LXT971LC [LevelOne]

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,;
LXT971LC
型号: LXT971LC
厂家: LEVEL ONE    LEVEL ONE
描述:

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,

以太网:16GBASE-T 电信 电信集成电路
文件: 总76页 (文件大小:796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
FEBRUARY 2000  
Revision1.1  
LXT971  
3.3V Dual-Speed Fast Ethernet Transceiver  
General Description  
Features  
The LXT971 is an IEEE compliant Fast Ethernet PHY  
Transceiver that directly supports both 100BASE-TX and  
10BASE-T applications. It provides a Media Independent  
Interface (MII) for easy attachment to 10/100 Media  
Access Controllers (MACs). The LXT971 also provides a  
pseudo-ECL (PECL) interface for use with 100BASE-FX  
fiber networks.  
• 3.3V Operation.  
• Low power consumption (300 mW typical).  
• Low-power “Sleep” mode.  
• 10BASE-T and 100BASE-TX using a single RJ-45  
connection.  
• Supports auto-negotiation and parallel detection.  
• MII interface with extended register capability.  
• Robust baseline wander correction performance.  
• 100BASE-FX fiber optic capable.  
The LXT971 supports full-duplex operation at 10 Mbps  
and 100 Mbps. Its operating condition can be set using  
auto-negotiation, parallel detection, or manual control.  
The LXT971 is fabricated with an advanced CMOS  
process and requires only a single 3.3V power supply.  
• Standard CSMA/CD or full-duplex operation.  
• Configurable via MDIO serial port or hardware  
control pins.  
Applications  
• Integrated, programmable LED drivers.  
• Combination 10BASE-T/100BASE-TX or  
100BASE-FX Network Interface Cards (NICs)  
• 64-pin Plastic Ball Grid Array (PBGA).  
• LXT971BC - Commercial (0° to 70°C ambient).  
• LXT971BE - Extended (-40° to 85°C ambient).  
• 64-pin Low-profile Quad Flat Package (LQFP).  
• LXT971LC - Commercial (0° to 70°C ambient).  
• LXT971LE - Extended (-40° to 85°C ambient).  
• 10/100 PCMCIA Cards  
• Cable Modems and Set-Top Boxes  
LXT971  
Block Diagram  
RESET  
VCC  
Pwr Supply  
GND  
P W R D W N  
Management  
Mode Select  
Logic  
/
ADDR<4:0>  
MDIO  
Register Set  
REFCLK  
Clock  
Generator  
MDC  
MDINT  
MDDIS  
TxSLEW<1:0>  
+
Manchester  
Encoder  
10  
TX_EN  
TXD <3:0>  
TX_ER  
TP  
Driver  
OSP  
Pulse  
TPFOP  
TPFON  
-
Parallel/Serial  
Converter  
Scrambler  
100  
TP  
/
Fiber  
Shaper  
&
Encoder  
Out  
+
TX_CLK  
ECL  
Driver  
Auto  
Negotiation  
-
TDIO,  
TMS,  
TCK,  
TRST  
Register  
Set  
5
LED/CFG <3:1>  
COL  
JTAG  
OSP  
Adaptive EQ with  
Baseline Wander  
Cancellation  
+
Collision  
Detect  
Media  
Select  
Clock  
Generator  
100TX  
100FX  
10BT  
-
+
RX_CLK  
RXD <3:0>  
RXDV  
TPFIP  
TPFIN  
SD/TP  
Manchester  
Decoder  
TP  
/
Fiber  
In  
Serial-to-  
Parallel  
Converter  
10  
OSP  
-
+
Slicer  
Decoder  
Descrambler  
&
Carrier Sense  
Data Valid  
Error Detect  
100  
CRS  
RX_ER  
-
Refer to www.level1.com for most current information.  
)
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
TABLE OF CONTENTS  
Pin Assignments ................................................... 4  
Signal Descriptions ............................................... 7  
Functional Description ........................................ 11  
MII Operation......................................................19  
MII Clocks .........................................................19  
Transmit Enable ................................................19  
Receive Data Valid............................................19  
Carrier Sense....................................................19  
Error Signals .....................................................19  
Collision.............................................................19  
Loopback...........................................................21  
Operational Loopback..................................21  
Test Loopback..............................................21  
Introduction ....................................................... 11  
OSP™ Architecture .......................................... 11  
Comprehensive Functionality............................ 12  
Network Media/Protocol Support..................... 12  
10/100 Network Interface.................................. 12  
Twisted-Pair Interface.................................. 12  
Fiber Interface.............................................. 12  
Fault Detection and Reporting..................... 12  
Remote Fault.......................................... 12  
Far-End Fault.......................................... 12  
MII Data Interface ............................................. 13  
Configuration Management Interface................ 13  
MDIO Management Interface ...................... 13  
MDIO Addressing ................................... 13  
MDIO Frame Structure ........................... 13  
MII Interrupts .......................................... 14  
Hardware Control Interface.......................... 14  
Operating Requirements................................... 15  
Power Requirements ........................................ 15  
Clock Requirements.......................................... 15  
External Crystal Oscillator ........................... 15  
100 Mbps Operation ..........................................22  
100BASE-X Network Operation........................22  
Collision Indication ............................................25  
100BASE-X Protocol Sublayer Operations.......26  
PCS Sublayer ..............................................26  
Preamble Handling .................................26  
Dribble Bits .............................................26  
4B/5B Coding Table .....................................27  
PMA Sublayer..............................................28  
Link .........................................................28  
Link Failure Override ..............................28  
Carrier Sense..........................................28  
Receive Data Valid .................................28  
Twisted-Pair PMD Sublayer.........................29  
Scrambler/Descrambler..........................29  
Baseline Wander Correction...................29  
Polarity Correction ..................................29  
Programmable Slew Rate Control ..........29  
Fiber PMD Sublayer.....................................29  
Initialization........................................................ 15  
MDIO Control Mode.......................................... 15  
Hardware Control Mode.................................... 15  
Reduced Power Modes .................................... 16  
Hardware Power Down................................ 16  
Software Power Down ................................. 16  
Sleep Mode.................................................. 16  
Reset ................................................................ 16  
Hardware Configuration Settings...................... 17  
10 Mbps Operation ............................................30  
10T Preamble Handling ....................................30  
10T Carrier Sense.............................................30  
10T Dribble Bits.................................................30  
10T Link Integrity Test.......................................30  
Link Failure ..................................................30  
10T SQE (Heartbeat) ........................................30  
10T Jabber........................................................30  
10T Polarity Correction .....................................30  
Establishing Link............................................... 18  
Auto-Negotiation ............................................... 18  
Base Page Exchange .................................. 18  
Next Page Exchange................................... 18  
Controlling Auto-Negotiation........................ 18  
Parallel Detection.............................................. 18  
2
LXT971 Table of Contents  
Monitoring Operations ......................................31  
Monitoring Auto-Negotiation..............................31  
Monitoring Next Page Exchange..................31  
LED Functions...................................................31  
LED Pulse Stretching...................................32  
PHY Identification Register 1 (Address 2) ........ 58  
PHY Identification Register 2 (Address 3) ........ 58  
A/N Advertisement Register (Address 4).......... 59  
A/N Link Partner Ability Register (Address 5)... 60  
A/N Expansion Register (Address 6)................ 61  
A/N Next Page Transmit Register (Address 7). 62  
Boundary Scan (JTAG) Functions....................33  
Boundary Scan Interface...................................33  
State Machine ...................................................33  
Instruction Register ...........................................33  
Boundary Scan Register (BSR).........................33  
A/N Link Partner Next Page Receive Register  
(Address 8) ....................................................... 62  
Port Configuration Register (Address 16)......... 63  
Quick Status Register (Address 17) ................. 64  
Interrupt Enable Register (Address 18) ............ 65  
Interrupt Status Register (Address 19) ............. 66  
LED Configuration Register (Address 20) ........ 67  
Transmit Control Register (Address 30) ........... 69  
Application Information .......................................34  
Magnetics Information.......................................34  
Typical Twisted-Pair Interface ...........................36  
Typical MII Interface ..........................................37  
Typical Fiber Interface.......................................38  
Package Specifications....................................... 70  
Revision History................................................... 72  
Preliminary Test Specifications ..........................39  
Electrical Parameters ........................................39  
Absolute Maximum Ratings...............................39  
Operating Conditions.........................................39  
Digital I/O Characteristics..................................40  
Digital I/O Characteristics - MII Pins..................40  
I/O Characteristics - REFCLK/XI and XO Pins..40  
I/O Characteristics - LED/CFG Pins..................41  
100BASE-TX Transceiver Characteristics.........41  
100BASE-FX Transceiver Characteristics.........41  
10BASE-T Transceiver Characteristics.............42  
10BASE-T Link Integrity Timing Characteristics42  
Timing Diagrams................................................43  
100BASE-TX Receive Timing - 4B Mode .........43  
100BASE-TX Transmit Timing - 4B Mode ........44  
100BASE-FX Receive Timing ...........................45  
100BASE-FX Transmit Timing ..........................46  
10BASE-T Receive Timing................................47  
10BASE-T Transmit Timing...............................48  
10BASE-T Jab and Unjab Timing......................49  
Auto Negotiation and Fast Link Pulse Timing....50  
MDIO Timing .....................................................51  
Power-Up Timing...............................................52  
RESET Pulse Width and Recovery Timing .......52  
Register Definitions..............................................53  
Control Register (Address 0).............................56  
Status Register (Address 1) ..............................57  
3
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
PIN ASSIGNMENTS  
Figure 1: 64-Pin PBGA Pin Assignments  
1
2
3
4
5
6
7
8
M D I N T  
C R S  
T X D 3  
T X D 0  
R X _ E R  
V C C D  
R X _ D V  
R X D 0  
A
B
C
D
E
C O L  
T X D 2  
G N D  
T X _ E N T X _ E R R X _ C L K  
N/C  
N/C  
N/C  
R X D 1  
R X D 2  
M D I O  
REFCLK/XI  
X O  
R E S E T  
T X D 1 T X _ C L K  
G N D  
M D D I S  
G N D  
G N D  
G N D  
V C C I O  
V C C I O  
TDI  
R X D 3  
T x S L E W 0 T x S L E W 1  
A D D R 0 A D D R 1  
M D C P W R D W N  
L E D / C F G 1  
A D D R 3  
A D D R 4  
R B I A S  
A D D R 2  
SD/TP  
G N D  
G N D  
T M S  
T C K  
L E D / C F G 2 L E D / C F G 3  
F
V C C A  
T P F O N  
V C C A  
TPFIP  
T D O  
T E S T 1  
S L E E P  
T E S T 0  
P A U S E  
G
H
T P F O P  
TPFIN  
T R S T  
)
Bottom Mark  
LXT971  
4
LXT971 Pin Assignments  
PIN ASSIGNMENTS  
Figure 2: 64-Pin LQFP Pin Assignments  
48  
47  
RXD0  
RXD1  
1
REFCLK/XI  
XO  
2
46 RXD2  
45 RXD3  
3
MDDIS  
RESET  
TXSLEW0  
TXSLEW1  
GND  
4
N/C  
44  
5
43 MDC  
42 MDIO  
6
7
GND  
41  
)
8
VCCIO  
N/C  
40 VCCIO  
9
LXT971  
39 PWRDWN  
10  
11  
12  
13  
14  
15  
16  
N/C  
LED/CFG1  
38  
GND  
37 LED/CFG2  
36 LED/CFG3  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
TEST1  
35  
34 TEST0  
33 PAUSE  
5
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 1: LQFP Numeric Pin List – continued  
Reference for  
Full  
Description  
Table 1: LQFP Numeric Pin List  
Reference for  
Pin  
Symbol  
Type  
Pin  
Symbol  
Type  
Full  
Description  
34.  
TEST0  
Input  
Input  
I/O  
Table 4 on page 9  
Table 4 on page 9  
Table 7 on page 10  
Table 7 on page 10  
Table 7 on page 10  
Table 4 on page 9  
Table 5 on page 10  
Table 5 on page 10  
Table 2 on page 7  
Table 2 on page 7  
Table 4 on page 9  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 5 on page 10  
Table 5 on page 10  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 2 on page 7  
Table 5 on page 10  
Table 2 on page 7  
Table 2 on page 7  
35.  
36.  
37.  
38.  
39.  
40.  
41.  
42.  
43.  
44.  
45.  
46.  
47.  
48.  
49.  
50.  
51.  
52.  
53.  
54.  
55.  
56.  
57.  
58.  
59.  
60.  
61.  
62.  
63.  
64.  
TEST1  
LED/CFG3  
LED/CFG2  
LED/CFG1  
PWRDWN  
VCCIO  
GND  
1.  
REFCLK/XI  
XO  
Input  
Output  
Input  
Input  
Input  
Input  
Table 4 on page 9  
Table 4 on page 9  
Table 2 on page 7  
Table 4 on page 9  
Table 4 on page 9  
Table 4 on page 9  
Table 5 on page 10  
Table 5 on page 10  
Table 4 on page 9  
Table 4 on page 9  
Table 5 on page 10  
Table 4 on page 9  
Table 4 on page 9  
Table 4 on page 9  
Table 4 on page 9  
Table 4 on page 9  
Table 4 on page 9  
2.  
I/O  
3.  
MDDIS  
RESET  
TxSLEW0  
TxSLEW1  
GND  
I/O  
4.  
Input  
5.  
6.  
7.  
MDIO  
I/O  
8.  
VCCIO  
N/C  
MDC  
Input  
9.  
N/C  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
N/C  
RXD3  
Output  
Output  
Output  
Output  
Output  
GND  
RXD2  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
RBIAS  
Input  
Input  
Input  
Input  
Input  
RXD1  
RXD0  
RX_DV  
GND  
VCCD  
RX_CLK  
RX_ER  
TX_ER  
TX_CLK  
TX_EN  
TXD0  
Analog  
Input  
17.  
Output  
Output  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
18.  
19.  
20.  
21.  
22.  
23.  
24.  
25.  
26.  
27.  
28.  
29.  
30.  
31.  
32.  
33.  
GND  
Table 5 on page 10  
Table 3 on page 8  
Table 3 on page 8  
Table 5 on page 10  
Table 5 on page 10  
Table 3 on page 8  
Table 3 on page 8  
Table 5 on page 10  
Table 3 on page 8  
Table 6 on page 10  
Table 6 on page 10  
Table 6 on page 10  
Table 6 on page 10  
