance in some cases, however the results are highly application specific and must be  
verified. Route TREF nearby, but not in-between TPOP and TPON. A Bob Smithtermination is  
often provided for the unused signal pairs.  
Datasheet  
43  
LXT970A Dual-Speed Fast Ethernet Transceiver  
3.3.5.2  
Fiber  
The fiber interface consists of a pseudo-ECL transmit and receive pair to an external fiber optic  
transceiver. The transmit pair should be AC-coupled to the transceiver, and biased to 3.7V with a  
50equivalent impedance. The receive pair can be DC-coupled, and should be biased to 3.0V with  
a 50equivalent impedance. Figure 21 on page 46 shows the correct bias networks to achieve  
these requirements.  
The following guidelines apply to when laying out any differential pair:  
Space both members close together allowing nothing to come between them.  
Keep distances as short as possible, both traces should have the same length.  
Avoid layer changes as much as possible.  
Keep termination circuits close together and on the same side of the board.  
Always put termination circuits close to the source end of any circuit.  
3.3.6  
Interface for the MII  
3.3.6.1  
Transmit Hold Time Adjustment  
Transmit hold time for TXD, TX_EN, and TX_ER from TX_CLK High is currently specified in  
Table 32, Table 34, Table 36, and Table 38 as 5 ns minimum. 0 ns minimum is the IEEE  
specification. Depending on the specification of the MAC or ASIC used in your design, you may or  
may not need to account for this in your PC board design.  
If you determine that a timing adjustment is required, there are a couple of recommended ways to  
do this.  
If using series resistors in the TXD lines, increase the value of the resistors to achieve the  
necessary delay.  
An alternative method is to add the appropriate delay in the TX_CLK line. Depending on the  
amount of delay required, this may be accomplished with a series resistor or by adding a buffer  
to the TX_CLK line.  
Note that some delay is introduced by the actual PC board traces themselves.  
3.3.6.2  
MII Terminations  
When the LXT970A is configured with high-strength MII driver levels (bit 17.3 = 0), 55series  
termination resistors are recommended on all MII output signals to avoid undershoot and  
overshoot.  
When 17.3 = 1, the MI driver levels are reduced by a factor of ten and termination resistors are not  
required on the MII outputs.  
44  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
3.3.7  
Typical Application  
Figure 21 on page 46 is typical interface circuitry of the LXT970A. The diagram groups similar  
pins; it does not portray the actual chip pinout. The Media Independent Interface (MII) pins are at  
the upper left. Hardware Control Interface pins are center left. The line interface pins for twisted-  
pair and fiber are shown on the top and bottom right respectively.  
The VCCD and VCCIO pins are at the bottom of the diagram. VCCT, VCCR, and VCCA are at the  
center right. All VCC pins (except VCCIO) use a single power supply. VCCIO may be powered by  
a 3.3V supply, and may be separately connected.  
3.3.7.1  
Voltage Divider For MF Inputs  
The LXT970A requires an external voltage divider to provide optional (VMF2 and VMF3) multi-  
level inputs to the Multi-Function (MF) pins. These voltage levels are designated as VMF1 - VMF4.  
A single voltage divider may be used to drive the MF pins in designs using multiple PHYs. Figure  
20 shows a voltage divider with three 1 kresistors configured in series between VCC and  
Ground.  
Figure 20. Voltage Divider  
1k  
1k  
1k  
+5V  
VMF1  
VMF2  
VMF3  
VMF4  
Datasheet  
45  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 21. Typical Interface Circuitry  
1
GNDD  
GNDD  
6
GNDR  
C1  
C2  
25.0 MHz  
.01µF  
RJ45  
8
50  
50  
2
XI  
XO  
50  
1%  
75  
50  
50  
TX_EN  
7
6
5
4
3
2
1
TXD<4:0>  
TX_ER  
TPIN  
50  
1%  
50  
50  
55  
TPIP  
TX_CLK  
COL  
55Ω  
TPON  
MII  
55Ω  
55Ω  
55Ω  
Data  
I/F  
50  
1%  
RX_DV  
75  
RX_ER  
RX_CLKLXT970A  
7
50  
1%  
55Ω  
0.001µF/2kV  
RXD<4:0>  
TRSTE  
CRS  
TPOP  
TREF  
4
55Ω  
VCCD  
.01  
µ
F
.01µF  
MII  
Control  
I/F  
MDIO  
VCCA  
+5 V  
VCCT  
Ferrite Bead  
+
+
FDS/MDINT  
MDC  
10µF  
10µF  
.01µF  
GNDA  
GNDT  
VCCA  
MDDIS  
22.1k  
1%  
GNDD  
RBIAS  
GNDA  
VCCR  
.01µF  
FDE  
H/W  
Control  
I/F  
MF<4:0>  
CFG<1:0>  
.01µF  
GNDR  
+5 V  
VCCT  
69  
RESET  
PWRDWN  
.01  
F
69  
330  
330  
330  
330  
330  
.01µF  
GNDA  
LEDS  
LEDR  
LEDT  
LEDL  
LEDC  
FIBON  
FIBOP  
TD  
TD  
+5 V  
.01µF  
191  
191  
80  
Fiber Txcvr  
3
VCCR  
+5 V  
GNDA  
+3.3V  
or  
5
80  
.01 F  
VCCIO  
+5V  
GNDA  
+
FIBIN  
FIBIP  
RD  
RD  
.01  
F
10µF  
+5 V  
VCCD  
130  
130  
GNDD GNDIO TEST  
.01  
F
GNDA  
1. Refer to Table 19 and Table 20 for crystals.  
2. Refer to Table 18 for magnetics.  
3. Refer to fiber transceiver manufacturers recommendations for termination circuitry. Suitable fiber transceivers include:  
HFBR-5103 and HFBR-5105.  
4. Bypassing to chassis ground (if available) provides additional EMI shielding.  
5. If the fiber interface is not used, FIBIN, FIBIP, FIBON, and FIBOP may be left unconnected.  
