LXT972A [INTEL]

3.3V Dual-Speed Fast Ethernet Transceiver Datasheet; 3.3V双速快速以太网收发器数据表
LXT972A
型号: LXT972A
厂家: INTEL    INTEL
描述:

3.3V Dual-Speed Fast Ethernet Transceiver Datasheet
3.3V双速快速以太网收发器数据表

以太网
文件: 总70页 (文件大小:777K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LXT972A  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Datasheet  
The LXT972A is an IEEE compliant Fast Ethernet PHY Transceiver that directly supports both  
100BASE-TX and 10BASE-T applications. It provides a Media Independent Interface (MII) for  
easy attachment to 10/100 Media Access Controllers (MACs).  
This document also supports the LXT972.  
The LXT972A supports full-duplex operation at 10Mbps and 100Mbps. Its operating condition  
can be set using auto-negotiation, parallel detection, or manual control.  
The LXT972A is fabricated with an advanced CMOS process and requires only a single 3.3V  
power supply.  
Applications  
Combination 10BASE-T/100BASE-TX  
10/100 PCMCIA Cards  
Cable Modems and Set-Top Boxes  
Network Interface Cards (NICs)  
Product Features  
3.3V Operation.  
Standard CSMA/CD or full-duplex  
operation.  
Low power consumption (300 mW  
typical).  
Configurable via MDIO serial port or  
hardware control pins.  
10BASE-T and 100BASE-TX using a  
single RJ-45 connection.  
Integrated, programmable LED drivers.  
Supports auto-negotiation and parallel  
64-pin Low-profile Quad Flat Package  
detection.  
(LQFP).  
MII interface with extended register  
LXT972ALC - Commercial (0° to 70°C  
capability.  
ambient).  
Robust baseline wander correction  
performance.  
As of January 15, 2001, this document replaces the Level One document  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet.  
Order Number: 249186-002  
January 2001  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability  
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to  
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not  
intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The LXT972A may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current  
characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.  
Copyright © Intel Corporation, 2001  
*Third-party brands and names are the property of their respective owners.  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet — LXT972A  
Contents  
1.0  
2.0  
3.0  
Pin Assignments ............................................................................................................10  
Signal Descriptions........................................................................................................13  
Functional Description ..................................................................................................16  
3.1  
Introduction..........................................................................................................16  
3.1.1 Comprehensive Functionality.................................................................16  
3.1.2 OSPArchitecture................................................................................16  
Network Media / Protocol Support.......................................................................17  
3.2.1 10/100 Network Interface .......................................................................17  
3.2.1.1 Twisted-Pair Interface ...............................................................17  
3.2.1.2 Fault Detection and Reporting...................................................17  
3.2.2 MII Data Interface...................................................................................18  
3.2.3 Configuration Management Interface.....................................................18  
3.2.3.1 MDIO Management Interface....................................................18  
3.2.3.2 MII Interrupts .............................................................................19  
3.2.3.3 Hardware Control Interface .......................................................19  
Operating Requirements .....................................................................................20  
3.3.1 Power Requirements..............................................................................20  
3.3.2 Clock Requirements...............................................................................20  
3.3.2.1 External Crystal/Oscillator.........................................................20  
3.3.2.2 MDIO Clock...............................................................................20  
Initialization..........................................................................................................21  
3.4.1 MDIO Control Mode ...............................................................................21  
3.4.2 Hardware Control Mode .........................................................................21  
3.4.3 Reduced Power Modes..........................................................................22  
3.4.3.1 Hardware Power Down .............................................................22  
3.4.3.2 Software Power Down...............................................................22  
3.4.4 Reset......................................................................................................23  
3.4.5 Hardware Configuration Settings ...........................................................23  
Establishing Link .................................................................................................24  
3.5.1 Auto-Negotiation.....................................................................................24  
3.5.1.1 Base Page Exchange................................................................24  
3.5.1.2 Next Page Exchange.................................................................24  
3.5.1.3 Controlling Auto-Negotiation .....................................................25  
3.5.2 Parallel Detection ...................................................................................25  
MII Operation.......................................................................................................25  
3.6.1 MII Clocks...............................................................................................26  
3.6.2 Transmit Enable .....................................................................................26  
3.6.3 Receive Data Valid.................................................................................26  
3.6.4 Carrier Sense .........................................................................................26  
3.6.5 Error Signals...........................................................................................26  
3.6.6 Collision..................................................................................................26  
3.6.7 Loopback................................................................................................28  
3.6.7.1 Operational Loopback ...............................................................28  