Table 6 on page 10  
Table 4 on page 9  
Table 4 on page 9  
TPFOP  
TPFON  
VCCA  
VCCA  
TPFIP  
TPFIN  
GND  
Output  
Output  
Input  
Input  
TXD1  
TXD2  
TXD3  
SD/TP  
TDI  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
GND  
COL  
Output  
Output  
TDO  
CRS  
TMS  
MDINT  
Open Drain Table 2 on page 7  
TCK  
TRST  
SLEEP  
PAUSE  
6
LXT971 Signal Descriptions  
SIGNAL DESCRIPTIONS  
Table 2: LXT971 MII Signal Descriptions  
PBGA LQFP  
Type1  
Symbol  
Signal Description  
Pin#  
Pin#  
Data Interface Pins  
A3  
B3  
C4  
A4  
B4  
60  
59  
58  
57  
56  
TXD3  
I
Transmit Data. TXD is a bundle of parallel data signals that are driven  
by the MAC. TXD<3:0> shall transition synchronously with respect to the  
TX_CLK. TXD<0> is the least significant bit.  
TXD2  
TXD1  
TXD0  
TX_EN  
I
Transmit Enable. The MAC asserts this signal when it drives valid data  
on TXD. This signal must be synchronized to TX_CLK.  
C5  
55  
TX_CLK  
O
Transmit Clock. TX_CLK is sourced by the PHY in both 10 and 100  
Mbps operations. 2.5 MHz for 10 Mbps operation, 25 MHz for 100 Mbps  
operation.  
D6  
C8  
B8  
A8  
A7  
45  
46  
47  
48  
49  
RXD3  
RXD2  
RXD1  
RXD0  
RX_DV  
O
Receive Data. RXD is a bundle of parallel signals that transition  
synchronously with respect to the RX_CLK. RXD<0> is the least  
significant bit.  
O
O
I
Receive Data Valid. The LXT971 asserts this signal when it drives valid  
data on RXD. This output is synchronous to RX_CLK.  
A5  
B5  
B6  
53  
54  
52  
RX_ER  
TX_ER  
RX_CLK  
Receive Error. Signals a receive error condition has occurred. This  
output is synchronous to RX_CLK.  
Transmit Error. Signals a transmit error condition. This signal must be  
synchronized to TX_CLK.  
O
Receive Clock. 25 MHz for 100 Mbps operation, 2.5 MHz for 10 Mbps  
operation. Refer to “Clock Requirements” on page 15 in the Functional  
Description section.  
B2  
A2  
62  
63  
COL  
CRS  
O
O
Collision Detected. The LXT971 asserts this output when a collision is  
detected. This output remains High for the duration of the collision. This  
signal is asynchronous and is inactive during full duplex operation.  
Carrier Sense. During half-duplex operation (bit 0.8 = 0), the LXT971  
asserts this output when either transmitting or receiving data packets.  
During full-duplex operation (bit 0.8 = 1), CRS is asserted only during  
receive. CRS assertion is asynchronous with respect to RX_CLK. CRS is  
de-asserted on loss of carrier, synchronous to RX_CLK.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
7
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 2: LXT971 MII Signal Descriptions – continued  
PBGA LQFP  
Type1  
Symbol  
Signal Description  
Pin#  
Pin#  
MII Control Interface Pins  
D3  
3
MDDIS  
I
Management Disable. When MDDIS is High, the MDIO is disabled from  
read and write operations.  
When MDDIS is Low at power up or reset, the Hardware Control Inter-  
face pins control only the initial or “default” values of their respective reg-  
ister bits. After the power-up/reset cycle is complete, bit control reverts to  
the MDIO serial channel.  
E7  
D8  
A1  
43  
42  
64  
MDC  
I
Management Data Clock. Clock for the MDIO serial data channel. Max-  
imum frequency is 8 MHz.  
MDIO  
MDINT  
I/O  
OD  
Management Data Input/Output. Bidirectional serial data channel for  
PHY/STA communication.  
Management Data Interrupt. When bit 18.1 = 1, an active Low output  
on this pin indicates status change. Interrupt is cleared by reading Regis-  
ter 19.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
Table 3: LXT971 Network Interface Signal Descriptions  
PBGA LQFP  
Type1  
Symbol  
Signal Description  
Pin#  
Pin#  
H2  
H3  
19  
20  
TPFOP  
TPFON  
O
Twisted-Pair/Fiber Outputs, Positive & Negative.  
During 100BASE-TX or 10BASE-T operation, TPFOP/N pins drive  
802.3 compliant pulses onto the line.  
During 100BASE-FX operation, TPFOP/N pins produce differential  
PECL outputs for fiber transceivers.  
H4  
H5  
23  
24  
TPFIP  
TPFIN  
I
Twisted-Pair/Fiber Inputs, Positive & Negative.  
During 100BASE-TX or 10BASE-T operation, TPFIP/N pins receive  
differential 100BASE-TX or 10BASE-T signals from the line.  
During 100BASE-FX operation, TPFIP/N pins receive differential  
PECL inputs from fiber transceivers.  
G2  
26  
SD/TP  
I
Signal Detect. Tying the SD/TP pin High or to a PECL input sets bit  
16.0 = 1 and the port is forced to FX mode.  
Tie the SD/TP pin High for Fx Loopback.  
The SD/TP pin has an internal pull-down. When not using FX mode,  
the SD/TP pin should be tied to GND.  
TP Select. Tying the SD/TP pin Low sets bit 16.0 = 0 and forces the  
port to TP mode.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
8
LXT971 Signal Descriptions  
Table 4: LXT971 Miscellaneous Signal Descriptions  
PBGA  
Pin#  
LQFP  
Pin#  
Type1  
Signal Description  
Symbol  
D1  
D2  
5
6
TxSLEW0  
TxSLEW1  
I
Tx Output Slew Controls 0 and 1. These pins select the TX out-  
put slew rate (rise and fall time) as follows:  
TxSLEW1 TxSLEW0 Slew Rate (Rise and Fall Time)  
0
0
1
1
0
1
0
1
2.5 ns  
3.1 ns  
3.7 ns  
4.3 ns  
C2  
4
RESET  
I
Reset. This active Low input is OR’ed with the control register  
Reset bit (0.15). The LXT971 reset cycle is extended to 258 µs  
(nominal) after reset is deasserted.  
G1  
F1  
F2  
E2  
E1  
16  
15  
14  
13  
12  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
I
I
I
I
I
Address <4:0>. Sets device address.  
H1  
17  
RBIAS  
AI  
Bias. This pin provides bias current for the internal circuitry. Must  
be tied to ground through a 22.1 k, 1% resistor.  
H8  
H7  
33  
32  
PAUSE  
SLEEP  
I
I
Pause. When set High, the LXT971 advertises Pause capabilities  
during auto negotiation.  
Sleep. When set High, this pin enables the LXT971 to go into a  
low-power sleep mode. The value of this pin can be overridden by  
register bit 16.6 when in managed mode.  
G8  
G7  
E8  
34  
35  
39  
TEST0  
I
I
I
Test. Tie Low.  
Test. Tie Low.  
TEST1  
PWRDWN  
Power Down. When set High, this pin puts the LXT971 in a  
power-down mode.  
B1  
C1  
1
2
REFCLK/XI  
XO  
I
Crystal Input and Output. A 25 MHz crystal oscillator circuit can  
be connected across XI and XO. A clock can also be used at XI.  
Refer to “Clock Requirements” on page 15 in the Functional  
Description section.  
O
B7, C7  
D7  
9, 10  
44  
N/C  
-
No Connection. These pins are not used and should not be termi-  
nated.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain.  
9
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 5: LXT971 Power Supply Signal Descriptions  
PBGA  
Pin#  
LQFP  
Pin#  
Symbol  
Type  
Signal Description  
A6  
51  
VCCD  
-
-
Digital Power. Requires a 3.3V power supply.  
D4, E3 7, 11, 18, GND  
Ground.  
E4, F3  
F4, C6,  
C3  
25, 41,  
50, 61  
E5, D5  
8, 40  
VCCIO  
-
-
MII Power. Requires either a 3.3V or a 2.5V supply. Must be sup-  
plied from the same source used to power the MAC on the other side  
of the MII.  
G3, G4  
21, 22 VCCA  
Analog Power. Requires a 3.3V power supply.  
Table 6: LXT971 JTAG Test Signal Descriptions  
PBGA LQFP  
Type1  
Symbol  
Signal Description  
Pin#  
Pin#  
TDI2  
F5  
I
Test Data Input. Test data sampled with respect to the rising edge of  
TCK.  
27  
TDO2  
G5  
O
Test Data Output. Test data driven with respect to the falling edge of  
TCK.  
28  
TMS2  
TCK2  
TRST2  
F6  
G6  
H6  
I
I
I
Test Mode Select.  
29  
30  
31  
Test Clock. Test clock input sourced by ATE.  
Test Reset. Test reset input sourced by ATE.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain.  
2. If JTAG port is not used, these pins do not need to be terminated.  
Table 7: LXT971 LED Signal Descriptions  
PBGA  
Pin#  
LQFP  
Pin#  
Type1  
Symbol  
Signal Description  
E6  
F7  
F8  
38  
37  
36  
LED/CFG1  
LED/CFG2  
LED/CFG3  
I/O  
LED Drivers 1 -3. These pins drive LED indicators. Each LED can  
display one of several available status conditions as selected by the  
LED Configuration Register (refer to Table 53 on page 67 for  
details).  
Configuration Inputs 1-3. These pins also provide initial configu-  
ration settings (refer to Table 8 on page 17 for details).  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain.  
10  
LXT971 Functional Description  
FUNCTIONAL DESCRIPTION  
OSP™ Architecture  
Introduction  
Level One's LXT971 incorporates high-efficiency Optimal  
Signal Processing™ design techniques, combining the best  
properties of digital and analog signal processing to  
produce a truly optimal device.  
The LXT971 is a single-port Fast Ethernet 10/100  
Transceiver that supports 10 Mbps and 100 Mbps  
networks. It complies with all applicable requirements of  
IEEE 802.3. The LXT971 can directly drive either a  
100BASE-TX line (up to 140 meters) or a 10BASE-T line  
(up to 185 meters). The LXT971 also supports 100BASE-  
FX operation via a Pseudo-ECL (PECL) interface.  
The receiver utilizes decision feedback equalization to  
increase noise and cross-talk immunity by as much as 3 dB  
over an ideal all-analog equalizer. Using OSP mixed-signal  
processing techniques in the receive equalizer avoids the  
quantization noise and calculation truncation errors found  
in traditional DSP-based receivers (typically complex DSP  
engines with A/D converters). This results in improved  
receiver noise and cross-talk performance.  
Comprehensive Functionality  
The LXT971 provides a standard Media Independent  
Interface (MII) for 10/100 MACs. The LXT971 performs  
all functions of the Physical Coding Sublayer (PCS) and  
Physical Media Attachment (PMA) sublayer as defined in  
the IEEE 802.3 100BASE-X standard. This device also  
performs all functions of the Physical Media Dependent  
(PMD) sublayer for 100BASE-TX connections.  
The OSP signal processing scheme also requires  
substantially less computational logic than traditional DSP-  
based designs. This lowers power consumption and also  
reduces the logic switching noise generated by DSP  
engines. This logic switching noise can be a considerable  
source of EMI generated on the device’s power supplies.  
On power-up, the LXT971 reads its configuration pins to  
check for forced operation settings. If not configured for  
forced operation, it uses auto-negotiation/parallel detection  
to automatically determine line operating conditions. If the  
PHY device on the other side of the link supports auto-  
negotiation, the LXT971 will auto-negotiate with it using  
Fast Link Pulse (FLP) Bursts. If the PHY partner does not  
support auto-negotiation, the LXT971 will automatically  
detect the presence of either link pulses (10 Mbps PHY) or  
Idle symbols (100 Mbps PHY) and set its operating  
conditions accordingly.  
The OSP-based LXT971 provides improved data recovery,  
EMI performance and low power consumption.  
The LXT971 provides half-duplex and full-duplex  
operation at 100 Mbps and 10 Mbps.  
11  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Fiber Interface  
Network Media / Protocol  
Support  
The LXT971 fiber port is designed to interface with  
common industry-standard fiber modules. It  
incorporates a PECL interface that complies with the  
ANSI X3.166 standard for seamless integration.  
The LXT971 supports both 10BASE-T and 100BASE-TX  
Ethernet over twisted-pair, or 100 Mbps Ethernet over fiber  
media (100BASE-FX).  
Fiber mode is selected by putting a PECL level on the  
signal detect pin (SD/TP). If the device SD/TP pin is  
grounded, twisted-pair configuration settings are  
used. This will only be sensed upon completion of  
reset.  
10/100 Network Interface  
The network interface port consists of five external pins  
(two differential signal pairs and a signal detect pin). The I/  
O pins are shared between twisted-pair (TP) and fiber.  
Refer to Figure 2 for specific pin assignments.  
Fault Detection and Reporting  
The LXT971 supports two fault detection and  
reporting mechanisms. “Remote Fault” refers to a  
MAC-to-MAC communication function that is  
essentially transparent to PHY layer devices. It is  
used only during Auto-Negotiation, and therefore is  
applicable only to twisted-pair links. “Far-End Fault”,  
on the other hand, is an optional PMA-layer function  
that may be embedded within PHY devices. The  
LXT971 supports both functions. Both are further  
explained in the sections that follow.  
The LXT971 output drivers generate either 100BASE-TX,  
10BASE-T, or 100BASE-FX output. When not  
transmitting data, the LXT971 generates 802.3-compliant  
link pulses or idle code. Input signals are decoded either as  
a 100BASE-TX, 100BASE-FX, or 10BASE-T input,  
depending on the mode selected. Auto-negotiation/parallel  
detection or manual control is used to determine the speed  
of this interface.  
Twisted-Pair Interface  
Remote Fault  
The LXT971 supports either 100BASE-TX or  
10BASE-T connections over 100Ω, Category 5,  
Unshielded Twisted Pair (UTP) cable. When operating  
at 100 Mbps, the LXT971 continuously transmits and  
receives MLT3 symbols. When not transmitting data,  
the LXT971 generates “IDLE” symbols.  
Bit 4.13 in the Auto-Negotiation Advertisement  
Register is reserved for Remote Fault indications. It  
is typically used when re-starting the auto-negotiation  
sequence to indicate to the link partner that the link is  
down because the advertising device detected a fault.  
When the LXT971 receives a Remote Fault indication  
from its partner during auto-negotiation it:  
During 10 Mbps operation, Manchester-encoded data  
is exchanged. When no data is being exchanged, the  
line is left in an idle state. Link pulses are transmitted  
periodically to keep the link up.  
• sets bit 5.13 in the Link Partner Base Page  
Ability Register, and  
• sets the Remote Fault bit 1.4 in the MII Status  
Register to pass this information to the local con-  
troller.  
Only a transformer, RJ-45 connector, load resistor,  
and bypass capacitors are required to complete this  
interface. On the transmit side, the LXT971 has an  
active internal termination and does not require exter-  
nal termination resistors. Level One's patented wave-  
shaping technology shapes the outgoing signal to help  
reduce the need for external EMI filters. Four slew rate  
settings (refer to Table 4 on page 9) allow the designer  
to match the output waveform to the magnetic charac-  
teristics. On the receive side, the internal impedance is  
high enough that it has no practical effect on the exter-  
nal termination circuit.  
Far-End Fault  
In fiber mode, the SD/TP pin monitors signal quality.  
If the signal quality degrades beyond the fault  
threshold, the fiber transceiver reports a signal quality  
fault condition via the SD/TP pin. Loss of signal  
quality blocks any fiber data from being received and  
cause a loss of link.  
If the LXT971 detects a signal fault condition, it can  
transmit the Far-End Fault Indication (FEFI) over the  