6. Placement of this cap should be verified for each application. This cap typically reduces error rates at long line lengths but  
is implementation specific.  
7. If bit 17.3 = 0, series terminations resistors are recommended for all MII outputs. The proper value is application specific.  
If bit 17.3 = 1, termination resistors are not required.  
46  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
4.0  
Test Specifications  
Note: Table 21 through Table 43 and Figure 22 through Figure 36 represent the performance  
specifications of the LXT970A. These specifications are guaranteed by test except where noted by  
design.Minimum and maximum values listed in Table 23 through Table 43 apply over the  
recommended operating conditions specified in Table 22.  
Table 21. Absolute Maximum Ratings  
Parameter  
Sym  
Min  
Max  
Units  
Supply Voltage  
VCC  
TOPA  
TOPC  
TST  
-0.3  
-15  
6
V
Ambient  
Case  
+85  
ºC  
ºC  
ºC  
Operating Temperature  
Storage Temperature  
+120  
+150  
-65  
Caution: Exceeding these values may cause permanent damage. Functional operation under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 22. Operating Conditions  
1
Parameter  
Recommended Supply Voltage2  
Sym  
Min  
Typ  
Max  
Units  
Except MII Supply  
MII Supply  
VCC  
VCCIO  
TOPA  
TOPC  
ICC  
4.75  
5.0  
5.25  
5.25  
70  
110  
V
3.125  
V
Ambient  
0
0
ºC  
Recommended Operating Temperature  
Case  
ºC  
100BASE-TX  
100BASE-FX  
10BASE-T  
170  
80  
185  
9
mA  
mA  
mA  
mA  
mA  
ICC  
Power Consumption  
(+5V Only)  
ICC  
Power-Down Mode  
Auto-Negotiation  
ICC  
ICC  
240  
270  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
Datasheet  
47  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 23. Digital I/O Characteristics1  
Parameter  
Input Low Voltage3  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
II  
.8  
V
V
Input High Voltage3  
2.0  
-10  
Input Current  
10  
0.4  
µA  
V
0.0 < VI < VCC  
Output Low Voltage  
Output High Voltage (MII only)  
Output High Voltage  
VOL  
VOH  
VOH  
IOL = 4 mA  
2.2  
2.4  
6.0  
6.0  
V
IOH = -4 mA, VCCIO =3.3V  
IOH = -4 mA, VCCIO =5.0V  
VCCIO = 3.3V  
V
2,4  
RO  
25.0  
25.0  
MII Driver Output Resistance  
(Line Driver Output Enabled)  
2,4  
RO  
VCCIO = 5.0V  
1. Applies to all pins except MF<4:0> pins. Refer to Table 24 for MF pin I/O Characteristics.  
2. Parameter is guaranteed by design and not subject to production testing.  
3. Does not apply to XI or TX_CLK pins. Refer to Table 25 for clock input levels.  
4. Applies to default MII driver level (bit 17.3= 0).  
Table 24. Digital I/O Characteristics - MultiFunction Pins MF<4:0>  
1
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Input Voltage Level 1  
Input Voltage Level 2  
Input Voltage Level 3  
Input Voltage Level 4  
VMF1  
VMF2  
VMF3  
VMF4  
VCC - 0.5  
V
V
V
V
(VCC/2) + 0.5  
VCC - 1.2  
VCC/2 - 0.5  
0.5  
1.2  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 25. Required Clock Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Master Clock Mode - External XI Clock Input  
Input Low Voltage2  
VIL  
1.0  
V
V
Input High Voltage2  
VIH  
3.2  
Clock frequency is 25  
MHz or 2.5 MHz  
Input Clock Frequency Tolerance2  
f  
± 100  
ppm  
Input Clock Duty Cycle2  
Tdc  
CIN  
40  
60  
%
Input Capacitance (XI and XO)  
3.0  
pF  
Slave Clock Mode - External TX_CLK Input  
Input Low Voltage  
Input High Voltage  
VIL  
.8  
V
V
VIH  
2.0  
Clock frequency is 25  
MHz or 2.5 MHz  
Input Clock Frequency Tolerance2  
Input Clock Duty Cycle2  
f  
± 100  
65  
ppm  
%
Tdc  
35  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
48  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 26. Low Voltage Fault Detect Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Detect Fault Threshold  
Clear Fault Threshold  
VLT  
VLH  
3.4  
4.1  
4.0  
4.7  
V
V
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 27. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak Differential Output Voltage  
Signal Amplitude Symmetry  
Signal Rise/Fall Time  
VOP  
Vss  
0.95  
98  
1.05  
102  
5.0  
V
Note 2  
Note 2  
Note 2  
Note 2  
%
ns  
ns  
TRF  
3.0  
Rise/Fall Time Symmetry  
TRFS  
0.5  
Offset from 16ns  
pulse width at 50% of  
pulse peak  
Duty Cycle Distortion  
Overshoot/Undershoot  
DCD  
VOS  
± 0.5  
5
ns  
%
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(±1%) resistor.  
Table 28. 100BASE-FX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
Peak Differential Output Voltage  
(Single Ended)  
VOP  
0.6  
1.0  
V
10 <> 90%  
2.0 pF load  
Signal Rise/Fall Time  
TRF  
1.6  
1.3  
ns  
ns  
Jitter (Measured Differentially)  
Receiver  
Peak Differential Input Voltage  
Common-Mode Input Range  
VIP  
0.55  
2.25  
1.5  
V
V
VCMIR  
VCC - 0.5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
49  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 29. 10BASE-T Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
With transformer, line  
replaced by 100(±1%)  
resistor  
Peak Differential  
VOP  
2.2  
0
2.5  
2
2.8  
11  
V
Output Voltage  