3.6.7.2 Test Loopback...........................................................................28  
100Mbps Operation.............................................................................................29  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Datasheet  
3
LXT972A — 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
3.7.1 100BASE-X Network Operations ...........................................................29  
3.7.2 Collision Indication .................................................................................31  
3.7.3 100BASE-X Protocol Sublayer Operations............................................31  
3.7.3.1 PCS Sublayer............................................................................31  
3.7.3.2 PMA Sublayer ...........................................................................34  
3.7.3.3 Twisted-Pair PMD Sublayer......................................................34  
10Mbps Operation...............................................................................................35  
3.8.1 10T Preamble Handling .........................................................................35  
3.8.2 10T Carrier Sense..................................................................................36  
3.8.3 10T Dribble Bits......................................................................................36  
3.8.4 10T Link Integrity Test............................................................................36  
3.8.4.1 Link Failure................................................................................36  
3.8.5 10T SQE (Heartbeat) .............................................................................36  
3.8.6 10T Jabber.............................................................................................36  
3.8.7 10T Polarity Correction ..........................................................................37  
Monitoring Operations.........................................................................................37  
3.9.1 Monitoring Auto-Negotiation...................................................................37  
3.9.1.1 Monitoring Next Page Exchange...............................................37  
3.9.2 LED Functions........................................................................................37  
3.9.2.1 LED Pulse Stretching ................................................................38  
Boundary Scan (JTAG1149.1) Functions ...........................................................38  
3.10.1 Boundary Scan Interface........................................................................38  
3.10.2 State Machine .......................................................................................39  
3.10.3 Instruction Register ................................................................................39  
3.10.4 Boundary Scan Register (BSR)..............................................................39  
3.8  
3.9  
3.10  
4.0  
5.0  
Application Information.................................................................................................40  
4.1  
4.2  
Magnetics Information.........................................................................................40  
Typical Twisted-Pair Interface.............................................................................40  
Test Specifications ........................................................................................................44  
5.1  
5.2  
Electrical Parameters..........................................................................................44  
Timing Diagrams.................................................................................................47  
6.0  
7.0  
Register Definitions .......................................................................................................55  
Package Specification ...................................................................................................70  
4
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figures  
1
2
3
4
5
6
7
8
LXT972A Block Diagram.......................................................................................9  
LXT972A 64-Pin LQFP Assignments..................................................................10  
Management Interface Read Frame Structure ...................................................19  
Management Interface Write Frame Structure ...................................................19  
Interrupt Logic ....................................................................................................20  
Initialization Sequence .......................................................................................22  
Hardware Configuration Settings .......................................................................23  
Link Establishment Overview .............................................................................25  
10BASE-T Clocking ............................................................................................27  
100BASE-X Clocking .........................................................................................27  
Link Down Clock Transition ................................................................................27  
Loopback Paths ..................................................................................................28  
100BASE-X Frame Format ................................................................................29  
100BASE-TX Data Path .....................................................................................29  
100BASE-TX Reception with no Errors ..............................................................30  
100BASE-TX Reception with Invalid Symbol .....................................................30  
100BASE-TX Transmission with no Errors .......................................................31  
100BASE-TX Transmission with Collision .........................................................31  
Protocol Sublayers .............................................................................................32  
LED Pulse Stretching .........................................................................................38  
Typical Twisted-Pair Interface - Switch ...............................................................41  
Typical Twisted-Pair Interface - NIC ...................................................................42  
Typical MII Interface ...........................................................................................43  
100BASE-TX Receive Timing - 4B Mode ...........................................................47  
100BASE-TX Transmit Timing - 4B Mode ..........................................................48  
10BASE-T Receive Timing .................................................................................49  