fiber link. The FEFI consists of 84 consecutive 1s  
followed by a single 0. This pattern must be repeated  
at least 3 times. The LXT971 transmits the far-end  
fault code a minimum of 3 times if all the following  
conditions are true:  
12  
LXT971 Functional Description  
• Fiber mode is selected.  
interface consists of a physical connection, a specific  
protocol that runs across the connection, and an  
internal set of addressable registers.  
• Fault Code transmission is enabled (bit 16.2 = 1).  
• Either Signal Detect indicates no signal or the  
receive PLL cannot lock.  
Some registers are required and their functions are  
defined by the IEEE 802.3 standard. The LXT971  
also supports additional registers for expanded  
functionality. The LXT971 supports multiple internal  
registers, each of which is 16 bits wide. Specific  
register bits are referenced using an “X.Y” notation,  
where X is the register number (0-31) and Y is the bit  
number (0-15).  
• Loopback is not enabled.  
MII Data Interface  
The LXT971 supports a standard Media Independent  
Interface (MII). The MII consists of a data interface and a  
management interface. The MII Data Interface passes data  
between the LXT971 and a Media Access Controller  
(MAC). Separate parallel buses are provided for transmit  
and receive. This interface operates at either 10 Mbps or  
100 Mbps. The speed is set automatically, once the  
operating conditions of the network link have been  
determined. Refer to “MII Operation” on page 19 for  
additional details.  
The physical interface consists of a data line (MDIO)  
and clock line (MDC). Operation of this interface is  
controlled by the MDDIS input pin. When MDDIS is  
High, the MDIO read and write operations are  
disabled and the Hardware Control Interface provides  
primary configuration control. When MDDIS is Low,  
the MDIO port is enabled for both read and write  
operations and the Hardware Control Interface is not  
used.  
Configuration Management  
Interface  
MDIO Addressing  
The LXT971 provides both an MDIO interface and a  
Hardware Control Interface for device configuration and  
management.  
The protocol allows one controller to communicate  
with multiple LXT971 chips. Pins ADDR<4:0>  
determine the chip address.  
MDIO Frame Structure  
MDIO Management Interface  
The physical interface consists of a data line (MDIO)  
and clock line (MDC). The frame structure is shown  
in Figures 3 and 4 (read and write). MDIO Interface  
timing is shown in Table 35 on page 51.  
The LXT971 supports the IEEE 802.3 MII  
Management Interface also known as the  
Management Data Input/Output (MDIO) Interface.  
This interface allows upper-layer devices to monitor  
and control the state of the LXT971. The MDIO  
Figure 3: Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
A4  
A3  
A0  
R4  
R3  
R0  
D14  
D1  
D15  
D0  
Z
0
32 "1"s  
0
1
1
0
Turn  
Around  
Data  
Read  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
High  
Z
Write  
Figure 4: Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
13  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
MII Interrupts  
Hardware Control Interface  
The LXT971 provides a single interrupt pin (MDINT).  
Interrupt logic is shown in Figure 5. The LXT971 also  
provides two dedicated interrupt registers. Register 18  
provides interrupt enable and mask functions and Reg-  
ister 19 provides interrupt status. Setting bit 18.1 = 1,  
enables the device to request interrupt via the MDINT  
pin. An active Low on this pin indicates a status  
change on the LXT971. Interrupts may be caused by  
four conditions:  
The LXT971 provides a Hardware Control Interface  
for applications where the MDIO is not desired. The  
Hardware Control Interface uses the three LED driver  
pins to set device configuration. Refer to the  
Hardware Configuration Settings section on page 17  
for additional details.  
• Auto-negotiation complete  
• Speed status change  
• Duplex status change  
• Link status change  
Figure 5: Interrupt Logic  
Event X Mask Reg  
AND  
Event X Status Reg  
OR  
Interrupt Pin (MDINT)  
NAND  
.
.
.
Per Event  
Force Interrupt  
Interrupt Enable  
1. Interrupt (Event) Status Register is cleared on read.  
14  
LXT971 Functional Description  
values of the MDIO registers. Once the initial values are  
set, bit control reverts to the MDIO interface.  
Operating Requirements  
Power Requirements  
Hardware Control Mode  
The LXT971 requires three power supply inputs (VCCD,  
VCCA, and VCCIO). The digital and analog circuits  
require 3.3V supplies (VCCD and VCCA). These inputs  
may be supplied from a single source. Each supply input  
must be decoupled to ground.  
In the Hardware Control Mode, LXT971 disables direct  
write operations to the MDIO registers via the MDIO  
Interface. On power-up or hardware reset the LXT971  
reads the Hardware Control Interface pins and sets the  
MDIO registers accordingly.  
An additional supply may be used for the MII (VCCIO).  
The supply may be either +2.5V or +3.3V. Also, the inputs  
on the MII interface are tolerant to 5V signals from the  
controller on the other side of the MII interface. Refer to  
Table 19 on page 40 for MII I/O characteristics.  
The following modes are available using either Hardware  
Control or MDIO Control:  
• Force network link to 100FX (Fiber).  
• Force network link operation to:  
100TX, Full-Duplex.  
100TX, Half-Duplex.  
10BASE-T, Full-Duplex.  
As a matter of good practice, these supplies should be as  
clean as possible.  
10BASE-T, Half-Duplex.  
Clock Requirements  
• Allow auto-negotiation / parallel-detection.  
When the network link is forced to a specific configuration,  
the LXT971 immediately begins operating the network  
interface as commanded. When auto-negotiation is  
enabled, the LXT971 begins the auto-negotiation / parallel-  
detection operation.  
External Crystal/Oscillator  
The LXT971 requires a reference clock input. It may  
be provided by either of two methods: by connecting  
a crystal across the oscillator pins (XI and XO), or by  
connecting an external clock source to pin XI. When a  
clock is supplied to XI, XO is left open.  
Figure 6: Initialization Sequence  
A crystal is typically used in NIC applications. An  
external 25 MHz clock source, rather than a crystal, is  
frequently used in switch applications. Refer to  
Preliminary Test Specifications, Table 20 on page 40,  
for clock timing requirements.  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Clock  
The MII management channel (MDIO) also requires  
an external clock. The managed data clock (MDC)  
speed is a maximum of 8 MHz. Refer to Table 35 on  
page 51 for details.  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
MDIO Controlled Operation  
(MDIO Writes Enabled)  
Disable MDIO Read and  
Write Operations  
Initialization  
No  
Software  
Reset?  
When the LXT971 is first powered on, reset, or encounters  
a link failure state, it checks the MDIO register  
configuration bits to determine the line speed and operating  
conditions to use for the network link. The configuration  
bits may be set by the Hardware Control or MDIO interface  
as shown in Figure 6.  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
MDIO Control Mode  
In the MDIO Control mode, the LXT971 reads the  
Hardware Control Interface pins to set the initial (default)  
15  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Reduced Power Modes  
Reset  
The LXT971 offers two power-down modes and a sleep  
mode.  
The LXT971 provides both hardware and software resets.  
Configuration control of Auto-Negotiation, speed and  
duplex mode selection is handled differently for each.  
During a hardware reset, Auto-Negotiation and Speed  
configuration settings are read in from pins (refer to  
Table 8 on page 17 for pin settings and to Table 40 on  
page 56 for register bit definitions).  
Hardware Power Down  
The hardware power-down mode is controlled by the  
PWRDWN pin. When PWRDWN is High, the follow-  
ing conditions are true:  
• The LXT971 network port and clock are shut  
down.  
During a software reset (0.15 = 1), these bit settings are not  
re-read from the pins. They revert back to the values that  
were read in during the last hardware reset. Therefore, any  
changes to pin values made since the last hardware reset  
will not be detected during a software reset.  
• All outputs are tri-stated.  
• All weak pad pull-up and pull-down resistors are  
disabled.  
• The MDIO registers are not accessible.  
During  
a hardware reset, register information is  
unavailable for 1 ms after de-assertion of the reset. During  
a software reset (0.15 = 1) the registers are available for  
reading. The reset bit should be polled to see when the part  
has completed reset (0.15 = 0).  
Software Power Down  
Software power-down control is provided by bit 0.11  
in the Control Register (refer to Table 40 on page 56).  
During soft power-down, the following conditions are  
true:  
• The network port is shut down.  
• The MDIO registers remain accessible.  
Sleep Mode  
The LXT971 supports a power-saving sleep mode.  
Sleep mode is enabled when SLEEP is asserted via  
pin 32(LQFP)/H7(PBGA). The value of pin 32/H7  
can be overridden by register bit 16.6 when in  
managed mode as shown in Table 4 on page 9. The  
LXT971 enters into sleep mode when SLEEP is  
enabled and no energy is detected on the twisted-pair  
input for 1-3 seconds (the time is controlled by bits  
16.4:3 in the Configuration Register, with a default of  
3.04 seconds).  
During this mode the LXT971 will still respond to  
management transactions (MDC/MDIO). In this  
mode the power consumption is minimized, and the  
supply current is reduced below the maximum value  
given in Table 17 on page 39. If the LXT971 detects  
activity on the twisted-pair inputs, it will come out of  
the sleep state and check for link. If no link is  
detected in 1-3 seconds (programmable) it will revert  
back to the low power sleep state.  
NOTE  
Sleep Mode is not functional in fiber network  
applications.  
16  
LXT971 Functional Description  
Figure 7: Hardware Configuration Settings  
Hardware Configuration Settings  
The LXT971 provides a hardware option to set the initial  
device configuration. The hardware option uses the three  
LED driver pins. This provides three control bits, as listed  
in Table 8. The LED drivers can operate as either open-  
drain or open-source circuits as shown in Figure 7.  
3.3V  
Configuration Bit = 1  
LED/CFG Pin  
.
LED/CFG Pin  
Configuration Bit = 0  
1. The  
LED/CFG  
pins  
will  
automatically adjust their polarity  
upon power-up or reset.  
Table 8: Hardware Configuration Settings  
Resulting Register Bit Values  
LED/CFGn  
Desired Mode  
Pin Settings1  
Control Register  
AN Advertisement Registers  
Auto-  
Neg  
Speed  
(Mbps)  
AutoNeg Speed  
FD  
0.8  
100FD 100TX  
4.8 4.7  
10FD  
4.6  
10T  
4.5  
Duplex  
1
2
3
0.12  
0.13  
Disabled  
10  
Half  
Full  
Half  
Full  
Half  
Full  
Low Low Low  
Low Low High  
Low High Low  
Low High High  
High Low Low  
High Low High  
High High Low  
0
0
0
1
0
1
0
1
0
N/A  
Auto-Negotiation Advertisement  
100  
1
1
Enabled 100 Only  
10/100  
1
0
1
0
1
1
1
0
0
0
0
0
1
Half  
Only  
Full or  
Half  
High High High  
1
1
1
1
1
1. Refer to Table 7 on page 10 for LED/CFG pin assignments.  
17  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Next Page Exchange  
Establishing Link  
Additional information, above that required by base  
page exchange is also sent via “Next Pages’. The  
LXT971 fully supports the IEEE 802.3ab method of  
negotiation via Next Page exchange.  
See Figure 8 for an overview of link establishment.  
Auto-Negotiation  
If not configured for forced operation, the LXT971  
attempts to auto-negotiate with its link partner by sending  
Fast Link Pulse (FLP) bursts. Each burst consists of up to  
33 link pulses spaced 62.5 µs apart. Odd link pulses (clock  
pulses) are always present. Even link pulses (data pulses)  
may be present or absent to indicate a “1” or a “0”. Each  
FLP burst exchanges 16 bits of data, which are referred to  
as a “link code word”. All devices that support auto-  
negotiation must implement the “Base Page” defined by  
IEEE 802.3 (registers 4 and 5). LXT971 also supports the  
optional “Next Page” function as described in Tables 47  
and 48 on page 62 (registers 7 and 8).  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the  
following steps are recommended:  
• After power-up, power-down, or reset, the  
power-down recovery time, as specified in  
Table 37 on page 52, must be exhausted before  
proceeding.  
• Set the auto-negotiation advertisement register  
bits.  
• Enable auto-negotiation (set MDIO bit 0.12 = 1).  
Parallel Detection  
Base Page Exchange  
By exchanging Base Pages, the LXT971 and its link  
partner communicate their capabilities to each other.  
Both sides must receive at least three identical base  
pages for negotiation to continue. Each side identifies  
the highest common capabilities that both sides  
support and configures itself accordingly.  
For the parallel detection feature of auto-negotiation, the  
LXT971 also monitors for 10BASE-T Normal Link Pulses  
(NLP) and 100BASE-TX Idle symbols. If either is  
detected, the device automatically reverts to the  
corresponding operating mode. Parallel detection allows  
the LXT971 to communicate with devices that do not  
support auto-negotiation.  
Figure 8: Link Establishment Overview  
Power-Up, Reset,  
waking up from  
Sleep mode, or  
Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
0.12 = 0  
0.12 = 1  
Auto-Neg/Parallel Detection  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Up?  
18  
LXT971 Functional Description  
MII Operation  
The LXT971 device implements the Media Independent  
Interface (MII) as defined in the IEEE 802.3 standard.  
Separate channels are provided for transmitting data from  
the MAC to the LXT971 (TXD), and for passing data  
received from the line (RXD) to the MAC. Each channel  
has its own clock, data bus, and control signals. Nine  
signals are used to pass received data to the MAC:  
RXD<3:0>, RX_CLK, RX_DV, RX_ER, COL, and CRS.  
Seven signals are used to transmit data from the MAC:  
TXD<3:0>, TX_CLK, TX_EN, and TX_ER.  
Receive Data Valid  
The LXT971 asserts RX_DV when it receives a valid  
packet. Timing changes depend on line operating speed:  
• For 100TX links, RX_DV is asserted from the first  
nibble of preamble to the last nibble of the data  
packet.  
• For 10BT links, the entire preamble is truncated.  
RX_DV is asserted with the first nibble of the Start of  
Frame Delimiter (SFD) “5D” and remains asserted  
until the end of the packet.  
The LXT971 supplies both clock signals as well as separate  
outputs for carrier sense and collision. Data transmission  