After line model specified by  
IEEE 802.3 for 10BASE-T  
MAU  
Transmit Timing Jitter added by the  
MAU and PLS Sections2,3  
ns  
Receiver  
Receive Input Impedance2  
ZIN  
3.6  
kΩ  
Between TPIP/TPIN  
Differential Squelch Threshold  
VDS  
300  
420  
585  
mV  
5 MHz square wave input  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
3. IEEE 802.3 specifies maximum jitter additions at 1.5 ns for the AUI cable, 0.5ns from the encoder, and 3.5ns from the MAU.  
Table 30. 10BASE-T Link Integrity Timing Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Time Link Loss Receive  
Link Pulse  
TLL  
TLP  
50  
2
64  
4
150  
7
ms  
Link Pulses  
Link Min Receive Timer  
Link Max Receive Timer  
Link Transmit Period  
Link Pulse Width  
TLR MIN  
TLR MAX  
Tlt  
2
4
7
ms  
ms  
ms  
ns  
50  
8
64  
10  
100  
150  
24  
Tlpw  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
50  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 22. MII - 100BASE-TX Receive Timing / 4B Mode  
0ns  
250ns  
TPIP  
t1D  
t1E  
CRS  
TRSTE1  
t1H  
t1C  
RX_DV  
t1A  
t1B  
RXD<3:0>  
RX_CLK  
t1F  
t1G  
COL  
Table 31. MII - 100BASE-TX Receive Timing Parameters / 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units3  
RXD, RX_DV, RX_ER Setup to RX_CLK High  
RXD, RX_DV, RX_ER Hold from RX_CLK High  
CRS asserted to RXD<3:0>, RX_DV asserted  
Receive start of Jto CRS asserted  
t1A  
t1B  
t1C  
t1D  
t1E  
t1F  
t1G  
t1H  
10  
10  
8
ns  
ns  
BT  
BT  
BT  
BT  
BT  
ns  
0
15 - 19  
23 - 27  
15 - 19  
23 - 27  
20  
20  
28  
20  
28  
Receive start of Tto CRS de-asserted  
Receive start of Jto COL asserted  
13  
0
Receive start of Tto COL de-asserted  
TRSTE asserted to RX_DV, RXD<3:0> driven2  
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. These parameters apply only when the device is operated in Repeater Mode.  
3. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
Datasheet  
51  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 23. MII - 100BASE-TX Transmit Timing / 4B Mode  
0ns  
250ns  
t2A  
TXCLK  
TX_EN  
t2B  
TXD<3:0>  
t2E  
TPOP  
t2D  
t2C  
CRS  
Table 32. MII - 100BASE-TX Transmit Timing Parameters / 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
TXD<3:0>, TX_EN, TX_ER Setup to TX_CLK High  
TXD<3:0>, TX_EN, TX_ER Hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t2A  
t2B  
t2C  
t2D  
t2E  
10  
5
ns  
ns  
3
4
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
4
16  
14  
TX_EN sampled to TPO out (Tx latency)  
6
10  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
52  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 24. MII - 100BASE-TX Receive Timing / 5B Mode  
0ns  
250ns  
TPIP  
t3E  
t3F  
Note  
2
CRS  
TRSTE1  
t3I1  
t3C  
t3D  
RX_DV  
t3A  
t3B  
RXD<4:0>  
RX_CLK  
COL  
t3G  
t3H  
1. This parameter applies only when the device is operated in Repeater Mode.  
2. In Repeater Mode, application circuit must assert TRSTE within time period specified by t4 - t10.  
Table 33. MII - 100BASE-TX Receive Timing Parameters / 5B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units3  
RXD, RX_DV, RX_ER Setup to RX_CLK High  
RXD, RX_DV, RX_ER Hold from RX_CLK High  
CRS asserted to RX_DV asserted  
t3A  
t3B  
t3C  
t3D  
t3E  
t3F  
t3G  
t3H  
t3I  
10  
10  
ns  
ns  
8
BT  
BT  
BT  
BT  
BT  
BT  
ns  
CRS asserted to RXD<4:0> asserted  
Receive start of Jto CRS asserted  
Receive start of Tto CRS de-asserted  
Receive start of Jto COL asserted  
Receive start of Tto COL de-asserted  
TRSTE asserted to RX_DV, RXD<4:0> driven2  
4
0
15 - 19  
23 - 27  
15 - 19  
23 - 27  
20  
20  
28  
20  
28  
13  
0
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. These parameters apply only when the device is operated in Repeater Mode.  
3. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
Datasheet  
53  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 25. 100BASE-TX Transmit Timing / 5B Mode  
0ns  
250ns  
t4A  
TXCLK  
TX_EN  
t4B  
TXD<3:0>  
t4E  
TPOP  
t4D  
t4C  
CRS  
Table 34. MII - 100BASE-TX Transmit Timing Parameters / 5B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
TXD, TX_EN, TX_ER Setup to TX_CLK High  
TXD, TX_EN, TX_ER Hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t4A  
t4B  
t4C  
t4D  
t4E  
10  
5
3
4
6
ns  
ns  
4
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPO out (Tx latency)  
16  
9
4
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
54  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 26. MII - 100BASE-FX Receive Timing / 4B Mode  
0ns  
250ns  
FIBIP  
Note  
2
t5D  
t5E  
CRS  
TRSTE1  
t5H1  
t5C  
RX_DV  
t5A  
t5B  
RXD<3:0>  
RX_CLK  
t5F  
t5G  
COL  
1. These parameters apply only when the device is operated in Repeater Mode.  
2. In Repeater Mode, application circuit must assert TRSTE within time period specified by t4 - t10.  
Table 35. MII - 100BASE-FX Receive Timing Parameters / 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units3  
RXD, RX_DV, RX_ER Setup to RX_CLK High  
RXD, RX_DV, RX_ER Hold from RX_CLK High  
CRS asserted to RXD<3:0>, RX_DV asserted  
Receive start of Jto CRS asserted  