10BASE-T Transmit Timing ................................................................................50  
10BASE-T Jabber and Unjabber Timing ............................................................51  
10BASE-T SQE (Heartbeat) Timing ...................................................................51  
Auto Negotiation and Fast Link Pulse Timing ....................................................52  
Fast Link Pulse Timing .......................................................................................52  
MDIO Input Timing .............................................................................................53  
MDIO Output Timing ..........................................................................................53  
Power-Up Timing ................................................................................................54  
RESET Pulse Width and Recovery Timing ........................................................54  
PHY Identifier Bit Mapping .................................................................................60  
LXT972A LQFP Package Specifications ............................................................70  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Tables  
1
2
3
4
5
6
7
8
LQFP Numeric Pin List.......................................................................................11  
LXT972A MII Signal Descriptions........................................................................13  
LXT972A Network Interface Signal Descriptions ................................................14  
LXT972A Miscellaneous Signal Descriptions......................................................14  
LXT972A Power Supply Signal Descriptions ......................................................15  
LXT972A JTAG Test Signal Descriptions ...........................................................15  
LXT972A LED Signal Descriptions......................................................................15  
Hardware Configuration Settings ........................................................................24  
Datasheet  
5
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
9
Carrier Sense, Loopback, and Collision Conditions............................................28  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
4B/5B Coding......................................................................................................33  
BSR Mode of Operation......................................................................................39  
Supported JTAG Instructions..............................................................................39  
Device ID Register ..............................................................................................39  
Magnetics Requirements ....................................................................................40  
RJ-45 Pin Comparison of NIC and Switch Twisted-Pair Interfaces ....................40  
Absolute Maximum Ratings ................................................................................44  
Operating Conditions ..........................................................................................44  
Digital I/O Characteristics 1.................................................................................45  
Digital I/O Characteristics - MII Pins ...................................................................45  
I/O Characteristics - REFCLK/XI and XO Pins....................................................45  
I/O Characteristics - LED/CFG Pins....................................................................45  
100BASE-TX Transceiver Characteristics ..........................................................46  
10BASE-T Transceiver Characteristics...............................................................46  
10BASE-T Link Integrity Timing Characteristics .................................................46  
100BASE-TX Receive Timing Parameters - 4B Mode........................................47  
100BASE-TX Transmit Timing Parameters - 4B Mode.......................................48  
10BASE-T Receive Timing Parameters..............................................................49  
10BASE-T Transmit Timing Parameters.............................................................50  
10BASE-T Jabber and Unjabber Timing Parameters .........................................51  
10BASE-T SQE Timing Parameters ...................................................................51  
Auto Negotiation and Fast Link Pulse Timing Parameters..................................52  
MDIO Timing Parameters ...................................................................................53  
Power-Up Timing Parameters............................................................................54  
RESET Pulse Width and Recovery Timing Parameters ....................................54  
Register Set ........................................................................................................55  
Register Bit Map..................................................................................................56  
Control Register (Address 0)...............................................................................58  
MII Status Register #1 (Address 1).....................................................................58  
PHY Identification Register 1 (Address 2)...........................................................59  
PHY Identification Register 2 (Address 3)...........................................................60  
Auto Negotiation Advertisement Register (Address 4)........................................61  
Auto Negotiation Link Partner Base Page Ability Register (Address 5)..............62  
Auto Negotiation Expansion (Address 6) ............................................................63  
Auto Negotiation Next Page Transmit Register (Address 7)...............................63  
Auto Negotiation Link Partner Next Page Receive Register (Address 8) ...........64  
Configuration Register (Address 16, Hex 10) .....................................................64  
Status Register #2 (Address 17).........................................................................65  
Interrupt Enable Register (Address 18)...............................................................66  
Interrupt Status Register (Address 19, Hex 13) ..................................................66  
LED Configuration Register (Address 20, Hex 14) .............................................68  
Transmit Control Register #2 (Address 30).........................................................69  
6
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Revision History  
Revision  
Date  
Description  
002  
January 2001  
Clock Requirements: Modified language under Clock Requirements heading.  
I/O Characteristics REFCLK (table): Changed values for Input Clock Duty  
Cycle under Min from 40 to 35 and under Max from 60 to 65.  