across the MII is normally implemented in 4-bit-wide  
nibbles.  
Carrier Sense  
Carrier Sense (CRS) is an asynchronous output. It is always  
generated when a packet is received from the line and in  
half-duplex mode when a packet is transmitted. Table 9  
summarizes the conditions for assertion of carrier sense,  
collision, and data loopback signals.  
MII Clocks  
The LXT971 is the master clock source for data  
transmission and supplies both MII clocks (RX_CLK and  
TX_CLK). It automatically sets the clock speeds to match  
link conditions. When the link is operating at 100 Mbps,  
the clocks are set to 25 MHz. When the link is operating at  
10 Mbps, the clocks are set to 2.5 MHz. Figures 9 through  
11 show the clock cycles for each mode. The transmit data  
and control signals must always be synchronized to  
TX_CLK by the MAC. The LXT971 samples these signals  
on the rising edge of TX_CLK.  
Carrier sense is not generated when a packet is transmitted  
and in full-duplex mode.  
Error Signals  
When LXT971 is in 100 Mbps mode and receives an  
invalid symbol from the network, it asserts RX_ER and  
drives “1110” on the RXD pins.  
When the MAC asserts TX_ER, the LXT971 will drive  
“H” symbols out on the TPFOP/N pins.  
Transmit Enable  
The MAC must assert TX_EN the same time as the first  
nibble of preamble, and de-assert TX_EN after the last bit  
of the packet.  
Collision  
The LXT971 asserts its collision signal, asynchronously to  
any clock, whenever the line state is half-duplex and the  
transmitter and receiver are active at the same time. Table 9  
summarizes the conditions for assertion of carrier sense,  
collision, and data loopback signals.  
19  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 9: 10BASE-T Clocking  
2.5 MHz during Auto-Negotiation and 10BASE-T Data & Idle  
TX_CLK  
(Sourced by LXT971)  
2.5 MHz during Auto-Negotiation and 10BASE-T Data & Idle  
RX_CLK  
(Sourced by LXT971)  
Constant 25 MHz  
XI  
Figure 10:100BASE-X Clocking  
25 MHz once 100BASE-X  
Link Established  
2.5 MHz during Auto-Negotiation  
TX_CLK  
(Sourced by LXT971)  
25 MHz once 100BASE-X  
Link Established  
2.5 MHz during Auto-Negotiation  
RX_CLK  
(Sourced by LXT971)  
Constant 25 MHz  
XI  
20  
LXT971 Functional Description  
Figure 11: Link Down Clock Transition  
Link Down condition/Auto Negotiate Enabled  
RX_CLK  
TX_CLK  
2.5 MHz Clock  
Any Clock  
Clock transition time will not exceed 2X the  
nominal clock period: (10 Mbps = 2.5 MHz 100 Mbps = 25 MHz)  
Test loopback is available for both 100TX and 10T  
operation. Test loopback is enabled by setting bits as  
follows:  
Loopback  
The LXT971 provides two loopback functions, operational  
and test (see Table 9). Loopback paths are shown in  
Figure 12.  
• 0.14 = 1  
• 0.8 = 1 (full-duplex)  
Operational Loopback  
• 0.12 = 0 (disable auto-negotiation).  
Operational loopback is provided for 10 Mbps half-  
duplex links when bit 16.8 = 0. Data transmitted by  
the MAC (TXData) will be looped back on the receive  
side of the MII (RXData). Operational loopback is not  
provided for 100 Mbps links, full-duplex links, or  
when 16.8 = 1.  
Figure 12:Loopback Paths  
LXT971  
FX Driver  
Test Loopback  
10T  
Loopback  
Digital  
Block  
100X  
Loopback  
Analog  
Block  
MII  
A test loopback function is provided for diagnostic  
testing of the LXT971. During test loopback, twisted-  
pair and fiber interfaces are disabled. Data transmitted  
by the MAC is internally looped back by the LXT971  
and returned to the MAC.  
TX Driver  
Table 9: Carrier Sense, Loopback, and Collision Conditions  
Test1  
Operational  
Loopback  
Speed  
Duplex Condition  
Carrier Sense  
Collision  
Loopback  
100 Mbps  
Full-Duplex  
Receive Only  
Transmit or Receive  
Receive Only  
Yes  
No  
No  
No  
No  
Yes  
No  
None  
Half-Duplex  
Transmit and Receive  
None  
10 Mbps  
Full-Duplex  
Yes  
Yes  
No  
Half-Duplex, 16.8 = 0  
Half-Duplex, 16.8 = 1  
Transmit or Receive  
Transmit or Receive  
Transmit and Receive  
Transmit and Receive  
1. Test Loopback is enabled when 0.14 = 1  
21  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
In 100TX mode, the LXT971 scrambles and transmits the  
100 Mbps Operation  
data to the network using MLT-3 line code (Figure 14 on  
page 23). MLT-3 signals received from the network are  
descrambled, decoded, and sent across the MII to the  
MAC.  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT971 transmits and  
receives 5-bit symbols across the network link. Figure 13  
shows the structure of a standard frame packet. When the  
MAC is not actively transmitting data, the LXT971 sends  
out Idle symbols on the line.  
In 100FX mode, the LXT971 transmits and receives NRZI  
signals across the PECL interface. An external 100FX  
transceiver module is required to complete the fiber  
connection. To enable 100FX operation, auto-negotiation  
must be disabled and FX selected.  
Figure 13:100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
SFD  
P0  
P1  
P6  
DA  
DA  
SA  
SA  
L1  
L2  
D0  
D1  
Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
.
22  
LXT971 Functional Description  
Figure 14:100BASE-TX Data Path  
Standard Data Flow  
+1  
Parallel  
D0  
to  
0
0
0
Serial  
Scramble  
D1  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
D2  
Transition = 1.  
No Transition = 0.  
Serial  
to  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
D3  
Parallel  
Scrambler Bypass Data Flow  
S0  
+1  
Parallel  
to  
Serial  
S1  
0
0
0
-1  
MLT3  
S2  
S0 S1 S2 S3 S4  
Transition = 1.  
No Transition = 0.  
Serial  
to  
S3  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Parallel  
S4  
23  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
As shown in Figure 13 on page 22, the MAC starts each  
transmission with a preamble pattern. As soon as the  
LXT971 detects the start of preamble, it transmits a Start-  
of-Stream Delimiter (SSD, symbols J and K) to the  
network. It then encodes and transmits the rest of the  
packet, including the balance of the preamble, the SFD,  
packet data, and CRC.  
Once the packet ends, the LXT971 transmits the End-of-  
Stream Delimiter (ESD, symbols T and R) and then returns  
to transmitting Idle symbols. 4B/5B coding is shown in  
Table 10 on page 27.  
Figure 15 shows normal reception with no errors. When the  
LXT971 receives invalid symbols from the line, it asserts  
RX_ER as shown in Figure 16.  
Figure 15:100BASE-TX Reception with no Errors  
RX_CLK  
RX_DV  
preamble SFD SFD DA  
DA  
DA  
DA  
CRC  
CRC  
CRC  
CRC  
RXD<3:0>  
RX_ER  
Figure 16:100BASE-TX Reception with Invalid Symbol  
RX_CLK  
RX_DV  
preamble SFD SFD DA  
DA  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
RXD<3:0>  
RX_ER  
24  
LXT971 Functional Description  
Collision Indication  
Figure 17 shows normal transmission. Upon detection of a  
collision, the COL output is asserted and remains asserted  
for the duration of the collision as shown in Figure 18.  
Figure 17:100BASE-TX Transmission with no Errors  
TX_CLK  
TX_EN  
TXD<3:0>  
CRS  
P
R
E
A
M
B
L
E
DA DA DA DA DA DA DA DA DA  
COL  
Figure 18:100BASE-TX Transmission with Collision  
TX_CLK  
TX_EN  
TXD<3:0>  
CRS  
P
R
E
A
M
B
L
E
JAM  
JAM  
JAM  
JAM  
COL  
25  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Preamble Handling  
100BASE-X Protocol Sublayer  
Operations  
When the MAC asserts TX_EN, the PCS substitutes a  
/J/K symbol pair, also known as the Start-of-Stream  
Delimiter (SSD), for the first two nibbles received  
across the MII. The PCS layer continues to encode  
the remaining MII data, following the coding in  
Table 10, until TX_EN is de-asserted. It then returns  
to supplying IDLE symbols to the line driver.  
With respect to the 7-layer communications model, the  
LXT971 is a Physical Layer 1 (PHY) device. The LXT971  
implements the Physical Coding Sublayer (PCS), Physical  
Medium Attachment (PMA), and Physical Medium  
Dependent (PMD) sublayers of the reference model  
defined by the IEEE 802.3u standard. The following  
paragraphs discuss LXT971 operation from the reference  
model point of view.  
In the receive direction, the PCS layer performs the  
opposite function, substituting two preamble nibbles  
for the SSD.  
PCS Sublayer  
Dribble Bits  
The Physical Coding Sublayer (PCS) provides the  
MII interface, as well as the 4B/5B encoding/  
decoding function.  
The LXT971 handles dribbles bits in all modes. If  
between 1-4 dribble bits are received, the nibble will  
be passed across the MII, padded with 1s if necessary.  
If between 5-7 dribble bits are received, the second  
nibble will not be sent onto the MII bus.  
For 100TX and 100FX operation, the PCS layer  
provides IDLE symbols to the PMD-layer line driver  
as long as TX_EN is de-asserted.  
Figure 19:Protocol Sublayers  
MII Interface  
LXT971  
PCS  
Sublayer  
Encoder/Decoder  
Serializer/De-serializer  
PMA  
Sublayer  
Link/Carrier Detect  
PECL Interface  
PMD  
Sublayer  
Scrambler/  
De-scrambler  
Fiber Transceiver  
100BASE-TX  
100BASE-FX  
26  
LXT971 Functional Description  
Table 10: 4B/5B Coding  
4B Code  
Code Type  
5B Code  
4 3 2 1 0  
Name  
Interpretation  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0
1
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
2
3
4
5
6
DATA  
0 1 1 1  
1 0 0 0  
1 0 0 1  
1 0 1 0  
1 0 1 1  
1 1 0 0  
1 1 0 1  
1 1 1 0  
1 1 1 1  
undefined  
7
8
9
A
B
C
D
E
F
I 1  
J 2  
IDLE  
Idle. Used as inter-stream fill code  
0 1 0 1  
0 1 0 1  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
Start-of-Stream Delimiter (SSD), part 1 of 2  
Start-of-Stream Delimiter (SSD), part 2 of 2  
End-of-Stream Delimiter (ESD), part 1 of 2  
End-of-Stream Delimiter (ESD), part 2 of 2  
Transmit Error. Used to force signaling errors  
K 2  
T 3  
R 3  
CONTROL  
undefined  
undefined  
undefined  
H 4  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
27  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
PMA Sublayer  
Link  
Carrier Sense  
In 100 Mbps mode, the LXT971 establishes a link  
whenever the scrambler becomes locked and remains  
locked for approximately 50 ms. Whenever the  
scrambler loses lock (receiving less than 12  
consecutive idle symbols during a 2 ms window), the  
link will be taken down. This provides a very robust  
link, essentially filtering out any small noise hits that  
may otherwise disrupt the link. Furthermore 100M  
idle patterns will not bring up a 10M link.  
For 100TX and 100FX links, a start-of-stream  
delimiter (SSD) or /J/K symbol pair causes assertion  
of carrier sense (CRS). An end-of-stream delimiter  
(ESD) or /T/R symbol pair causes de-assertion of  
CRS. The PMA layer will also de-assert CRS if IDLE  
symbols are received without /T/R; however, in this  
case RX_ER will be asserted for one clock cycle  
when CRS is de-asserted.  
Usage of CRS for Interframe Gap (IFG) timing is not  
The LXT971 reports link failure via the MII status  
bits (1.2 and 17.10) and interrupt functions. If auto-  
negotiation is enabled, link failure causes the LXT971  
to re-negotiate.  
recommended for the following reasons:  
• De-assertion time for CRS is slightly longer than  
assertion time. This causes IFG intervals to  
appear somewhat shorter to the MAC than it  
actually is on the wire.  
Link Failure Override  
• CRS de-assertion is not aligned with TX_EN de-  
assertion on transmit loopbacks in half-duplex  
mode.  
The LXT971 will normally transmit data packets only  
if it detects the link is up. Setting bit 16.14 = 1  
overrides this function, allowing the LXT971 to  
transmit data packets even when the link is down.  
This feature is provided as a diagnostic tool. Note that  
auto-negotiation must be disabled to transmit data  
packets in the absence of link. If auto-negotiation is  
enabled, the LXT971 will automatically transmit FLP  
bursts if the link is down.  
Receive Data Valid  
The LXT971 asserts RX_DV to indicate that the  
received data maps to valid symbols. However, RXD  
outputs zeros until the received data is decoded and  
available for transfer to the controller.  
28  
LXT971 Functional Description  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD)  
layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for  
100TX, Manchester for 10T), as well as receiving,  
polarity correction, and baseline wander correction  
functions.  
Polarity Correction  
The 100BASE-TX descrambler automatically detects  
and corrects for the condition where the receive signal  
at TPFIP and TPFIN is inverted.  
Programmable Slew Rate Control  
The LXT971 device supports a slew rate mechanism  
whereby one of four pre-selected slew rates can be  
used. This allows the designer to optimize the output  
waveform to match the characteristics of the  
magnetics. The slew rate is determined by the  
TxSLEW pins as shown in Table 4 on page 9.  
Scrambler/Descrambler  
The purpose of the scrambler is to spread the signal  
power spectrum and further reduce EMI using an  
11-bit, data-independent polynomial. The receiver  
automatically decodes the polynomial whenever  
IDLE symbols are received.  
Scrambler Seeding. Once the transmit data (or Idle  
symbols) are properly encoded, they are scrambled to  
further reduce EMI and to spread the power spectrum  
using an 11-bit scrambler seed. Five seed bits are  
determined by the PHY address, and the remaining  
bits are hard coded in the design.  
Fiber PMD Sublayer  
The LXT971 provides  
a PECL interface for  
connection to an external fiber-optic transceiver. (The  
external transceiver provides the PMD function for  
fiber media.) The LXT971 uses an NRZI format for  
the fiber interface. The fiber interface operates at 100  
Mbps and does not support 10FL applications.  
Scrambler Bypass. The scrambler/descrambler can  
be bypassed by setting bit 16.12 = 1. The scrambler is  
automatically bypassed when the fiber port is enabled.  
Scrambler bypass is provided for diagnostic and test  
support.  
Baseline Wander Correction  
The LXT971 provides a baseline wander correction  
function which makes the device robust under all  
network operating conditions. The MLT3 coding  
scheme used in 100BASE-TX is by definition  
“unbalanced”. This means that the average value of  
the signal voltage can “wander” significantly over  
short time intervals (tenths of seconds). This wander  
can cause receiver errors at long-line lengths (100  
meters) in less robust designs. Exact characteristics of  
the wander are completely data dependent.  
The  
LXT971  
baseline  
wander  
correction  
characteristics allow the device to recover error-free  
data while receiving worst-case “killer” packets over  
all cable lengths.  
29  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
10 Mbps Operation  
The LXT971 will operate as a standard 10BASE-T  
10T Link Integrity Test  
transceiver. The LXT971 supports all the standard 10  