t5A  
t5B  
t5C  
t5D  
t5E  
t5F  
t5G  
t5H  
10  
10  
ns  
ns  
8
BT  
BT  
BT  
BT  
BT  
ns  
0
13 - 17  
21 - 25  
13 - 17  
21 - 25  
20  
20  
26  
20  
26  
Receive start of Tto CRS de-asserted  
Receive start of Jto COL asserted  
13  
0
Receive start of Tto COL de-asserted  
TRSTE asserted to RX_DV, RXD<3:0> driven2  
13  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. These parameters apply only when the device is operated in Repeater Mode.  
3. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
Datasheet  
55  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 27. MII - 100BASE-FX Transmit Timing / 4B Mode  
0ns  
250ns  
t6A  
TXCLK  
TX_EN  
t6B  
TXD<3:0>  
t6E  
FIBOP  
t6D  
t6C  
CRS  
Table 36. MII - 100BASE-FX Transmit Timing Parameters / 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
TXD<3:0>, TX_EN, TX_ER Setup to TX_CLK High  
TXD<3:0>, TX_EN, TX_ER Hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t6A  
t6B  
t6C  
t6D  
t6E  
10  
5
ns  
ns  
3
4
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
4
16  
14  
TX_EN sampled to TPO out (Tx latency)  
6
11  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
56  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 28. MII - 10BASE-T Receiving Timing  
RX_CLK  
t
7A t7B  
t7C  
RXD,  
RX_DV,  
RX_ER  
t
7E  
t
7D  
CRS  
TPI  
t
7F  
t7G  
t7I  
t
7H  
COL  
Table 37. MII - 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
RXD, RX_DV, RX_ER Setup to RX_CLK High  
RXD, RX_DV, RX_ER Hold from RX_CLK High  
TPI in to RXD out (Rx latency)  
t7A  
t7B  
t7C  
t7D  
t7E  
t7F  
t7G  
t7H  
t7I  
10  
10  
ns  
ns  
733  
693  
6
BT  
BT  
BT  
BT  
BT  
BT  
BT  
CRS asserted to RXD, RX_DV, RX_ER asserted  
RXD, RX_DV, RX_ER de-asserted to CRS de-asserted  
TPI in to CRS asserted  
0
0
2.5 - 5.5  
0
4
18  
4
5
TPI quiet to CRS de-asserted  
0
19  
5
TPI in to COL asserted  
0
TPI quiet to COL de-asserted  
0
18  
19  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10-  
7 s or 100 ns.  
3. CRS is asserted. RXD/RX_DV are driven at the start of SFD (64 BT).  
Datasheet  
57  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 29. MII - 10BASE-T Transmit Timing  
TX_CLK  
t8B  
t
8A  
TXD,  
TX_EN,  
TX_ER  
t8E  
t8C  
CRS  
TPO  
t
8D  
Table 38. MII - 10BASE-T Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
TXD, TX_EN, TX_ER Setup to TX_CLK High  
TXD, TX_EN, TX_ER Hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t8A  
t8B  
t8C  
t8D  
t8E  
10  
5
0
8
4
ns  
ns  
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPO out (Tx latency)  
3 - 5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10-  
7 s or 100 ns.  
58  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 30. 10BASE-T SQE (Heartbeat) Timing  
TX_CLK  
TX_EN  
COL  
t9A  
t9B  
Table 39. 10BASE-T SQE (Heartbeat) Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
COL (SQE) Delay after TX_EN off  
COL (SQE) Pulse duration  
t9A  
t9B  
0.65  
.5  
1.0  
1.0  
1.6  
1.5  
µs  
µs  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 31. 10BASE-T Jab and Unjab Timing  
TX_EN  
t10A  
TXD  
COL  
t10B  
Table 40. 10BASE-T Jab and Unjab Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
2
Maximum Transmit time  
Unjab time  
t10A  
t10B  
20  
96 - 128  
525  
150  
750  
ms  
ms  
250  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Typical transmit time may be either of these values depending on internal 32 ms clock synchronization.  
Datasheet  
59  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 32. Auto Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPOP  
t1  
t1  
t3  
t2  
Figure 33. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPOP  
t4  
t5  
Table 41. Auto Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
111  
100  
62.5  
125  
2
69.5  
139  
ns  
µs  
µs  
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
12  
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
60  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Figure 34. MDIO Timing when Sourced by STA  
MDC  
10 ns  
(Min)  
10 ns  
(Min)  
MDIO  
Figure 35. MDIO Timing when Sourced by PHY  
MDC  
0 - 300 ns  
MDIO  
Table 42. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
When sourced by  
STA  
MDIO Setup before MDC  
10  
ns  
When sourced by  
STA  
MDIO Hold after MDC  
10  
0
ns  
ns  
When sourced by  
PHY  
MDC to MDIO Output delay  
10  
300  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
61  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 36. Power-Down Recovery Timing (Over Recommended Range)  
VCC = 4.75V  
VCC  
tHR  
RESET  
tPDR  
MDIO,etc  
Table 43. Power-Down Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Power-Down recovery time  
Hardware reset time  
tPDR  
tHR  
1.0  
ms  
300  
µs  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
62  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
5.0  
Register Definitions  
The LXT970A register set includes a total of twelve 16-bit registers. Refer to Table 44 for a  
complete register listing.  
Seven base registers (0 through 6) are defined in accordance with the Reconciliation Sublayer  