Datasheet  
7
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 1. LXT972A Block Diagram  
RESET  
VCC  
Pwr Supply  
GND  
PWRDWN  
Management /  
Mode Select  
Logic  
ADDR0  
MDIO  
MDC  
MDINT  
MDDIS  
Register Set  
REFCLK  
Clock  
Generator  
TxSLEW<1:0>  
+
-
Manchester  
Encoder  
TX_EN  
TXD<3:0>  
TX_ER  
10  
TP  
Driver  
OSP  
Pulse  
TPOP  
TPON  
Parallel/Serial  
Converter  
Scrambler  
& Encoder  
100  
Shaper  
TP Out  
JTAG  
TX_CLK  
Auto  
Negotiation  
TDI,  
Register  
Set  
TDO,  
TMS,  
TCK,  
TRST  
LED/CFG<3:1>  
COL  
OSP™  
Adaptive EQ with  
Baseline Wander  
Cancellation  
Collision  
Detect  
+
-
Media  
Select  
Clock  
Generator  
100TX  
RX_CLK  
RXD<3:0>  
RXDV  
TPIP  
TPIN  
Manchester  
Decoder  
Serial-to-  
Parallel  
TP In  
10  
OSP  
Slicer  
Converter  
Decoder &  
Descrambler  
Carrier Sense  
100  
CRS  
+
-
Data Valid  
Error Detect  
10BT  
RX_ER  
Datasheet  
9
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
1.0  
Pin Assignments  
Figure 2. LXT972A 64-Pin LQFP Assignments  
48 RXD0  
1
REFCLK/XI  
XO  
RXD1  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
RXD2  
3
MDDIS  
RESET  
TXSLEW0  
TXSLEW1  
GND  
RXD3  
4
N/C  
5
MDC  
6
MDIO  
7
GND  
8
VCCIO  
N/C  
Part # LXT972A XX  
LOT # XXXXXX  
FPO # XXXXXXXX  
Rev #  
VCCIO  
PWRDWN  
LED/CFG1  
LED/CFG2  
LED/CFG3  
TEST1  
TEST0  
PAUSE  
9
10  
11  
12  
13  
14  
15  
16  
N/C  
GND  
ADDR0  
GND  
GND  
GND  
GND  
Package Topside Markings  
Marking  
Definition  
Part #  
LXT972A is the unique identifier for this product family.  
Identifies the particular silicon stepping(Refer to Specification Update for additional stepping  
information.)  
Rev #  
Lot #  
Identifies the batch.  
FPO #  
Identifies the Finish Process Order.  
10  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 1. LQFP Numeric Pin List  
Reference for  
Full Description  
Pin  
Symbol  
Type  
1
REFCLK/XI  
XO  
Input  
Table 4 on page 14  
Table 4 on page 14  
Table 2 on page 13  
Table 4 on page 14  
Table 4 on page 14  
Table 4 on page 14  
Table 5 on page 15  
Table 5 on page 15  
Table 4 on page 14  
Table 4 on page 14  
Table 5 on page 15  
Table 4 on page 14  
Table 5 on page 15  
Table 5 on page 15  
Table 5 on page 15  
Table 5 on page 15  
2
Output  
3
MDDIS  
RESET  
TxSLEW0  
TxSLEW1  
GND  
Input  
4
Input  
5
Input  
6
Input  
7
8
VCCIO  
N/C  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
N/C  
GND  
ADDR0  
GND  
Input  
GND  
GND  
GND  
RBIAS  
GND  
Analog Input Table 4 on page 14  
Output  
Output  
Table 5 on page 15  
Table 3 on page 14  
Table 3 on page 14  
Table 5 on page 15  
Table 5 on page 15  
Table 3 on page 14  
Table 3 on page 14  
Table 5 on page 15  
Table 5 on page 15  
Table 6 on page 15  
Table 6 on page 15  
Table 6 on page 15  
Table 6 on page 15  
Table 6 on page 15  
Table 5 on page 15  
Table 4 on page 14  
Table 4 on page 14  
Table 4 on page 14  
Table 7 on page 15  
TPOP  
TPON  
VCCA  
VCCA  
TPIP  
Input  
Input  
TPIN  
GND  
GND  
TDI  
Input  
Output  
Input  
Input  
Input  
TDO  
TMS  
TCK  
TRST  
GND  
PAUSE  
TEST0  
TEST1  
LED/CFG3  
Input  
Input  
Input  
I/O  
Datasheet  
11  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 1. LQFP Numeric Pin List (Continued)  
Reference for  
Full Description  
Pin  
Symbol  
Type  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
LED/CFG2  
LED/CFG1  
PWRDWN  
VCCIO  
GND  
I/O  
I/O  
Table 7 on page 15  
Table 7 on page 15  
Table 4 on page 14  
Table 5 on page 15  
Table 5 on page 15  