Mbps functions. During 10BASE-T (10T) operation, the  
LXT971 transmits and receives Manchester-encoded data  
across the network link. When the MAC is not actively  
transmitting data, the LXT971 drives link pulses onto the  
line.  
In 10T mode, the LXT971 always transmits link pulses.  
When the Link Integrity Test function is enabled (the  
normal configuration), it monitors the connection for link  
pulses. Once link pulses are detected, data transmission  
will be enabled and will remain enabled as long as either  
the link pulses or data transmission continue. If the link  
pulses stop, the data transmission will be disabled.  
In 10T mode, the polynomial scrambler/descrambler is  
inactive. Manchester-encoded signals received from the  
network are decoded by the LXT971 and sent across the  
MII to the MAC.  
If the Link Integrity Test function is disabled, the LXT971  
will transmit to the connection regardless of detected link  
pulses. The Link Integrity Test function can be disabled by  
setting bit 16.14 = 1.  
The LXT971 does not support fiber connections at 10  
Mbps.  
Link Failure  
Link failure occurs if Link Integrity Test is enabled  
and link pulses or packets stop being received. If this  
condition occurs, the LXT971 returns to the auto-  
negotiation phase if auto-negotiation is enabled. If  
the Link Integrity Test function is disabled by setting  
16.14 = 1 in the Configuration Register, the LXT971  
will transmit packets, regardless of link status.  
10T Preamble Handling  
The LXT971 offers two options for preamble handling,  
selected by bit 16.5. In 10T Mode when 16.5 = 0, the  
LXT971 strips the entire preamble off of received packets.  
CRS is asserted coincident with SFD. RX_DV is held Low  
for the duration of the preamble. When RX_DV is  
asserted, the very first two nibbles driven by the LXT971  
are the SFD “5D” hex followed by the body of the packet.  
10T SQE (Heartbeat)  
In 10T mode with 16.5 = 1, the LXT971 passes the  
preamble through the MII and asserts RX_DV and CRS  
simultaneously. In 10T loopback, the LXT971 loops back  
whatever the MAC transmits to it, including the preamble.  
By default, the Signal Quality Error (SQE) or heartbeat  
function is disabled on the LXT971. To enable this  
function, set bit 16.9 = 1. When this function is enabled, the  
LXT971 will assert its COL output for 5-15 BT after each  
packet. See Figure 32 on page 49 for SQE timing  
parameters.  
10T Carrier Sense  
For 10T links, CRS assertion is based on reception of valid  
preamble, and de-assertion on reception of an end-of-frame  
(EOF) marker. Bit 16.7 allows CRS de-assertion to be  
synchronized with RX_DV de-assertion. Refer to Table 49  
on page 63.  
10T Jabber  
If a transmission exceeds the jabber timer, the LXT971 will  
disable the transmit and loopback functions. See Figure 31  
on page 49 for jabber timing parameters.  
The LXT971 automatically exits jabber mode after the  
unjabber time has expired. This function can be disabled by  
setting bit 16.10 = 1.  
10T Dribble Bits  
The LXT971 device handles dribbles bits in all modes. If  
between 1-4 dribble bits are received, the nibble will be  
passed across the MII, padded with 1s if necessary. If  
between 5-7 dribble bits are received, the second nibble  
will not be sent onto the MII bus.  
10T Polarity Correction  
The LXT971 automatically detects and corrects for the  
condition where the receive signal (TPFIP/N) is inverted.  
Reversed polarity is detected if eight inverted link pulses,  
or four inverted end-of-frame (EOF) markers, are received  
consecutively. If link pulses or data are not received by the  
maximum receive time-out period (96-128 ms), the  
polarity state is reset to a non-inverted state.  
30  
LXT971 Functional Description  
Monitoring Operations  
Monitoring Auto-Negotiation  
LED Functions  
Auto-negotiation can be monitored as follows:  
The LXT971 incorporates three direct LED drivers. On  
power up all the drivers are asserted for approximately 1  
second after reset de-asserts. Each LED driver can be  
programmed using the LED Configuration Register (refer  
to Table 53 on page 67) to indicate one of the following  
conditions:  
• Bit 17.7 is set to 1 once the Auto-Negotiation process  
is completed.  
• Bits 1.2 and 17.10 are set to 1 once the link is  
established.  
• Bits 17.14 and 17.9 can be used to determine the link  
operating conditions (speed and duplex).  
• Operating Speed  
• Transmit Activity  
• Receive Activity  
• Collision Condition  
• Link Status  
Monitoring Next Page Exchange  
The LXT971 offers an Alternate Next Page mode to  
simplify the next page exchange process. Normally,  
bit 6.1 (Page Received) remains set until read. When  
Alternate Next Page mode is enabled (16.1 = 1), bit  
• Duplex Mode  
6.1 is automatically cleared whenever  
a new  
The LED drivers can also be programmed to display vari-  
ous combined status conditions. For example, setting bits  
20.15:12 = 1101 produces the following combination of  
Link and Activity indications:  
negotiation process takes place. This prevents the  
user from reading an old value in 6.1 and assuming  
that Registers 5 and 8 (Partner Ability) contain valid  
information. Additionally, the LXT971 uses bit 6.5 to  
indicate when the current received page is the base  
page. This information is useful for recognizing when  
next pages must be resent due to a new negotiation  
process starting. Bits 6.1 and 6.5 are cleared when  
read.  
• If Link is down LED is off.  
• If Link is up LED is on.  
• If Link is up and activity is detected, the LED will  
blink at the stretch interval selected by bits 20.3:2 and  
will continue to blink as long as activity is present.  
31  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
The LED driver pins also provide initial configuration  
settings. The LED pins are sensitive to polarity and will  
automatically pull up or pull down to configure for either  
open drain or open collector circuits (10 mA Max current  
rating) as required by the hardware configuration. Refer to  
the discussion of “Hardware Configuration Settings” on  
page 17 for details.  
When an event such as receiving a packet occurs it will  
be edge detected and it will start the stretch timer. The  
LED driver will remain asserted until the stretch timer  
expires. If another event occurs before the stretch  
timer expires then the stretch timer will be reset and  
the stretch time will be extended.  
When a long event (such as duplex status) occurs it  
will be edge detected and it will start the stretch timer.  
When the stretch timer expires the edge detector will  
be reset so that a long event will cause another pulse to  
be generated from the edge detector which will reset  
the stretch timer and cause the LED driver to remain  
asserted. Figure 20 shows how the stretch operation  
functions.  
LED Pulse Stretching  
The LED Configuration Register also provides  
optional LED pulse stretching to 30, 60, or 100 ms. If  
during this pulse stretch period, the event occurs again,  
the pulse stretch time will be further extended.  
Figure 20:LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
32  
LXT971 Functional Description  
Instruction Register  
Boundary Scan  
After the state machine resets, the IDCODE instruction is  
always invoked. The decode logic ensures the correct data  
flow to the Data registers according to the current  
instruction. Valid instructions are listed in Table 12.  
(JTAG1149.1) Functions  
LXT971 includes a IEEE 1149.1 boundary scan test port  
for board level testing. All digital input, output, and input/  
output pins are accessible. The BSDL file is available by  
contacting your local sales office (see the back page) or by  
accessing the Level One website (www.level1.com).  
Boundary Scan Register (BSR)  
Each Boundary Scan Register (BSR) cell has two stages. A  
flip-flop and a latch are used for the serial shift stage and  
the parallel output stage. There are four modes of operation  
as listed in Table 11.  
Boundary Scan Interface  
This interface consists of five pins (TMS, TDI, TDO,  
TRST, and TCK). It includes a state machine, data register  
array, and instruction register. The TMS and TDI pins are  
internally pulled up. TCK is internally pulled down. TDO  
does not have an internal pull-up or pull-down.  
Table 11: BSR Mode of Operation  
Mode  
Description  
1
2
3
4
Capture  
Shift  
State Machine  
The TAP controller is a 16 state machine driven by the  
Update  
TCK  
and  
TMS  
pins.  
Upon  
reset  
the  
System Function  
TEST_LOGIC_RESET state is entered. The state machine  
is also reset when TMS and TDI are high for five TCK  
periods.  
Table 12: Supported JTAG Instructions  
Name  
EXTEST  
Code  
Description  
External Test  
Mode  
Data Register  
0000  
0001  
0010  
0011  
0100  
1111  
Test  
BSR  
IDCODE  
SAMPLE  
TRIBYP  
SETBYP  
BYPASS  
ID Code Inspection  
Sample Boundary  
Force Float  
Normal  
Normal  
Normal  
Test  
ID REG  
BSR  
Bypass  
Bypass  
Bypass  
Control Boundary to 1/0  
Bypass Scan  
Normal  
Table 13: Device ID Register  
31:28  
Version  
0001  
27:12  
Part ID (hex)  
03CB  
11:8  
7:1  
0
Reserved  
1
JEDEC ID1  
Jedec Continuation Characters  
1110  
111 1110  
1. The JEDEC IS is an 8-bit identifier. The MSB is for parity and is ignored. Level One’s JEDEC ID is FE (1111 1110) which becomes 111 1110  
33  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
APPLICATION INFORMATION  
Magnetics Information  
The LXT971 requires a 1:1 ratio for both the receive  
and transmit transformers. The transformer isolation  
voltage should be rated at 2 kV to protect the circuitry  
from static voltages across the connectors and cables.  
Refer to Table 14 for transformer requirements.  
A cross-reference list of magnetic manufacturers and  
part numbers is available in Application Note 073,  
Magnetic Manufacturers, which can be found on the  
Level One web site (www.level1.com). Before  
committing to a specific component, designers should  
contact the manufacturer for current product  
specifications, and validate the magnetics for the  
specific application.  
Table 14: Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
Tx turns ratio  
Insertion loss  
1 : 1  
1 : 1  
0.6  
0.0  
350  
1.1  
dB  
µH  
kV  
dB  
dB  
dB  
dB  
Primary inductance  
Transformer isolation  
1.5  
Differential to common mode rejection  
40  
35  
-16  
-10  
.1 to 60 MHz  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
Typical Twisted-Pair Interface  
Table 15 provides a comparison of the RJ-45  
connections for NIC and Switch applications in a  
typical twisted-pair interface setting.  
Figure 21 on page 35 shows a typical twisted-pair  
interface with the RJ-45 connections crossed over for  
a Switch configuration. Figure 22 on page 36  
provides a typical twisted-pair interface with the RJ-  
45 connections configured for a NIC application.  
Table 15: I/O Pin Comparison of NIC and  
Switch RJ-45 Setups  
RJ-45  
Symbol  
Switch  
NIC  
TPIP  
TPIN  
TPOP  
TPON  
1
2
3
6
3
6
1
2
34  
LXT971 Application Information  
Figure 21:Typical Twisted-Pair Interface - Switch  
270 pF 5%  
TPFIP  
RJ-45  
50Ω 1%  
1:1  
1
2
3
0.01  
µ
F
3
50Ω 1%  
TPFIN  
50  
50  
50  
4
5
6
7
8
270 pF 5%  
TPFOP  
1:1  
2
LXT971  
50  
50  
µ
0.1 F  
50  
TPFON  
1
* = 0.001  
µ
F / 2.0 kV  
*
*
4
VCCA  
GND  
µ
.01 F  
µ
0.1 F  
SD/TP  
1. Center-tap current may be supplied from 3.3V VCCA as shown. Additional power savings may be  
realized by supplying the center-tap from a 2.5V current source. A separate ferrite bead (rated at 50 mA)  
should be used to supply center-tap current.  
2. The 100transmit load termination resistor typically required is integrated in the LXT971.  
3. Magnetics without a receive pair center-tap do not require a 2 kV termination.  
4. RJ-45 connections shown are for a standard switch application. For a standard NIC RJ-45 setup, see  
Figure 22.  
35  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 22:Typical Twisted-Pair Interface - NIC  
RJ-45  
50  
50  
50  
270 pF 5%  
8
7
6
5
4
3
2
1
TPFIN  
50Ω 1%  
1:1  
50  
50  
0.01  
µF  
3
50  
50Ω 1%  
TPFIP  
270 pF 5%  
TPFON  
1:1  
LXT971  
2
0.1µF  
4
TPFOP  
1
* = 0.001  
µF / 2.0 kV  
*
*
VCCA  
GND  
.01µF  
0.1µF  
SD/TP  
1. Center-tap current may be supplied from 3.3V VCCA as shown. Additional power savings may be realized by  
supplying the center-tap from a 2.5V current source. A separate ferrite bead (rated at 50 mA) should be used to  
supply center-tap current.  
2. The 100transmit load termination resistor typically required is integrated in the LXT971.  
3. Magnetics without a receive pair center-tap do not require a 2 kV termination.  
4. RJ-45 connections shown for standard NIC. Tx/Rx crossover may be required for repeater & switch  
applications.  
36  
LXT971 Application Information  
Figure 23:Typical MII Interface  
TX_EN  
TX_ER  
TXD<3:0>  
TX_CLK  
RX_CLK  
X
MAC  
LXT971  
F
RX_DV  
RJ-45  
RX_ER  
M
R
RXD<3:0>  
CRS  
COL  
37  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 24:Typical Fiber Interface  
VCCD  
+3.3V  
16  
0.1  
µ
F
50  
50  
GND  
TPFON  
TPFOP  
TD-  
TD+  
VCCD  
+3.3V  
LXT971  
Fiber Txcvr  
130  
SD/TP  
SD  
VCCD  
+3.3V  
82  
1
0.1  
µ
F
GND 130  
130  
GND  
TPFIN  
TPFIP  
RD-  
RD+  
82  
82  
GND  
1. Refer to fiber transceiver manufacturer’s recommendations for termination circuitry.  
Example shown above is suitable for HFBR5900-series devices.  
38  
LXT971 Preliminary Test Specifications  
PRELIMINARY TEST SPECIFICATIONS  
NOTE  
Tables 16 through 37 and Figures 25 through Figure 38 represent the performance specifications of the LXT971.  
These specifications are guaranteed by test except where noted “by design.” Minimum and maximum values  
listed in Tables 18 through 37 apply over the recommended operating conditions specified in Table 17.  
Electrical Parameters  
Table 16: Absolute Maximum Ratings  
Parameter  
Supply voltage  
Sym  
Min  
Max  
Units  
VCC  
-0.3  
0
4.0  
V
Operating temperature  
LXT971_C  
TOPA  
+70  
ºC  
(Commercial)  
LXT971_E  
(Extended)  
TOPA  
-40  
-65  
+85  
ºC  
ºC  
Storage temperature  
TST  
+150  
CAUTION  
Exceeding these values may cause permanent damage.  
Functional operation under these conditions is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
Table 17: Operating Conditions  
Parameter  
Typ1  
Sym  
Min  
Max  
Units  
Recommended operating temperature  
LXT971_C  
(Commercial)  
TOPA  
0
70  
ºC  
ºC  
LXT971_E  
(Extended)  
TOPA  
-40  
85  
Recommended supply voltage2  
VCC current  
Analog & Digital  
I/O  
VCCA, VCCD  
VCCIO  
ICC  
3.14  
3.3  
3.45  
3.45  
110  
82  
V
2.35  
V
100BASE-TX  
10BASE-T  
mA  
mA  
mA  
mA  
mA  
mA  
ICC  
100BASE-FX  
Sleep Mode  
Power Down  
Auto-Negotiation  
ICC  
95  
ICC  
45  
ICC  
1
ICC  