and Media Independent Interfaceand Physical Layer Link Signalling for 10/100 Mbps  
Auto-Negotiationsections of the IEEE 802.3 specification (Register 7, Next Page, is not  
supported).  
Five additional registers (16 through 20) are defined in accordance with the IEEE 802.3  
specification for adding unique chip functions.  
Table 44. Register Set  
Address  
Register Name  
Bit Assignments  
0
Control Register  
Status Register  
Refer to Table 45 on page 64  
Refer to Table 46 on page 65  
Refer to Table 47 on page 66  
Refer to Table 48 on page 66  
Refer to Table 49 on page 67  
Refer to Table 50 on page 68  
Refer to Table 51 on page 69  
Refer to Table 52 on page 69  
Refer to Table 53 on page 70  
Refer to Table 54 on page 70  
Refer to Table 55 on page 71  
Refer to Table 56 on page 72  
1
2
PHY Identification Register 1  
PHY Identification Register 2  
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Mirror Register  
3
4
5
6
16  
17  
18  
19  
20  
Interrupt Enable Register  
Interrupt Status Register  
Configuration Register  
Chip Status Register  
Datasheet  
63  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 45. Control Register (Address 0)  
Bit  
Name  
Description  
Type 1  
Default  
R/W  
SC  
1 = Reset chip.  
0 = Enable normal operation.  
0.15  
Reset  
0
1 = Enable loopback mode. When Loopback is enabled, during 100  
Mbps operation, the LXT970A disconnects its transmitter and receiver  
from the network. Data sent by the controller passes through the chip  
and then gets looped back to the MII. During 10 Mbps operation the  
preamble, SFD, and data loop directly back to the MII.  
0.14  
Loopback  
R/W  
0
0 = Disable loopback mode.  
Speed  
Selection  
1 = 100 Mbps  
0 = 10 Mbps  
0.13  
0.12  
R/W  
R/W  
Note 2  
Note 3  
Auto-  
Negotiation  
Enable  
1 = Enable auto-negotiate process (overrides speed select and duplex  
mode bits).  
0 = Disable auto-negotiate process.  
1 = Enable power down.  
0 = Enable normal operation.  
0.11  
0.10  
Power Down  
Isolate  
R/W  
R/W  
Note 4  
Note 5  
1 = Electrically isolate LXT970A from MII.  
0 = Normal operation.  
R/W  
SC  
Restart Auto-  
Negotiation  
1 = Restart auto-negotiation process.  
0 = Normal operation.  
0.9  
0.8  
Note 6  
Note 7  
1 = Enable full-duplex.  
0 = Enable half-duplex.  
Duplex Mode  
Collision Test  
R/W  
R/W  
1 = Enable COL signal test. Bit 0.14 must be enabled to use this bit.  
This bit is used in conjunction with bit 0.14 to test the COL output.  
0 = Disable COL signal test.  
0
Note  
0.7  
8
0
0
Transceiver  
Test Mode  
0.6:4  
0.3  
Not Supported.  
Not Supported.  
Not Supported.  
RO  
RO  
Master-Slave  
Enable  
Master-Slave  
Value  
0.2  
RO  
0
0
0.1:0  
Reserved  
R/W  
1. R/W = Read/Write  
SC = Self Clearing  
2. If auto-negotiation is enabled, this bit is ignored. If auto-negotiation is disabled, the default value of bit 0.13 is determined by  
pin CFG0.  
3. The default value of bit 0.12 is determined by pin MF0.  
4. The LXT970A internally maintains all set values of the configuration registers upon exiting power-down mode. A delay of 500  
ns minimum is required from the time power down is cleared until any register can be written.  
5. The default value of bit 0.10 is determined by pin TRSTE.  
6. If auto-negotiation is enabled, the default value of bit 0.9 is determined by pin CFG0. If auto-negotiation is disabled, the  
default value of  
bit 0.9 = 0.  
7. If auto-negotiation is enabled, this bit is ignored. If auto-negotiation is disabled, the default value of bit 0.8 is determined by  
pin FDE.  
8. This bit is ignored unless loopback is enabled (0.14 = 1).  
64  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 46. Status Register (Address 1)  
Bit  
Name  
Description  
Type 1  
Default  
1.15  
1.14  
100BASE-T4  
Not Supported.  
RO  
0
100BASE-X  
full-duplex  
1 = LXT970A able to perform full-duplex 100BASE-X.  
1 = LXT970A able to perform half-duplex 100BASE-X.  
1 = LXT970A able to operate at 10 Mb/s in full-duplex mode.  
1 = LXT970A able to operate at 10 Mb/s in half-duplex mode.  
Not Supported.  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
0
100BASE-X  
half-duplex  
1.13  
1.12  
1.11  
1.10  
10 Mb/s  
full-duplex  
10 Mb/s  
half-duplex  
100BASE-T2  
full-duplex  
100BASE-T2  
half-duplex  
1.9  
1.8  
Not Supported.  
Ignore on read.  
RO  
RO  
0
0
Reserved  
Master-Slave  
Configuration  
Fault  
1.7  
Not Supported.  
RO  
0
MF Preamble  
Suppression  
0 = LXT970A will not accept management frames with preamble  
suppressed.  
1.6  
1.5  
RO  
RO  
0
0
1 = Auto-negotiation process complete.  
0 = Auto-negotiation process not complete.  
Auto-Neg.  
Complete  
1 = Remote fault condition detected.  
0 = No remote fault condition detected.  
This bit is set when:  
Link partner transmits a remote fault condition (bit 5.13 = 1)  
1.4  
Remote Fault  
RO/LH  
0
Link partner protocol is anything other than CSMA-CD  
(bits 5.4:0 = <00001>)  
Link partner advertises T4 capability only  
(bits 5.9:5 ¼ <10000>)  
Auto-Neg.  
Ability  
1.3  
1.2  