Table 2 on page 13  
Table 2 on page 13  
Table 4 on page 14  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 5 on page 15  
Table 5 on page 15  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 2 on page 13  
Table 5 on page 15  
Table 2 on page 13  
Table 2 on page 13  
Input  
MDIO  
I/O  
MDC  
Input  
N/C  
RXD3  
Output  
Output  
Output  
Output  
Output  
RXD2  
RXD1  
RXD0  
RX_DV  
GND  
VCCD  
RX_CLK  
RX_ER  
TX_ER  
TX_CLK  
TX_EN  
TXD0  
Output  
Output  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
TXD1  
TXD2  
TXD3  
GND  
COL  
Output  
Output  
CRS  
MDINT  
Open Drain Table 2 on page 13  
12  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
2.0  
Signal Descriptions  
Table 2. LXT972A MII Signal Descriptions  
LQFP  
Pin#  
Symbol  
Type1  
Signal Description  
Data Interface Pins  
60  
59  
58  
57  
TXD3  
Transmit Data. TXD is a bundle of parallel data signals that are driven by the MAC.  
TXD<3:0> shall transition synchronously with respect to the TX_CLK. TXD<0> is the least  
significant bit.  
TXD2  
TXD1  
TXD0  
I
Transmit Enable. The MAC asserts this signal when it drives valid data on TXD. This  
signal must be synchronized to TX_CLK.  
56  
55  
TX_EN  
I
Transmit Clock. TX_CLK is sourced by the PHY in both 10 and 100Mbps operations. 2.5  
MHz for 10Mbps operation, 25 MHz for 100Mbps operation.  
TX_CLK  
O
45  
46  
47  
48  
RXD3  
RXD2  
RXD1  
RXD0  
Receive Data. RXD is a bundle of parallel signals that transition synchronously with  
respect to the RX_CLK. RXD<0> is the least significant bit.  
O
Receive Data Valid. The LXT972A asserts this signal when it drives valid data on RXD.  
This output is synchronous to RX_CLK.  
49  
53  
54  
52  
RX_DV  
RX_ER  
TX_ER  
RX_CLK  
O
O
I
Receive Error. Signals a receive error condition has occurred. This output is synchronous  
to RX_CLK.  
Transmit Error. Signals a transmit error condition. This signal must be synchronized to  
TX_CLK.  
Receive Clock. 25 MHz for 100Mbps operation, 2.5 MHz for 10Mbps operation. Refer to  
Clock Requirementson page 20 in the Functional Description section.  
O
Collision Detected. The LXT972A asserts this output when a collision is detected. This  
output remains High for the duration of the collision. This signal is asynchronous and is  
inactive during full-duplex operation.  
62  
63  
COL  
CRS  
O
O
Carrier Sense. During half-duplex operation (bit 0.8 = 0), the LXT972A asserts this output  
when either transmitting or receiving data packets. During full-duplex operation (bit 0.8 = 1),  
CRS is asserted during receive. CRS assertion is asynchronous with respect to RX_CLK.  
CRS is de-asserted on loss of carrier, synchronous to RX_CLK.  
MII Control Interface Pins  
Management Disable. When MDDIS is High, the MDIO is disabled from read and write  
operations.  
3
MDDIS  
I
When MDDIS is Low at power up or reset, the Hardware Control Interface pins control only  
the initial or defaultvalues of their respective register bits. After the power-up/reset cycle  
is complete, bit control reverts to the MDIO serial channel.  
Management Data Clock. Clock for the MDIO serial data channel. Maximum frequency is  
8 MHz.  
43  
42  
64  
MDC  
I
Management Data Input/Output. Bidirectional serial data channel for PHY/STA  
communication.  
MDIO  
MDINT  
I/O  
OD  
Management Data Interrupt. When bit 18.1 = 1, an active Low output on this pin indicates  
status change. Interrupt is cleared by reading Register 19.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain.  