110  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
39  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
1
Table 18: Digital I/O Characteristics  
Typ2  
Parameter  
Symbol  
Min  
Max  
Units  
Test Conditions  
VIL  
VIH  
0.8  
V
V
Input Low voltage  
2.0  
Input High voltage  
Input current  
II  
-10  
10  
0.4  
µA  
V
0.0 < VI < VCC  
Output Low voltage  
Output High voltage  
VOL  
VOH  
IOL = 4 mA  
IOH = -4 mA  
2.4  
V
1. Applies to all pins except MII , LED and XI/XO pins. Refer to Table 19 for MII I/O Characteristics, Table 20 for XI/XO and Table 21 for LED  
Characteristics.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 19: Digital I/O Characteristics - MII Pins  
Typ1  
Parameter  
Symbol  
Min  
Max  
Units  
Test Conditions  
Input Low voltage  
VIL  
VIH  
II  
2.0  
-10  
0.8  
V
V
Input High voltage  
Input current  
10  
0.4  
µA  
V
0.0 < VI < VCCIO  
Output Low voltage  
Output High voltage  
VOL  
VOH  
VOH  
IOL = 4 mA  
2.4  
2.0  
V
IOH = -4 mA, VCCIO = 3.3V  
IOH = -4 mA, VCCIO = 2.5V  
VCCIO = 2.5V  
V
2
Driver output resistance  
(Line driver output enabled)  
100  
RO  
2
100  
VCCIO = 3.3V  
RO  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
Table 20: I/O Characteristics - REFCLK/XI and XO Pins  
Typ1  
Parameter  
Sym Min  
Max Units  
Test Conditions  
Input Low Voltage  
VIL  
VIH  
2.0  
0.8  
V
V
Input High Voltage  
Input Clock Frequency Tolerance2  
f
ppm  
±100  
Input Clock Duty Cycle2  
Input Capacitance  
TDC  
CIN  
40  
60  
%
3.0  
pF  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
40  
LXT971 Preliminary Test Specifications  
Table 21: I/O Characteristics - LED/CFG Pins  
Parameter  
Sym  
Min  
Max  
Units  
Test Conditions  
IOL = 10 mA  
Typ  
Output Low Voltage  
Output High Voltage  
Input Current  
VOL  
VOH  
II  
0.4  
V
V
2.4  
-10  
IOH = -10 mA  
10  
µA  
0 < VI < VCCIO  
Table 22: 100BASE-TX Transceiver Characteristics  
Typ1  
Parameter  
Sym  
Min  
Max  
Units  
Test Conditions  
Peak differential output voltage  
Signal amplitude symmetry  
Signal rise/fall time  
VP  
Vss  
0.95  
98  
3.0  
1.05  
102  
5.0  
0.5  
65  
V
%
ns  
ns  
%
Note 2  
Note 2  
Note 2  
Note 2  
TRF  
TRFS  
DCD  
Rise/fall time symmetry  
Duty cycle distortion  
35  
50  
Offset from 16ns pulse width at  
50% of pulse peak  
Overshoot/Undershoot  
VOS  
5
%
ns  
Jitter (measured differentially)  
1.4  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
Table 23: 100BASE-FX Transceiver Characteristics  
Typ1  
Parameter  
Sym  
Min  
Max  
Units  
Test Conditions  
Transmitter  
Peak differential output voltage  
(single ended)  
VOP  
0.6  
1.5  
V
Signal rise/fall time  
TRF  
1.9  
1.3  
ns  
ns  
10 <–> 90% 2.0 pF load  
Jitter (measured differentially)  
Receiver  
Peak differential input voltage  
Common mode input range  
VIP  
0.55  
1.5  
V
V
VCMIR  
VCC - 0.7  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
41  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 24: 10BASE-T Transceiver Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
2.2  
Peak differential output voltage  
VOP  
2.5  
2.8  
V
With transformer, line  
replaced by 100 Ω  
resistor  
Transition timing jitter added by the  
MAU and PLS sections  
-
0
2
11  
ns  
After line model spec-  
ified by IEEE 802.3  
for 10BASE-T MAU  
Receiver  
IN  
Receive Input Impedance  
Z
-
-
22  
k
DS  
Differential Squelch Threshold  
V
300  
420  
585  
mV  
Table 25: 10BASE-T Link Integrity Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Time Link Loss Receive  
Link Pulse  
TLL  
TLP  
50  
2
150  
7
ms  
Link Pulses  
Link Min Receive Timer  
Link Max Receive Timer  
Link Transmit Period  
Link Pulse Width  
TLR MIN  
TLR MAX  
TLT  
2
7
ms  
ms  
ms  
ns  
50  
8
150  
24  
150  
TLPW  
60  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
42  
LXT971 Preliminary Test Specifications  
Timing Diagrams  
Figure 25:100BASE-TX Receive Timing - 4B Mode  
0ns  
250ns  
TPFI  
t4  
t5  
CRS  
t3  
RX_DV  
t1  
t2  
RXD<3:0>  
RX_CLK  
t6  
t7  
COL  
Table 26: 100BASE-TX Receive Timing Parameters - 4B Mode  
Units2  
Parameter  
Sym Min Typ1 Max  
Test Conditions  
RXD<3:0>, RX_DV, RX_ER setup  
to RX_CLK High  
t1  
t2  
10  
10  
ns  
RXD<3:0>, RX_DV, RX_ER hold  
from RX_CLK High  
ns  
CRS asserted to RXD<3:0>, RX_DV  
Receive start of “J” to CRS asserted  
Receive start of “T” to CRS de-asserted  
Receive start of “J” to COL asserted  
Receive start of “T” to COL de-asserted  
t3  
t4  
t5  
t6  
t7  
3
5
BT  
BT  
BT  
BT  
BT  
12  
10  
16  
17  
16  
17  
22  
20  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10 s or 10 ns.  
-8  
43  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 26:100BASE-TX Transmit Timing - 4B Mode  
0ns  
250ns  
t1  
TXCLK  
TX_EN  
t2  
TXD<3:0>  
t5  
TPFO  
t4  
t3  
CRS  
Table 27: 100BASE-TX Transmit Timing Parameters - 4B Mode  
Test  
Conditions  
Units2  
Parameter  
Sym Min Typ1 Max  
TXD<3:0>, TX_EN, TX_ER setup to TX_CLK High  
TXD<3:0>, TX_EN, TX_ER hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t1  
t2  
t3  
t4  
t5  
12  
0
ns  
ns  
20  
24  
5.3  
24  
28  
5.7  
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPFO out (Tx latency)  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10 s or 10 ns.  
-8  
44  
LXT971 Preliminary Test Specifications  
Figure 27:100BASE-FX Receive Timing  
0ns  
250ns  
TPFI  
t4  
t5  
CRS  
t3  
RX_DV  
t1  
t2  
RXD<3:0>  
RX_CLK  
t6  
t7  
COL  
Table 28: 100BASE-FX Receive Timing Parameters  
Units2  
Parameter  
Sym Min Typ1 Max  
Test Conditions  
RXD<3:0>, RX_DV, RX_ER setup  
to RX_CLK High  
t1  
t2  
10  
10  
ns  
ns  
RXD<3:0>, RX_DV, RX_ER hold  
from RX_CLK High  
CRS asserted to RXD<3:0>, RX_DV  
Receive start of “J” to CRS asserted  
Receive start of “T” to CRS de-asserted  
Receive start of “J” to COL asserted  
Receive start of “T” to COL de-asserted  
t3  
t4  
t5  
t6  
t7  
3
5
BT  
BT  
BT  
BT  
BT  
12  
16  
10  
14  
16  
22  
15  
18  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10 s or 10 ns.  
-8  
45  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 28:100BASE-FX Transmit Timing  
0ns  
250ns  
t1  
TXCLK  
TX_EN  
t2  
TXD<3:0>  
t5  
TPFO  
t4  
t3  
CRS  
Table 29: 100BASE-FX Transmit Timing Parameters  
Test  
Conditions  
Units2  
Parameter  
Sym Min Typ1 Max  
TXD<3:0>, TX_EN, TX_ER setup to TX_CLK High  
TXD<3:0>, TX_EN, TX_ER hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t1  
t2  
t3  
t4  
t5  
12  
0
ns  
ns  
17  
22  
5
20  
24  
5.3  
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPFO out (Tx latency)  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10 s or 10 ns.  
-8  
46  
LXT971 Preliminary Test Specifications  
Figure 29:10BASE-T Receive Timing  
RX_CLK  
t
1
t
2
t
3
RXD,  
RX_DV,  
RX_ER  
t
5
t
4
CRS  
TPFI  
t
6
t
t
7
9
t
8
COL  
Table 30: 10BASE-T Receive Timing Parameters  
Units2  
Parameter  
Sym Min Typ1 Max  
Test Conditions  
RXD, RX_DV, RX_ER Setup to RX_CLK  
High  
t1  
t2  
10  
10  
ns  
RXD, RX_DV, RX_ER Hold from RX_CLK  
High  
ns  
TPFIP/N in to RXD out (Rx latency)  
t3  
t4  
5.8  
5
6.0  
32  
BT  
BT  
CRS asserted to RXD, RX_DV, RX_ER  
asserted  
RXD, RX_DV, RX_ER de-asserted to CRS  
de-asserted  
t5  
0.3  
0.5  
BT  
TPFI in to CRS asserted  
t6  
t7  
t8  
t9  
2
6
1
5
28  
10  
31  
10  
BT  
BT  
BT  
BT  
TPFI quiet to CRS de-asserted  
TPFI in to COL asserted  
TPFI quiet to COL de-asserted  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10 s or 100 ns.  
-7  
47  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 30:10BASE-T Transmit Timing  
TX_CLK  
t
1
t2  
TXD,  
TX_EN,  
TX_ER  
t
3
t4  
CRS  
t
5
TPFO  
Table 31: 10BASE-T Transmit Timing Parameters  
Units2  
Parameter  
Sym  
Min  
Typ1  
Max  
Test Conditions  
TXD, TX_EN, TX_ER setup to TX_CLK High  
TXD, TX_EN, TX_ER hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t1  
t2  
t3  
t4  
t5  
10  
0
ns  
ns  
2
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
1
TX_EN sampled to TPFO out (Tx latency)  
72.5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10 s or 100 ns.  
-7  
48  
LXT971 Preliminary Test Specifications  
Figure 31:10BASE-T Jabber and Unjabber Timing  
TX_EN  
t
1
TXD  
COL  
t
2
Table 32: 10BASE-T Jabber and Unjabber Timing Parameters  
Parameter  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
Maximum transmit time  
Unjab time  
t1  
t2  
20  
150  
750  
ms  
ms  
250  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 32:10BASE-T SQE (Heartbeat) Timing  
TX_CLK  
TX_EN  
t
1
t
2
COL  
Table 33: 10BASE-T SQE Timing Parameters  
Parameter  
Sym Min Typ1 Max Units  
Test Conditions  
COL (SQE) Delay after TX_EN off  
COL (SQE) Pulse duration  
t1  
t2  
0.65  
0.5  
1.6  
1.5  
us  
us  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
49  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 33:Auto Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPFOP  
t1  
t1  
t3  
t2  
Figure 34:Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPFOP  
t4  
t5  
Table 34: Auto Negotiation and Fast Link Pulse Timing Parameters  
Parameter  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
123  
100  
63.8  
127  
ns  
µs  
µs  
ms  
ms  
ea  
2
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
12  
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
50  
LXT971 Preliminary Test Specifications  
Figure 35:MDIO Input Timing  
MDC  
t2  
t1  
MDIO  
Figure 36:MDIO Output Timing  
t4  
MDC  
MDIO  
t3  
Table 35: MDIO Timing Parameters  
Parameter  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
MDIO setup before MDC,  
sourced by STA  
t1  
10  
ns  
MDIO hold after MDC,  
sourced by STA  
t2  
t3  
t4  
5
150  
ns  
ns  
ns  
MDC to MDIO output delay,  
source by PHY  
MDC period  
125  
MDC = 8 MHz  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
51  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Figure 37:Power-Up Timing  
v1  
t1  
VCC  
MDIO,etc  
Table 36: Power-Up Timing Parameters  
Parameter  
Voltage threshold  
Power Up delay2  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
v1  
t1  
2.9  
V
300  
µs  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
2. Power Up Delay is specified as a maximum value because it refers to the PHY's guaranteed performance - the PHY will come out of reset after  
a delay of No MORE Than 300 µs. System designers should consider this as a minimum value - After threshold v1 is reached, the MAC should  
delay No LESS Than 300 µs before accessing the MDIO port.  
Figure 38:RESET Pulse Width and Recovery Timing  
t1  
RESET  
t2  
MDIO,etc  
Table 37: RESET Pulse Width and Recovery Timing Parameters  
Parameter  
RESET pulse width  
RESET recovery delay2  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
t1  
t2  
10  
ns  
300  
µs  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
2. Reset Recovery Delay is specified as a maximum value because it refers to the PHY's guaranteed performance - the PHY will come out of reset  
after a delay of No MORE Than 300 µs. System designers should consider this as a minimum value - After de-asserting RESET*, the MAC  
should delay No LESS Than 300 µs before accessing the MDIO port.  
52  
LXT971 Register Definitions  
REGISTER DEFINITIONS  
The LXT971 register set includes multiple 16-bit registers.  
Table 38 presents a complete register listing. Table 39 is a  
complete memory map of all registers and Tables 40  
through 54 provide individual register definitions.  
Additional registers are defined in accordance with the  
IEEE 802.3 standard for adding unique chip functions.  
Base registers (0 through 8) are defined in accordance with  
the “Reconciliation Sublayer and Media Independent  
Interface” and “Physical Layer Link Signaling for 10/100  
Mbps Auto-Negotiation” sections of the IEEE 802.3  
standard.  
Table 38: Register Set  
Address  
Register Name  
Bit Assignments  
0
1
Control Register  
Status Register #1  
Refer to Table 40 on page 56  
Refer to Table 41 on page 57  
Refer to Table 42 on page 58  
Refer to Table 43 on page 58  
Refer to Table 44 on page 59  
2
PHY Identification Register 1  
3
PHY Identification Register 2  
4
Auto-Negotiation Advertisement Register  
5
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Transmit Register  
Auto-Negotiation Link Partner Received Next Page Register  
1000BASE-T/100BASE-T2 Control Register  
1000BASE-T/100BASE-T2 Status Register  
Extended Status Register  
Refer to Table 45 on page 60  
Refer to Table 46 on page 61  
Refer to Table 47 on page 62  
Refer to Table 48 on page 62  
Not Implemented  
6
7
8
9
10  
15  
16  
17  
18  
19  
20  
21-29  
30  
Not Implemented  
Not Implemented  
Port Configuration Register  
Refer to Table 49 on page 63  
Refer to Table 50 on page 64  
Refer to Table 51 on page 65  
Refer to Table 52 on page 66  
Refer to Table 53 on page 67  
Status Register #2  
Interrupt Enable Register  
Interrupt Status Register  
LED Configuration Register  
Reserved  
Transmit Control Register  
Refer to Table 54 on page 69  
53  
L
T97  
Table 39: Register Bit Map  
Bit Fields  
B8 B7  
Control Register  
Reg  
Title  
Addr  
V
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Speed  
Select  
A/N  
Enable  
Power  
Down  
Re-start Duplex  
A/N Mode  
Speed  
Select  
Control  
Status  
Reset Loopback  
Isolate  
COL Test  
Reserved  
0
1
S
pee  
Status Register  
100Base- 100Base- 10Mbps 10Mbps 100Base- 100Base-  
MF  
100Base-  
T4  
Extended  
Status  
A/N  
Complete  
Remote  
Fault  
A/N  
Link  
Jabber Extended  
Detect Capability  
X Full  
Duplex  
X Half  
Duplex  
Full  
Duplex  
Half  
Duplex  
T2 Full T2 Half  
Reserved Preamble  
Suppress  
a
Ability  
Status  
Duplex  
Duplex  
stE  
PHY ID Registers  
PHY ID 1  
PHY ID2  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
2
3
e
PHY ID No  
MFR Model No  
MFR Rev No  
n
Auto-Negotiation Advertisement Register  
t
Tra  
100Base-  
TX Full  
Duplex  
10Base-T  
Full  
Duplex  
A/N  
Advertise  
Remote  
Fault  
Asymm  
Pause  
100Base-  
T4  
100Base-  
TX  
Next Page Reserved  
Reserved  
Reserved  
Pause  
10Base-T  
IEEE Selector Field  
IEEE Selector Field  
4
5
sce  
Auto-Negotiation Link Partner Base Page Ability Register  
100Base-  
TX Full  
Duplex  
10Base-T  
Full 10Base-T  
Duplex  
A/N Link  
Ability  
Remote  
Fault  
Asymm  
Pause  
100Base-  
T4  
100Base-  
TX  
Next Page  
Ack  
Pause  
r
Auto-Negotiation Expansion Register  
Link  
Partner Next Page  
Parallel  
Base Page Detect  
Fault  
Link  
Partner  
A/N Able  
A/N  
Expansion  
Page  
Received  
Reserved  
6
NextPage  
Able  
Able  
Auto-Negotiation Next Page Transmit Register  
A/N Next  
Page Txmit  
Message  
Page  
Next Page Reserved  
Ack 2  
Ack 2  
Toggle  
Message / Unformatted Code Field  
7
8
Auto-Negotiation Link Partner Next Page Receive Register  
A/N Link  
Next Page  
Message  
Page  
Next Page  
Ack  
Toggle  