1 = LXT970A is able to perform auto-negotiation.  
RO  
1
0
1 = Link is up.  
Link Status  
RO/LL  
0 = Link is down.  
Jabber Detect  
1 = Jabber condition detected.  
0 = No jabber condition detected.  
1.1  
1.0  
RO/LH  
RO  
0
1
(10BASE-T  
Only)  
Extended  
Capability  
1 = Extended register capabilities.  
1. RO = Read Only  
LL = Latching Low (This bit remains Low until read, and then returns High).  
LH = Latching High (This bit remains High until read, and then returns Low).  
Datasheet  
65  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 47. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type 1  
Default  
PHY ID  
Number  
2.15:0  
The PHY identifier composed of bits 3 through 18 of the OUI.  
RO  
7810 hex  
1. RO = Read Only  
Table 48. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
Default  
3.15:10  
PHY ID number The PHY identifier composed of bits 19 through 24 of the OUI.  
RO  
000000 bin  
Manufacturers  
3.9:4  
3.3:0  
6 bits containing manufacturers part number.  
model number  
RO  
RO  
000000 bin  
0011 bin  
Manufacturers  
4 bits containing manufacturers revision number.  
revision number  
1. RO = Read Only  
Figure 37. PHY Identifier Bit Mapping  
Manufacturers  
Revision  
Number  
a b c  
r
s
x
Part Number  
Organizationally Unique Identifier  
5 4 3 2 1 0  
3 2 1 0  
1 2 3  
18 19  
24  
15 14 13 12 11 10 9  
8
7
6
5
4
3
2
1
0 15 14 13 12 11 10 9  
8
7
6
5
4
3
2
1 0  
PHY ID Register 1  
PHY ID Register 2  
The Intel OUI is 00207B hex.  
66  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 49. Auto Negotiation Advertisement Register (Address 4)  
Bit  
4.15  
Name  
Description  
Type 1  
Default  
Next Page  
Reserved  
Not Supported  
Ignore on read.  
RO  
RO  
0
0
4.14  
4.13  
1 = Remote fault.  
0 = No remote fault.  
Remote Fault  
R/W  
R/W  
0
0
4.12:11 Reserved  
Ignore on read.  
1 = Pause operation is enabled for full-duplex links.  
0 = Pause operation is disabled.  
4.10  
4.9  
Pause  
R/W  
0
1 = 100BASE-T4 capability is available.  
0 = 100BASE-T4 capability is not available.  
(The LXT970A does not support 100BASE-T4, but allows this bit to be set  
to advertise in the Auto-Negotiation sequence for 100BASE-T4 operation.  
An external 100BASE-T4 transceiver could be switched in if this capability  
is desired.)  
100BASE-T4  
R/W  
0
100BASE-TX  
full-duplex  
1 = DTE is 100BASE-TX full-duplex capable.  
0 = DTE is not 100BASE-TX full-duplex capable.  
4.8  
4.7  
4.6  
R/W  
R/W  
R/W  
Note 2  
Note 3  
Note 4  
1 = DTE is 100BASE-TX capable.  
0 = DTE is not 100BASE-TX capable.  
100BASE-TX  
10BASE-T  
full-duplex  
1 = DTE is 10BASE-T full-duplex capable.  
0 = DTE is not 10BASE-T full-duplex capable.  
1 = DTE is 10BASE-T capable.  
4.5  
10BASE-T  
R/W  
R/W  
Note 5  
00001  
0 = DTE is not 10BASE-T capable.  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector Field,  
S<4:0>  
4.4:0  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations should not be transmitted.  
1. R/W = Read/Write  
RO = Read Only  
2. The default value of bit 4.8 is determined by pin FDE ANDed with pin MF4.  
3. The default value of bit 4.7 is determined by pin MF4.  
4. The default value of bit 4.6 is determined by pin FDE ANDed with pin CFG1.  
5. The default value of bit 4.5 is determined by pin CFG1.  
Datasheet  
67  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 50. Auto Negotiation Link Partner Ability Register (Address 5)  
Bit  
Name  
Description  
Type 1  
Default  
1 = Link Partner has ability to send multiple pages.  
0 = Link Partner has no ability to send multiple pages.  
5.15  
Next Page  
RO  
N/A  
1 = Link Partner has received Link Code Word from LXT970A.  
0 = Link Partner has not received Link Code Word from LXT970A.  
5.14  
5.13  
Acknowledge  
Remote Fault  
RO  
N/A  
1 = Remote fault.  
RO  
RO  
RO  
N/A  
N/A  
N/A  
0 = No remote fault.  
5.12:11 Reserved  
Ignore on read.  
1 = Pause operation is enabled for link partner.  
0 = Pause operation is disabled.  
5.10  
5.9  
5.8  
5.7  
5.6  
5.5  
Pause  
1 = Link Partner is 100BASE-T4 capable.  
0 = Link Partner is not 100BASE-T4 capable.  
100BASE-T4  
RO  
RO  
RO  
RO  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
100BASE-TX  
full-duplex  
1 = Link Partner is 100BASE-TX full-duplex capable.  
0 = Link Partner is not 100BASE-TX full-duplex capable.  
1 = Link Partner is 100BASE-TX capable.  
0 = Link Partner is not 100BASE-TX capable.  
100BASE-TX  
10BASE-T  
full-duplex  
1 = Link Partner is 10BASE-T full-duplex capable.  
0 = Link Partner is not 10BASE-T full-duplex capable.  
1 = Link Partner is 10BASE-T capable.  
0 = Link Partner is not 10BASE-T capable.  
10BASE-T  
<00001> = IEEE 802.3  
<00010> = IEEE 802.9 ISLAN-16T  
Selector Field  
S[4:0]  
5.4:0  
<00000> = Reserved for future Auto-Negotiation development  
<11111> = Reserved for future Auto-Negotiation development  
Unspecified or reserved combinations shall not be transmitted.  
RO  
N/A  
1. RO = Read Only  
68  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 51. Auto Negotiation Expansion (Address 6)  
Bit  
Name  
Description  
Type 1  