Datasheet  
13  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 3. LXT972A Network Interface Signal Descriptions  
LQFP  
Pin#  
Symbol  
Type1  
Signal Description  
Twisted-Pair Outputs, Positive & Negative.  
19  
20  
TPOP  
O
During 100BASE-TX or 10BASE-T operation, TPOP/N pins drive 802.3 compliant  
pulses onto the line.  
TPON  
Twisted-Pair Inputs, Positive & Negative.  
23  
24  
TPIP  
TPIN  
I
During 100BASE-TX or 10BASE-T operation, TPIP/N pins receive differential  
100BASE-TX or 10BASE-T signals from the line.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
Table 4. LXT972A Miscellaneous Signal Descriptions  
LQFP  
Pin#  
Symbol  
Type1  
Signal Description  
Tx Output Slew Controls 0 and 1. These pins select the TX output slew rate (rise  
and fall time) as follows:  
TxSLEW1  
TxSLEW0  
Slew Rate (Rise and Fall Time)  
5
6
TxSLEW0  
TxSLEW1  
0
0
1
1
0
1
0
1
2.5 ns  
3.1 ns  
3.7 ns  
4.3 ns  
I
Reset. This active Low input is ORed with the control register Reset bit (0.15). The  
LXT972A reset cycle is extended to 258 µs (nominal) after reset is deasserted.  
4
RESET  
ADDR0  
RBIAS  
I
I
12  
17  
Address0. Sets device address.  
Bias. This pin provides bias current for the internal circuitry. Must be tied to ground  
through a 22.1 k, 1% resistor.  
AI  
Pause. When set High, the LXT972A advertises Pause capabilities during auto  
negotiation.  
33  
PAUSE  
I
34  
35  
39  
TEST0  
I
I
I
Test. Tie Low.  
TEST1  
Test. Tie Low.  
PWRDWN  
Power Down. When set High, this pin puts the LXT972A in a power-down mode.  
Crystal Input and Output. A 25 MHz crystal oscillator circuit can be connected  
across XI and XO. A clock can also be used at XI. Refer to Functional Description for  
detailed clock requirements.  
1
2
REFCLK/XI  
XO  
I
O
9, 10,  
44  
N/C  
-
No Connection. These pins are not used and should not be terminated.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
14  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 5. LXT972A Power Supply Signal Descriptions  
LQFP  
Pin#  
Symbol  
VCCD  
Type  
Signal Description  
Digital Power. Requires a 3.3V power supply.  
51  
-
7, 11, 13,  
14, 15,  
16, 18,  
25, 26,  
32, 41,  
50, 61  
GND  
-
Ground.  
MII Power. Requires either a 3.3V or a 2.5V supply. Must be supplied from the same  
source used to power the MAC on the other side of the MII.  
8, 40  
VCCIO  
VCCA  
-
-
21, 22  
Analog Power. Requires a 3.3V power supply.  
Table 6. LXT972A JTAG Test Signal Descriptions  
LQFP  
Pin#  
Symbol  
TDI2  
Type1  
Signal Description  
27  
28  
29  
30  
31  
I
O
I
Test Data Input. Test data sampled with respect to the rising edge of TCK.  
Test Data Output. Test data driven with respect to the falling edge of TCK.  
Test Mode Select.  
TDO2  
TMS2  
TCK2  
TRST2  
I
Test Clock. Test clock input sourced by ATE.  
I
Test Reset. Test reset input sourced by ATE.  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain.  
2. If JTAG port is not used, these pins do not need to be terminated.  
Table 7. LXT972A LED Signal Descriptions  
LQFP  
Pin#  
Symbol  
Type1  
Signal Description  
LED Drivers 1 -3. These pins drive LED indicators. Each LED can display one of  
several available status conditions as selected by the LED Configuration Register  
(refer to Table 50 on page 68 for details).  
38  
37  
36  
LED/CFG1  
LED/CFG2  
LED/CFG3  
I/O  
Configuration Inputs 1-3. These pins also provide initial configuration settings (refer  
to Table 8 on page 24 for details).  
1. Type Column Coding: I = Input, O = Output, A = Analog, OD = Open Drain  
Datasheet  
15  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
3.0  
Functional Description  
3.1  
Introduction  
The LXT972A is a single-port Fast Ethernet 10/100 Transceiver that supports 10Mbps and  
100Mbps networks. It complies with all applicable requirements of IEEE 802.3. The LXT972A  
can directly drive either a 100BASE-TX line (up to 140 meters) or a 10BASE-T line (up to 185  
meters).  