Message / Unformatted Code Field  
Configuration Register  
Bypass  
Scrambler  
TP  
Loopback  
CRS  
Select  
(10T)  
Fault  
Code  
Enable  
Jabber  
(10T)  
SQE  
Force  
Link Pass Disable  
Txmit  
Sleep  
Mode  
Alternate  
Next Page Select  
Fiber  
Port Config Reserved  
Reserved  
PRE_EN  
Sleep Timer  
16  
(10T)  
(100TX)  
(10T)  
Table 39: Register Bit Map – continued  
Bit Fields  
B8 B7  
Reg  
Title  
Addr  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Status Register #2  
Status  
Register #2  
10/100 Transmit Receive Collision  
Duplex  
Mode  
Auto-Neg  
Auto-Neg  
Reserved  
Link  
Reserved Polarity  
Pause  
Error  
Reserved  
Reserved  
17  
18  
19  
20  
30  
Mode  
Status  
Status  
Status  
Complete  
Interrupt Enable Register  
Interrupt  
Enable  
Auto-Neg Speed  
Reserved  
Duplex  
Mask  
Link  
Mask  
Interrupt  
Test  
Reserved  
Reserved Reserved  
Mask  
Mask  
Enable Interrupt  
Interrupt Status Register  
Interrupt  
Status  
Auto-Neg Speed  
Reserved  
Duplex  
Link  
MD  
Reserved  
Reserved  
Reserved Reserved  
Done  
Change Change Change  
Interrupt  
LED Configuration Register  
Pulse  
LED Config  
LED1  
LED2  
LED3  
LED Freq  
Reserved  
Stretch  
Transmit Control Register  
Trans.  
Control  
Transmit  
Low Pwr  
Port Rise Time  
Control  
Reserved  
Reserved  
X
9
1
r
n
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 40: Control Register (Address 0)  
Type 1  
Bit  
0.15  
Name  
Description  
Default  
Reset  
1 = PHY reset  
R/W  
SC  
0
0 = Normal operation  
0.14  
0.13  
Loopback  
1 = Enable loopback mode  
0 = Disable loopback mode  
R/W  
0
Speed Selection  
0.6  
0.13  
Speed Selected  
R/W  
Note 2  
1
1
0
0
1
0
1
0
Reserved  
1000 Mbps (not supported)  
100 Mbps  
10 Mbps  
0.12  
0.11  
0.10  
0.9  
Auto-Negotiation 1 = Enable Auto-Negotiation Process  
R/W  
R/W  
R/W  
Note 2  
Enable  
0 = Disable Auto-Negotiation Process  
Power-Down  
1 = Power-down  
0
0
0
0 = Normal operation  
Isolate  
1 = Electrically isolate PHY from MII  
0 = Normal operation  
Restart  
1 = Restart Auto-Negotiation Process  
0 = Normal operation  
R/W  
SC  
Auto-Negotiation  
Duplex Mode  
0.8  
0.7  
0.6  
1 = Full Duplex  
0 = Half Duplex  
R/W  
Note 2  
Collision Test  
1 = Enable COL signal test  
0 = Disable COL signal test  
R/W  
R/W  
0
0
Speed Selection  
0.6  
0.13  
Speed Selected  
1
1
0
0
1
0
1
0
Reserved  
1000 Mbps (not supported)  
100 Mbps  
10 Mbps  
0.5:0  
Reserved  
Write as 0, ignore on Read  
R/W  
00000  
1. R/W = Read/Write  
RO = Read Only  
SC = Self Clearing  
2. Default value of bits 0.12, 0.13 and 0.8 are determined by the LED/CFGn pins (refer to Table 8 on page 17).  
56  
LXT971 Register Definitions  
Table 41: MII Status Register #1 (Address 1)  
Type 1  
Bit  
1.15  
Name  
Description  
Default  
100BASE-T4  
1 = PHY able to perform 100BASE-T4  
0 = PHY not able to perform 100BASE-T4  
RO  
0
Not Supported  
1.14  
1.13  
1.12  
1.11  
1.10  
100BASE-X Full-  
Duplex  
1 = PHY able to perform full-duplex 100BASE-X  
0 = PHY not able to perform full-duplex 100BASE-X  
RO  
RO  
RO  
RO  
RO  
1
1
1
1
0
100BASE-X Half-  
Duplex  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to perform half-duplex 100BASE-X  
10 Mbps Full-Duplex 1 = PHY able to operate at 10 Mbps in full-duplex mode  
0 = PHY not able to operate at 10 Mbps full-duplex mode  
10 Mbps Half-Duplex 1 = PHY able to operate at 10 Mbps in half-duplex mode  
0 = PHY not able to operate at 10 Mbps in half-duplex  
100BASE-T2 Full-  
Duplex  
1 = PHY able to perform full-duplex 100BASE-T2  
0 = PHY not able to perform full-duplex 100BASE-T2  
Not Supported  
1.9  
100BASE-T2 Half-  
Duplex  
1 = PHY able to perform half duplex 100BASE-T2  
0 = PHY not able to perform half-duplex 100BASE-T2  
RO  
0
Not Supported  
1.8  
Extended Status  
1 = Extended status information in register 15  
0 = No extended status information in register 15  
RO  
0
1.7  
1.6  
Reserved  
1 = ignore when read  
RO  
RO  
0
0
MF Preamble Sup-  
pression  
1 = PHY will accept management frames with preamble sup-  
pressed  
0 = PHY will not accept management frames with preamble  
suppressed  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
Auto-Negotiation  
complete  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
RO  
RO/LH  
RO  
0
0
1
0
0
1
Remote Fault  
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Auto-Negotiation  
Ability  
1 = PHY is able to perform Auto-Negotiation  
0 = PHY is not able to perform Auto-Negotiation  
Link Status  
1 = Link is up  
0 = Link is down  
RO/LL  
RO/LH  
RO  
Jabber Detect  
1 = Jabber condition detected  
0 = Jabber condition not detected  
Extended Capability 1 = Extended register capabilities  
0 = Basic register capabilities  
1. RO = Read Only  
LL = Latching Low  
LH = Latching High  
57  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 42: PHY Identification Register 1 (Address 2)  
Type 1  
Bit  
Name  
Description  
Default  
2.15:0  
PHY ID  
Number  
The PHY identifier composed of bits 3 through 18 of the OUI.  
RO  
0013 hex  
1. RO = Read Only  
Table 43: PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
Default  
3.15:10  
PHY ID  
number  
The PHY identifier composed of bits 19 through 24  
of the OUI.  
RO  
011110  
001110  
0001  
3.9:4  
3.3:0  
Manufacturer’s 6 bits containing manufacturer’s part number.  
model number  
RO  
RO  
Manufacturer’s 4 bits containing manufacturer’s revision number.  
revision  
number  
1. RO = Read Only  
Figure 39:PHY Identifier Bit Mapping  
a
b c  
Organizationally Unique Identifier  
r
s
x
PHY ID Register #2 (Address 3)  
PHY ID Register #1 (address 2) = 0013  
15  
0 15  
10 9  
4
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
1
1
1
0
0
0
1
1
1
0 0  
00  
20  
7B  
5
0
3
0
The Level One OUI is 00207B hex  
Manufacturer’s  
Model Number  
Revision  
Number  
58  
LXT971 Register Definitions  
Table 44: Auto Negotiation Advertisement Register (Address 4)  
Type 1  
Bit  
4.15  
Name  
Description  
Default  
Next Page  
1 = Port has ability to send multiple pages.  
0 = Port has no ability to send multiple pages.  
R/W  
0
4.14  
4.13  
Reserved  
Ignore.  
RO  
0
0
Remote Fault 1 = Remote fault.  
0 = No remote fault.  
R/W  
4.12  
4.11  
Reserved  
Ignore.  
R/W  
R/W  
0
0
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27.  
4.10  
4.9  
Pause  
1 = Pause operation enabled for full-duplex links.  
0 = Pause operation disabled.  
R/W  
R/W  
Note 2  
0
100BASE-T4 1 = 100BASE-T4 capability is available.  
0 = 100BASE-T4 capability is not available.  
(The LXT971 does not support 100BASE-T4 but allows this bit to be  
set to advertise in the Auto-Negotiation sequence for 100BASE-T4  
operation. An external 100BASE-T4 transceiver could be switched in  
if this capability is desired.)  
4.8  
4.7  
100BASE-TX 1 = Port is 100BASE-TX full-duplex capable.  
full-duplex 0 = Port is not 100BASE-TX full-duplex capable.  
R/W  
R/W  
Note 3  
Note 3  
100BASE-TX 1 = Port is 100BASE-TX capable.  
0 = Port is not 100BASE-TX capable.  
4.6  
10BASE-T  
full-duplex  
1 = Port is 10BASE-T full-duplex capable.  
0 = Port is not 10BASE-T full-duplex capable.  
1 = Port is 10BASE-T capable.  
R/W  
R/W  
R/W  
Note 3  
Note 3  
00001  
4.5  
10BASE-T  
0 = Port is not 10BASE-T capable.  
4.4:0  
Selector Field, <00001> = IEEE 802.3.  
S<4:0> <00010> = IEEE 802.9 ISLAN-16T.  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations should not be transmitted.  
1. R/W = Read/Write  
RO = Read Only  
2. The default setting of bit 4.10 (PAUSE) is determined by pin 33/H8 at reset.  
3. Default values of bits 4.5, 4.6, 4.7, and 4.8 are determined by LED/CFGn pins at reset. Refer to Table 8 for details.  
59  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 45: Auto Negotiation Link Partner Base Page Ability Register (Address 5)  
Type 1  
Bit  
5.15  
Name  
Description  
Default  
Next Page  
1 = Link Partner has ability to send multiple pages.  
0 = Link Partner has no ability to send multiple pages.  
RO  
N/A  
5.14  
5.13  
Acknowledge 1 = Link Partner has received Link Code Word from LXT971.  
0 = Link Partner has not received Link Code Word from the  
LXT971.  
RO  
RO  
N/A  
N/A  
Remote Fault 1 = Remote fault.  
0 = No remote fault.  
5.12  
5.11  
Reserved  
Ignore.  
RO  
RO  
N/A  
N/A  
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27.  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
5.10  
5.9  
Pause  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
100BASE-T4 1 = Link Partner is 100BASE-T4 capable.  
0 = Link Partner is not 100BASE-T4 capable.  
5.8  
100BASE-TX 1 = Link Partner is 100BASE-TX full-duplex capable.  
full-duplex  
0 = Link Partner is not 100BASE-TX full-duplex capable.  
5.7  
100BASE-TX 1 = Link Partner is 100BASE-TX capable.  
0 = Link Partner is not 100BASE-TX capable.  
5.6  
10BASE-T  
full-duplex  
1 = Link Partner is 10BASE-T full-duplex capable.  
0 = Link Partner is not 10BASE-T full-duplex capable.  
5.5  
10BASE-T  
1 = Link Partner is 10BASE-T capable.  
0 = Link Partner is not 10BASE-T capable.  
5.4:0  
Selector Field <00001> = IEEE 802.3.  
S<4:0>  
<00010> = IEEE 802.9 ISLAN-16T.  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations shall not be transmitted.  
1. RO = Read Only  
60  
LXT971 Register Definitions  
Table 46: Auto Negotiation Expansion (Address 6)  
Bit Name Description  
Type 1  
Default  
6.15:6 Reserved  
Ignore on read.  
RO  
0
0
6.5  
Base Page  
This bit indicates the status of the Auto-Negotiation variable, base  
page. It flags synchronization with the Auto-Negotiation state dia-  
gram allowing detection of interrupted links. This bit is only used if  
bit 16.1 (Alternate NP feature) is set.  
RO/  
LH  
1 = basepage = true  
0 = basepage = false  
6.4  
6.3  
Parallel  
Detection  
Fault  
1 = Parallel detection fault has occurred.  
0 = Parallel detection fault has not occurred.  
RO/  
LH  
0
0
Link Partner  
Next Page  
Able  
1 = Link partner is next page able.  
0 = Link partner is not next page able.  
RO  
6.2  
6.1  
Next Page  
Able  
1 = Local device is next page able.  
0 = Local device is not next page able.  
RO  
1
0
Page Received 1 = Indicates that a new page has been received and the received code  
word has been loaded into register 5 (base pages) or register 8 (next  
pages) as specified in clause 28 of 802.3. This bit will be cleared on  
read. If bit 16.1 is set, the Page Received bit will also be cleared  
when mr_page_rx = false or transmit_disable = true.  
RO  
LH  
6.0  
Link Partner  
A/N Able  
1 = Link partner is auto-negotiation able.  
0 = Link partner is not auto-negotiation able.  
RO  
0
1. RO = Read Only LH = Latching High  
61  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 47: Auto Negotiation Next Page Transmit Register (Address 7)  
Type 1  
Bit  
7.15  
Name  
Description  
Default  
Next Page  
1 = Additional next pages follow  
R/W  
0
(NP)  
0 = Last page  
7.14  
7.13  
Reserved  
Message Page  
(MP)  
Write as 0, ignore on read  
1 = Message page  
RO  
0
1
R/W  
0 = Unformatted page  
1 = Will comply with message  
0 = Can not comply with message  
7.12  
7.11  
Acknowledge 2  
(ACK2)  
Toggle  
R/W  
R/W  
0
0
1 = Previous value of the transmitted Link Code Word equalled  
logic zero  
(T)  
0 = Previous value of the transmitted Link Code Word equalled  
logic one  
7.10:0 Message/Unfor-  
matted Code Field  
R/W  
0000000  
0001  
1. RO = Read Only. R/W = Read/Write  
Table 48: Auto Negotiation Link Partner Next Page Receive Register (Address 8)  
Type 1  
Bit  
8.15  
Name  
Description  
Default  
Next Page  
1 = Link Partner has additional next pages to send  
0 = Link Partner has no additional next pages to send  
1 = Link Partner has received Link Code Word from LXT971  
0 = Link Partner has not received Link Code Word from LXT971  
1 = Page sent by the Link Partner is a Message Page  
0 = Page sent by the Link Partner is an Unformatted Page  
1 = Link Partner complies with the message  
RO  
0
(NP)  
8.14  
8.13  
8.12  
8.11  
Acknowledge  
(ACK)  
RO  
RO  
RO  
RO  
0
0
0
0
Message Page  
(MP)  
Acknowledge 2  
(ACK2)  
Toggle  
0 = Link Partner cannot comply with the message  
1 = Previous value of the transmitted Link Code Word equalled  
logic zero  
(T)  
0 = Previous value of the transmitted Link Code Word equalled  
logic one  
8.10:0 Message/Unfor-  
matted Code Field  
User definable  
RO  
0
1. RO = Read Only.  
62  
LXT971 Register Definitions  
Table 49: Configuration Register (Address 16, Hex 10)  
Bit Name Description  
Type 1  
Default  
16.15 Reserved  
Write as zero, ignore on read.  
R/W  
R/W  
0
0
16.14 Force Link Pass  
1 = Force Link pass  
0 = Normal operation  
16.13 Transmit Disable 1 = Disable Twisted Pair transmitter  
0 = Normal Operation  
R/W  
R/W  
0
0
16.12 Bypass Scrambler 1 = Bypass Scrambler and Descrambler  
(100BASE-TX)  
16.11 Reserved  
16.10 Jabber  
(10BASE-T)  
SQE  
0 = Normal Operation  
Ignore  
R/W  
R/W  
0
0
1 = Disable Jabber Correction  
0 = Normal operation  
16.9  
16.8  
16.7  
16.6  
16.5  
1 = Enable Heart Beat  
0 = Disable Heart Beat  
R/W  
R/W  
R/W  
R/W  
R/W  
0
(10BASE-T)  
TP Loopback  
(10BASE-T)  
1 = Disable TP loopback during half-duplex operation  
0 = Normal Operation  
0
CRS Select  
(10BASE-T)  
1 = CRS deassert extends to RX_DV deassert  
0 = Normal Operation  
1
Note 2  
0
Sleep Mode  
PRE_EN  
1 = Enable Sleep Mode  
0 = Disable Sleep Mode  
Preamble Enable.  
0 = Set RX_DV high coincident with SFD.  
1 = Set RX_DV high and RXD = preamble when CRS is asserted.  
16.4:3 Sleep Timer  
00 = 3.04 seconds  
01 = 2.00 seconds  
10 = 1.04 seconds  
R/W  
00  
16.2  
16.1  
16.0  
Fault Code  
Enable  
1 = Enable FEFI transmission  
0 = Disable FEFI transmission  
R/W  
R/W  
R/W  
1
0
Alternate NP  
feature  
1 = Enable alternate auto negotiate next page feature.  
0 = Disable alternate auto negotiate next page feature  
Fiber Select  
1 = Select fiber mode.  
0 = Select TP mode.  
Note 3  
1. R/W = Read /Write  
LHR = Latches High on Reset  
2. The default value of bit 16.6 is determined by the state of the SLEEP pin 32/H7.  
3. The default value of bit 16.0 is determined by pin 26/G2 (SD/TP).  
63  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 50: Status Register #2 (Address 17)  
Type 1  
Bit  
Name  
Description  
Default  
17.15  
17.14  
Reserved  
Always 0.  
RO  
RO  
0
0
10/100 Mode  
Transmit Status  
Receive Status  
Collision Status  
Link  
1 = LXT971 is operating in 100BASE-TX mode.  
0 = LXT971 is not operating 100BASE-TX mode.  
17.13  
17.12  
17.11  
17.10  
17.9  
1 = LXT971 is transmitting a packet.  
0 = LXT971 is not transmitting a packet.  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
1 = LXT971 is receiving a packet.  
0 = LXT971 is not receiving a packet.  
1 = Collision is occurring.  
0 = No collision.  
1 = Link is up.  