Default  
6.15:5  
Reserved  
Ignore.  
RO  
0
1 = Parallel detection fault has occurred.  
0 = Parallel detection fault has not occurred.  
RO/  
LH  
Parallel  
Detection Fault  
6.4  
0
1 = Link partner is next page able.  
Link Partner  
Next Page Able  
6.3  
6.2  
RO  
RO  
0
0
0 = Link partner is not next page able.  
Next Page Able Not Supported.  
1 = 3 identical and consecutive link code words have been received from  
link partner.  
RO/  
LH  
6.1  
Page Received  
0
0
0 = 3 identical and consecutive link code words have not been received  
from link partner.  
1 = Link partner is auto-negotiation able.  
0 = Link partner is not auto-negotiation able.  
Link Partner  
Auto Neg Able  
6.0  
RO  
1. RO = Read Only  
LH = Latching High (This bit remains High until read, and then returns Low).  
Table 52. Mirror Register (Address 16, Hex 10)  
Bit  
Name  
Description  
Type 1  
Default  
This register is intended for use in checking the MII serial port and has no  
effect on chip operation.  
16.15:0 User Defined  
1. R/W = Read /Write  
R/W  
0
Datasheet  
69  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 53. Interrupt Enable Register (Address 17, Hex 11)  
Bit  
Name  
Description  
Type 1  
Default  
17.15:4 Reserved  
Write as 0; ignore on read.  
R/W  
N/A  
1 = Reduced MII driver levels. Pull-down strength of the MII driver is  
reduced by a factor of 10, and the pull-up strength is reduced by a factor  
of 8. Reduced driver levels on the MII I/O pins are recommended for  
managed multi-port applications.  
MIIDRVLVL  
17.3  
R/W  
R/W  
0
0
0 = High-strength MII driver levels that can effectively source 50 - 60 mA.  
Series termination resistors (55Ω) are recommended on all output  
signals when using this level to avoid undershoot or overshoot.  
1 = Enhanced link loss criteria. Link loss criteria is independent of symbol  
error rate. Loss of scrambler lock for more than 1 - 2 msec will brings the  
link down. Link up criteria is based on symbol error rate.  
LNK  
17.2  
CRITERIA  
0 = Standard link criteria. Both link up and link loss are based on symbol  
error rate.  
1 = Enable interrupts. Must be enabled for bit 17.0 or 19.12 to be  
effective.  
17.1  
17.0  
INTEN  
TINT  
R/W  
R/W  
0
0
0 = Disable interrupts.  
1 = Forces MDINT Low and sets bit 18.15 = 1. Also forces interrupt  
pulse on MDIO when bit 19.12 = 1.  
0 = Normal operation.  
This bit is ignored unless the interrupt function is enabled (17.1 = 1).  
1. R/W = Read /Write  
Table 54. Interrupt Status Register (Address 18, Hex 12)  
Bit  
Name  
Description  
Type 1  
RO  
Default  
N/A  
1 = Indicates MII interrupt pending.  
18.15  
MINT  
0 = Indicates no MII interrupt pending. This bit is cleared by reading  
Register 1 followed by reading Register 18.  
1 = Indicates that the LXT970A is fully powered up and the on-chip clocks  
are stable.  
18.14  
XTALOK  
RO  
RO  
0
0
0 = Indicates that XTAL circuit is not stable.  
Ignore  
18.13:0  
Reserved  
1. RO = Read Only  
70  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
Table 55. Configuration Register (Address 19, Hex 13)  
Bit  
Name  
Reserved  
Description  
Type 1  
Default  
19.15  
Write as 0; ignore on read.  
R/W  
N/A  
1 = 100BASE-T transmit test enabled, LXT970A transmits data  
regardless of link status. This function is the analog of the link test  
function (19.8) for 100BASE-TX.  
Txmit Test  
(100BASE-TX)  
19.14  
R/W  
0
0 = Normal operation.  
1 = Enable Repeater Mode.  
0 = Enable DTE Mode.  
19.13  
19.12  
Repeater Mode  
MDIO_INT  
R/W  
R/W  
Note 2  
0
1 = Enable interrupt signaling on MDIO (if 17.1 = 1).  
0 = Normal operation (MDIO Interrupt disabled).  
Bit is ignored unless the interrupt function is enabled (17.1 = 1).  
1 = Disable 10BT TP Loopback. Data transmitted by the MAC will not  
loopback to the RXD, RX_DV, and CRS pins.  
0 = Enable 10BT TP Loopback - Preamble, SFD, and data are directly  
looped back to the MII.  
TP Loopback  
(10BASE-T)  
19.11  
R/W  
0
SQE  
1 = Enable SQE.  
19.10  
19.9  
19.8  
R/W  
R/W  
R/W  
0
0
(10BASE-T)  
0 = Disable SQE (Default).  
Jabber  
1 = Disable jabber.  
(10BASE-T)  
0 = Normal operation (jabber enabled).  
Link Test  
1 = Disable 10BASE-T link integrity test.  
Note 3  
(10BASE-T)  
0 = Normal operation (10BASE-T link integrity test enabled).  
Determine condition indicated by LEDC.  
bit 7 bit 6 Description  
0
0
1
1
0
1
0
1
LEDC indicates collision  
LEDC is off  
LEDC  
Programming bits  
19.7:6  
R/W  
0,0  
LEDC indicates activity.  
LEDC is continuously on (for diagnostic use).  
1 = TX clock is advanced relative to TXD<4:0> and TX_ER by 1/2  
TX_CLK cycle.  
19.5  
19.4  
Advance TX Clock  
R/W  
R/W  
0
0 = Normal operation.  
5B Symbol/  
1 = 5-bit Symbol Mode (Bypass encoder/decoder);  
RXD<4:0> symbol data is not aligned.  
(100BASE-X only)  
4B Nibble  
Note 4  
0 = 4-bit Nibble Mode (Normal operation).  
1 = Bypass transmit scrambler and receive descrambler.  
0 = Normal operation (scrambler and descrambler enabled).  
Scrambler  
19.3  
R/W  
Note 5  
In FX mode, the LXT970A automatically bypasses the Scrambler.  