0 = Link is down.  
Duplex Mode  
Auto-Negotiation  
1 = Full-duplex.  
0 = Half-duplex.  
17.8  
1 = LXT971 is in Auto-Negotiation Mode.  
0 = LXT971 is in manual mode.  
17.7  
Auto-Negotiation  
Complete  
1 = Auto-negotiation process completed.  
0 = Auto-negotiation process not completed.  
This bit is only valid when auto negotiate is enabled, and is  
equivalent to bit 1.5.  
17.6  
17.5  
Reserved  
Polarity  
Always 0.  
RO  
RO  
0
0
1 = Polarity is reversed.  
0 = Polarity is not reversed.  
17.4  
17:3  
Pause  
Error  
1 = Device Pause capable.  
0 = Device Not Pause capable.  
RO  
RO  
0
0
1 = Error Occurred (Remote Fault, X,Y, Z).  
0 = No error occurred.  
17:2  
17:1  
17.0  
Reserved  
Reserved  
Reserved  
Always 0.  
Always 0.  
Always 0.  
RO  
RO  
RO  
0
0
0
1. RO = Read Only. R/W = Read/Write  
64  
LXT971 Register Definitions  
Table 51: Interrupt Enable Register (Address 18)  
Bit Name Description  
Type 1  
Default  
18.15:9 Reserved  
Write as 0; ignore on read.  
Write as 0; ignore on read.  
R/W  
R/W  
R/W  
N/A  
0
18.8  
18.7  
Reserved  
ANMSK  
Mask for Auto Negotiate Complete  
0
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
18.6  
18.5  
18.4  
SPEEDMSK  
DUPLEXMSK  
LINKMSK  
Mask for Speed Interrupt  
R/W  
R/W  
R/W  
0
0
0
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Duplex Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Link Status Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
18.3  
18.2  
18.1  
Reserved  
Reserved  
INTEN  
Write as 0, ignore on read.  
Write as 0, ignore on read.  
R/W  
R/W  
R/W  
0
0
0
1 = Enable interrupts.  
0 = Disable interrupts.  
18.0  
TINT  
1 = Force interrupt on MDINT.  
0 = Normal operation.  
R/W  
0
1. R/W = Read /Write  
65  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 52: Interrupt Status Register (Address 19, Hex 13)  
Type 1  
Bit  
Name  
Description  
Default  
19.15:9 Reserved  
Ignore  
Ignore  
RO  
RO  
N/A  
0
19.8  
19.7  
Reserved  
ANDONE  
Auto Negotiation Status  
RO/SC  
RO/SC  
N/A  
0
1= Auto Negotiation has completed.  
0= Auto Negotiation has not completed.  
19.6  
19.5  
19.4  
SPEEDCHG  
Speed Change Status  
1 = A Speed Change has occurred since last reading this register.  
0 = A Speed Change has not occurred since last reading this register.  
DUPLEXCHG Duplex Change Status  
1 = A Duplex Change has occurred since last reading this register.  
RO/SC  
RO/SC  
0
0
0
0 = A Duplex Change has not occurred since last reading this register.  
LINKCHG  
Link Status Change Status  
1 = A Link Change has occurred since last reading this register.  
0 = A Link Change has not occurred since last reading this register.  
19.3  
19.2  
Reserved  
MDINT  
Ignore.  
RO  
RO  
1 = MII interrupt pending.  
0 = No MII interrupt pending.  
Ignore.  
19.1  
19.0  
Reserved  
Reserved  
RO  
RO  
N/A  
0
Ignore  
1. R/W = Read/Write, RO = Read Only, SC = Self Clearing.  
66  
LXT971 Register Definitions  
Table 53: LED Configuration Register (Address 20, Hex 14)  
Type 1  
Bit  
Name  
Default  
Description  
20.15:12 LED1  
Programming  
0000 = Display Speed Status (Continuous, Default)  
0001 = Display Transmit Status (Stretched)  
0010 = Display Receive Status (Stretched)  
0011 = Display Collision Status (Stretched)  
0100 = Display Link Status (Continuous)  
R/W  
0000  
bits  
0101 = Display Duplex Status (Continuous)  
0110 = Unused  
0111 = Display Receive or Transmit Activity (Stretched)  
1000 = Test mode- turn LED on (Continuous)  
1001 = Test mode- turn LED off (Continuous)  
1010 = Test mode- blink LED fast (Continuous)  
1011 = Test mode- blink LED slow (Continuous)  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
20.11:8 LED2  
0000 = Display Speed Status  
R/W  
0100  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
Programming  
bits  
0100 = Display Link Status (Default)  
0101 = Display Duplex Status  
0110 = Unused  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Values are relative approximations. Not guaranteed or production tested.  
67  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
Table 53: LED Configuration Register (Address 20, Hex 14) – continued  
Bit  
Name  
Default  
Description  
0000 = Display Speed Status  
Type 1  
20.7:4  
LED3  
R/W  
0010  
0001 = Display Transmit Status  
0010 = Display Receive Status (Default)  
0011 = Display Collision Status  
Programming  
bits  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Unused  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
LEDFREQ5  
20.3:2  
00 = Stretch LED events to 30 ms.  
01 = Stretch LED events to 60 ms.  
10 = Stretch LED events to 100 ms.  
11 = Reserved.  
R/W  
00  
20.1  
20.0  
PULSE-  
STRETCH  
0 = Disable pulse stretching of all LEDs.  
1 = Enable pulse stretching of all LEDs.  
R/W  
R/W  
1
Reserved  
Ignore.  
N/A  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Values are relative approximations. Not guaranteed or production tested.  
68  
LXT971 Register Definitions  
Table 54: Transmit Control Register (Address 30)  
Type2  
Bit  
Name  
Default  
Description  
30.15:11  
30.12  
Reserved  
Ignore  
R/W  
R/W  
0
0
Transmit Low Power 1 = Forces the transmitter into low power mode. Also  
forces a zero-differential transmission.  
0 = Normal transmission.  
30.11:10  
Port Rise Time  
Control1  
00 = 2.7 ns (default is pins TXSLEW<1:0>)  
R/W  
R/W  
00  
0
01 = 3.5 ns  
10 = 2.3 ns  
11 = 2.0 ns  
30.9:0  
Reserved  
Ignore  
1. Values are relative approximations. Not guaranteed or production tested.  
2. R/W = Read/Write  
69  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
PACKAGE SPECIFICATIONS  
Figure 40:Preliminary PBGA Package Specification  
64-Pin Plastic Ball Grid Array Package  
• Part Number - LXT971BC Commercial Temperature Range (0ºC to +70ºC)  
• Part Number - LXT971BE Extended Temperature Range (-40ºC to +85ºC)  
(4X)  
0.20  
7.00  
2.00 REF.  
± 0.20  
B
6.30  
0.70 REF.  
0.80  
OPTION:  
PIN A1 IDENTIFIER  
1.00 0.10  
INK OR LASER MARKING  
±
A
B
C
D
E
F
G
H
TOP VIEW  
1.26  
± 0.10  
0.70  
± 0.025  
4
3
2
1
8
7
6
5
0.26  
±
0.04  
0.28  
0.30  
0.15  
C
C
B
A
±
0.10  
0.40  
± 0.15  
2
BOTTOM VIEW  
C
SEATING PLANE  
3
SIDE VIEW  
NOTES:  
1. All dimensions and tolerances conform to ASME  
2. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C.  
3. Primary datum and seating plane are defined by the spherical crowns of the solder balls.  
Y
14.5 M - 1994.  
C
4. Maximum mold to substrate offset shall be 0.127.  
5. The surface finish of the package shall be EDM Charmille #18  
PRELIMINARY  
- #21.  
6. Unless otherwise specified tolerance: Decimal  
± 0.05 Angular ±2°.  
70  
LXT971 Package Specifications  
Figure 41:LXT971 LQFP Package Specifications  
64-Pin Low Profile Quad Flat Pack  
• Part Number - LXT971LC Commercial Temperature Range (0ºC to +70ºC)  
• Part Number - LXT971LE Extended Temperature Range (-40ºC to +85ºC)  
D
D1  
Millimeters  
Dim  
Min  
Max  
A
A1  
A2  
B
1.60  
0.15  
1.45  
0.27  
12.15  
10.1  
12.15  
10.1  
0.05  
1.35  
0.17  
11.85  
9.9  
E1  
E
D
D1  
E
11.85  
9.9  
E1  
e
0.50 BSC1  
L
0.45  
0.75  
e
e
/
2
L1  
θ3  
θ
1.00 REF  
11o  
0o  
13o  
7o  
1. Basic Spacing between Centers  
θ3  
L1  
A2  
A
θ
A1  
B
θ3  
L
71  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
REVISION HISTORY  
Table 55: Changes from Rev 1.0 to Rev 1.1 (02/00)  
Section  
Front page  
Page  
Type  
Description  
Change TXD<4:0> to TXD<3:0>.  
1
Modify  
LXT971 Block Dia-  
gram  
Change RXD<3:0> to RXD<3:0>.  
Figure 1 (PBGA)  
Figure 2 (LQFP)  
Pin Assignments  
Table 2  
4
5
Modify  
Remove “Preliminary” from heading.  
7
Modify  
Add  
Replace with new text for MDDIS Signal Description.  
LXT971 MII Signal  
Description  
Table 6  
10  
Add footnote 2: “If JTAG port is not used, these pins do not  
need to be terminated.”  
LXT971 JTAG Test  
Signal Descriptions  
Place footnote 2 after TDI, TDO, TMS, TCK, TRST.  
Modify first and third paragraphs for greater clarity.  
Twisted-Pair Interface  
12  
13  
Modify  
Add  
MDIO Management  
Interface  
Add third paragraph regarding MDIO and MDDIS operation in  
Hardware Control Mode.  
Figure 6  
15  
Modify  
Modify figure to reflect change in MDIO operation in the Hard-  
ware Control Mode when MDDIS is set High.  
Initialization Sequence  
Figure 21, Typical TP  
Interface - Switch  
35  
36  
39  
Modify  
Modify  
Modify  
Added bypass cap to output transformer center tap.  
Added bypass cap to output transformer center tap.  
Figure 22, Typical TP  
Interface - NIC  
Table 17  
Change Max values for 100BASE-TX, 100BASE-FX, and  
Auto-Negotiation.  
Operating Conditions  
Table 26  
43  
44  
45  
45  
Modify  
Modify  
Modify  
Modify  
Change Min, Typ, and Max values for t3 through t7.  
Change Min, Typ, and Max values under t3 through t5.  
Change Min, Typ, and Max values for t3 through t7.  
Change Min, Typ, and Max values for t3 through t5.  
100BASE-TX Receive  
Timing Parameters  
Table 27  
100BASE-TX Transmit  
Timing Parameters  
Table 28  
100BASE-FX Receive  
Timing Parameters  
Table 29  
100BASE-FX Transmit  
Timing Parameters  
72  
LXT971 Revision History  
Table 55: Changes from Rev 1.0 to Rev 1.1 (02/00) – continued  
Section  
Table 30  
Page  
Type  
Description  
47  
Modify  
Change Min, Typ, and Max values for t3.  
100BASE-T Receive  
Timing Parameters  
Change Min, Typ, and Max values for t4 through t9.  
Table 31  
48  
50  
Modify  
Modify  
Change Typ value for t5.  
100BASE-T Transmit  
Timing Parameters  
Table 34  
Change Typ and Max values for Clock pulse to Data pulse.  
Auto-Negotiation and  
Fast Link Pulse Timing  
Parameters  
Change Min, Typ, and Max values for Clock pulse to Clock  
pulse.  
Add footnote 2 to Power Up delay.  
Table 36  
52  
52  
Modify  
Modify  
Power-Up Timing  
Parameters  
Footnote 2: Change Xns to “300 µs”.  
Add footnote 2 to RESET recovery delay.  
Table 37  
RESET Pulse Width  
and Recovery Timing  
Parameters  
Footnote 2: Change Xns to “300 µs”.  
Table 50  
64  
Add  
Add Type and Default values to 17.4 (Pause).  
Status Register #2  
73  
LXT971 3.3V Dual-Speed Fast Ethernet Transceiver  
NOTES  
74  
LXT971 Note  
NOTE  
75  
Corporate Headquarters  
9750 Goethe Road  
Sacramento, California 95827  
Telephone: (916) 855-5000  
Web: www.level1.com  
)
The Americas  
International  
EAST  
WEST  
Western Area  
Headquarters  
3375 Scott Blvd., #110  
Santa Clara, CA 95054  
USA  
ASIA/PACIFIC  
EUROPE  
Eastern Area  
Headquarters  
234 Littleton Road, Unit 1A  
Westford, MA 01886  
USA  
Tel: (978) 692-1193  
Fax: (978) 692-1244  
Asia / Pacific Area  
Headquarters  
101 Thomson Road  
United Square #08-01  
Singapore 307591  
Thailand  
European Area HQ  
& Southern Regional Office  
Parc Technopolis-Bat. Zeta 3,  
avenue du Canada -  
Z.A. de Courtaboeuf  
Les Ulis Cedex 91974  
France  
Tel: (408) 496-1950  
Fax: (408) 496-1955  
Tel: +65 353 6722  
Fax: +65 353 6711  
Tel: +33 1 64 86 2828  
Fax: +33 1 60 92 0608  
North Central  
Regional Office  
One Pierce Place  
Suite 500E  
Itasca, IL 60143  
USA  
South Central  
Regional Office  
800 E. Campbell Road  
Suite 199  
Richardson, TX 75081  
USA  
Central Asia/Pacific  
Regional Office  
12F-1, No. 128, Section 3,  
Ming Sheng East Road  
Taipei , Taiwan,  
R.O.C.  
Tel: +886 2 2547 5227  
Fax: +886 2 2547 5228  
Central Europe  
Regional Office  
Lilienthalstr.25  
D-85399  
Hallbergmoos, Germany  
Tel: +49-811-60068-0  
Fax: +49-811-60068-15  
Tel: (630) 250-6044  
Fax: (630) 250-6045  
Tel: (972) 680-5207  
Fax: (972) 680-5236  
Southeastern  
Regional Office  
One Copley Parkway  
Suite 309  
Morrisville, NC 27560  
USA  
Southwestern  
Regional Office  
28202 Cabot Road  
Suite 300  
Laguna Niguel, CA 92677  
USA  
Northern Asia/Pacific  
Regional Office  
Shinjuku Tsuji Building, 2F  
2-10-4, Yoyogi, Shibuya-Ku  
Tokyo, 151-0053 Japan  
Tel: 81-3-5333-1780  
Northern Europe  
Regional Office  
Torshamnsgatan 35  
164/40 Kista/Stockholm,  
Sweden  
Tel: +46 8 750 3980  
Fax: +46 8 750 3982  
Tel: (919) 463-0488  
Fax: (919) 463-0486  
Tel: (949) 365-5655  
Fax: (949) 365-5653  
Fax: 81-3-5333-1785  
Latin/South  
Israel  
America  
Regional Office  
9750 Goethe Road  
Sacramento, CA 95827  
USA  
Tel: (916) 855-5000  
Fax: (916) 854-1102  
Regus Instant Off.-Harel House  
3 Abba Hillel Silver Street  
Ramat Gan, 52522 Israel  
Tel: +972-3-754-1130  
Fax: +972-3-754-1100  
Revision  
Date  
Status  
Technical Update.  
1.1  
02/00  
Information in this document is provided in connection with Level One products. No license, express or implied, by estoppel or otherwise, to any intellectual prop-  
erty rights is granted by this document. Except as provided in Level One's Terms and Conditions of Sale for such products, Level One assumes no liability what-  
soever, and Level One disclaims any express or implied warranty, relating to sale and/or use of Level One products including liability or warranties relating to fitness  
for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Level One products are not interned for use  
in medical, life saving, or life sustaining applications.  
Level One may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of  
any features or instructions marked "reserved" or "undefined." Level One reserves these for future definition and shall have no responsibility whatsoever for con-  
flicts or incompatibilities arising from future changes to them. Third party brands and names are the property of their respective owners.  
The products listed in this publication are covered by one or more of the following patents. Additional patents pending.  
5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228;  
5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,461,661; 5,493,243; 5,534,863; 5,574,726; 5,581,585; 5,608,341; 5,666,129; 5,671,249; 5,701,099; 5,717,714;  
5,742,603; 5,748,634; 5,764,638; 5,777,996; 5,802,052; 5,880,645; 5,881,074; 5,907,553; 5,926,049; 5,926,504; 5,946,398  
Copyright © 2000 Level One Communications, Inc., an Intel Company. Specifications subject to change without notice. All rights reserved.  
IS971PS-R1.1-0200  

相关型号:

LXT971LE

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,
LevelOne

LXT972A

3.3V Dual-Speed Fast Ethernet Transceiver Datasheet
INTEL

LXT972ALC

3.3V Dual-Speed Fast Ethernet Transceiver Datasheet
INTEL

LXT972LC

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,
LevelOne

LXT972M

Single-Port 10/100 Mbps PHY Transceiver
INTEL

LXT973QC

Ethernet Transceiver, 2-Trnsvr, PQFP100, PLASTIC, QFP-100
INTEL

LXT973QE

Ethernet Transceiver, 2-Trnsvr, PQFP100, PLASTIC, QFP-100
INTEL

LXT974

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974A

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974AHC

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974B

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974BHC

Fast Ethernet 10/100 Quad Transceivers
INTEL