Selecting Scrambler bypass in FX mode causes the LXT970A to also  
bypass the 4B/5B encoder and enable Symbol mode MII operation.  
(100BASE-X only)  
1. R/W = Read/Write  
2. The default value of bit 19.13 is determined by pin MF1.  
3. If auto-negotiation is disabled, the default value of bit 19.8 is determined by pin CFG1. If auto-neg is enabled, the default  
value of bit 19.8 = 0.  
4. The default value of bit 19.4 is determined by pin MF2 Operation.  
5. The default value of bit 19.3 is determined by pin MF3 Operation.  
6. If auto-negotiation is disabled, default value of bit 19.2 is determined by pin MF4. If auto-negotiation is enabled, default value  
of bit 19.2 = 0.  
Datasheet  
71  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Table 55. Configuration Register (Address 19, Hex 13) (Continued)  
Bit  
Name  
Description  
Type 1  
Default  
1 = Enable 100BASE fiber interface.  
19.2  
100BASE-FX  
Reserved  
R/W  
R/W  
R/W  
Note 6  
0 = Enable 100BASE twisted-pair interface.  
Write as 0; Ignore on read.  
19.1  
19.0  
0
0
1 = Disconnect TP transmitter from line.  
0 = Normal operation.  
Transmit  
Disconnect  
1. R/W = Read/Write  
2. The default value of bit 19.13 is determined by pin MF1.  
3. If auto-negotiation is disabled, the default value of bit 19.8 is determined by pin CFG1. If auto-neg is enabled, the default  
value of bit 19.8 = 0.  
4. The default value of bit 19.4 is determined by pin MF2 Operation.  
5. The default value of bit 19.3 is determined by pin MF3 Operation.  
6. If auto-negotiation is disabled, default value of bit 19.2 is determined by pin MF4. If auto-negotiation is enabled, default value  
of bit 19.2 = 0.  
Table 56. Chip Status Register (Address 20, Hex 14)  
Bit  
Name  
Reserved  
Description  
Type 1  
Default  
20.15:1  
4
Ignore on read.  
RO  
N/A  
1 = Link is up.  
0 = Link is down.  
Link bit 20.13 is a duplicate of bit 1.2, except that it is a dynamic  
indication, whereas bit 1.2 latches Low.  
20.13  
20.12  
Link  
RO  
RO  
0
1 = Full-duplex.  
0 = Half-duplex.  
Duplex Mode  
Note 2  
1 = 100 Mbps operation.  
0 = 10 Mbps operation.  
20.11  
20.10  
Speed  
RO  
RO  
Note 2  
N/A  
Reserved  
Ignore on read.  
1 = Auto-negotiation process complete.  
0 = Auto-negotiation process not complete.  
Auto-Negotiation Complete bit 20.9 is a duplicate of bit 1.5.  
Auto-Negotiation  
Complete  
20.9  
RO/LH  
0
1 = Three identical and consecutive link code words have been  
received.  
20.8  
Page Received  
0 = Three identical and consecutive link code words have not been  
received.  
RO/LH  
0
Page Received bit 20.8 is a duplicate of bit 6.1  
20:7  
20.6  
20.5  
20.4  
20.3  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Ignore on read.  
Ignore on read.  
Ignore on read.  
Ignore on read.  
Ignore on read.  
RO  
RO  
RO  
RO  
RO  
0
0
N/A  
N/A  
N/A  
1 = Low-voltage fault on VCC has occurred.  
0 = No fault.  
20.2  
Low-Voltage  
RO  
N/A  
20.1  
20.0  
Reserved  
Reserved  
Ignore on read.  
Ignore on read.  
RO  
RO  
N/A  
N/A  
1. RO = Read Only  
LH = Latching High (This bit remains High until read, and then returns Low).  
2. Bits 20.12 and 20.11 reflect the current operating mode of the LXT970A.  
72  
Datasheet  
Dual-Speed Fast Ethernet Transceiver LXT970A  
6.0  
Mechanical Specifications  
Figure 38. 64-Pin QFP Package Diagram  
64-Pin Quad Flat Pack  
Part Number - LXT970AQC  
Commercial Temperature Range (0 to +70ºC)  
D
D
1 D3  
Millimeters  
Min Max  
Dim  
A
3.30  
0.25  
e
e
/
2
A
A
0.000  
2.55  
1
2
E1  
3.05  
E3  
E
B
0.30  
0.45  
D
17.65  
13.95  
18.15  
14.05  
D
1
3
D
12.00 REF  
E
17.65  
13.95  
18.15  
14.05  
E
E
1
3
θ3  
12.00 REF  
0.80 BSC  
0.73 1.03  
1.95 REF  
16°  
7°  
e
L1  
L
A2  
A
L
1
θ
5°  
0°  
3
θ
θ
A1  
θ3  
B
L
Datasheet  
73  
LXT970A Dual-Speed Fast Ethernet Transceiver  
Figure 39. 64-Pin TQFP Package Diagram  
64-Pin Thin Quad Flat Pack  
Part Number - LXT970ATC  
Commercial Temperature Range (0 to +70ºC)  
D
D1  
Millimeters  
Dim  
Min  
Max  
A
1.20  
0.15  
1.05  
0.27  
A
0.05  
0.95  
0.17  
1
E1  
E
A
2
B
D
12.0 REF  
D
10.0 REF  
12.0 REF  
10.0 REF  
0.50 REF  
1
E
E1  
e
e
e
/
2
L
0.45  
0.75  
L
1.00 REF  
1
3
θ
11o  
0o  
13o  
7o  
θ
θ3  
1. Basic Spacing between Centers.  
L1  
A2  
A
θ
A1  
B
θ3  
L
74  
Datasheet  

相关型号:

LXT970LC

Ethernet Transceiver, CMOS, PQFP64, LQFP-64
LevelOne

LXT970QC

Fast Ethernet Transceiver
LevelOne

LXT971A

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

LXT971ABC

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

LXT971ABE

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

LXT971ALC

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

LXT971ALE

3.3V Dual-Speed Fast Ethernet PHY Transceiver
INTEL

LXT971BC

Ethernet Transceiver, CMOS, PBGA64, PLASTIC, BGA-64
LevelOne

LXT971BE

Ethernet Transceiver, CMOS, PBGA64, PLASTIC, BGA-64
LevelOne

LXT971LC

Ethernet Transceiver, CMOS, PQFP64, LQFP-64
INTEL

LXT971LC

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,
LevelOne

LXT971LE

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,
LevelOne