3.1.1  
Comprehensive Functionality  
The LXT972A provides a standard Media Independent Interface (MII) for 10/100 MACs. The  
LXT972A performs all functions of the Physical Coding Sublayer (PCS) and Physical Media  
Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X standard. This device also  
performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX  
connections.  
On power-up, the LXT972A reads its configuration pins to check for forced operation settings. If  
not configured for forced operation, it uses auto-negotiation/parallel detection to automatically  
determine line operating conditions. If the PHY device on the other side of the link supports auto-  
negotiation, the LXT972A auto-negotiates with it using Fast Link Pulse (FLP) Bursts. If the PHY  
partner does not support auto-negotiation, the LXT972A automatically detects the presence of  
either link pulses (10Mbps PHY) or Idle symbols (100Mbps PHY) and set its operating conditions  
accordingly.  
The LXT972A provides half-duplex and full-duplex operation at 100Mbps and 10Mbps.  
3.1.2  
OSPArchitecture  
Intels LXT972A incorporates high-efficiency Optimal Signal Processing™ design techniques,  
combining the best properties of digital and analog signal processing to produce a truly optimal  
device.  
The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by  
as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques  
in the receive equalizer avoids the quantization noise and calculation truncation errors found in  
traditional DSP-based receivers (typically complex DSP engines with A/D converters). This  
results in improved receiver noise and cross-talk performance.  
The OSP signal processing scheme also requires substantially less computational logic than  
traditional DSP-based designs. This lowers power consumption and also reduces the logic  
switching noise generated by DSP engines. This logic switching noise can be a considerable  
source of EMI generated on the devices power supplies.  
The OSP-based LXT972A provides improved data recovery, EMI performance and low power  
consumption.  
16  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.2  
Network Media / Protocol Support  
The LXT972A supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair.  
3.2.1  
10/100 Network Interface  
The network interface port consists of two differential signal pairs. Refer to Table 3 for specific pin  
assignments.  
The LXT972A output drivers generate either 100BASE-TX or 10BASE-T. When not transmitting  
data, the LXT972A generates 802.3-compliant link pulses or idle code. Input signals are decoded  
either as a 100BASE-TX or 10BASE-T input, depending on the mode selected. Auto-negotiation/  
parallel detection or manual control is used to determine the speed of this interface.  
3.2.1.1  
Twisted-Pair Interface  
The LXT972A supports either 100BASE-TX or 10BASE-T connections over 100Ω, Category 5,  
Unshielded Twisted Pair (UTP) cable. When operating at 100Mbps, the LXT972A continuously  
transmits and receives MLT3 symbols. When not transmitting data, the LXT972A generates  
IDLEsymbols.  
During 10Mbps operation, Manchester-encoded data is exchanged. When no data is being  
exchanged, the line is left in an idle state. Link pulses are transmitted periodically to keep the link  
up.  
Only a transformer, RJ-45 connector, load resistor, and bypass capacitors are required to complete  
this interface. On the transmit side, the LXT972A has an active internal termination and does not  
require external termination resistors. Intel's patented waveshaping technology shapes the outgoing  
signal to help reduce the need for external EMI filters. Four slew rate settings (refer to Table 4 on  
page 14) allow the designer to match the output waveform to the magnetic characteristics. On the  
receive side, the internal impedance is high enough that it has no practical effect on the external  
termination circuit.  
3.2.1.2  
Fault Detection and Reporting  
The LXT972A supports one fault detection and reporting mechanism. Remote Faultrefers to a  
MAC-to-MAC communication function that is essentially transparent to PHY layer devices. It is  
used only during Auto-Negotiation, and therefore is applicable only to twisted-pair links. Far-End  
Fault, on the other hand, is an optional PMA-layer function that may be embedded within PHY  
devices. The LXT972A supports only the Remote Fault Function, explained in the paragraph that  
follows.  
Remote Fault  
Bit 4.13 in the Auto-Negotiation Advertisement Register is reserved for Remote Fault indications.  
It is typically used when re-starting the auto-negotiation sequence to indicate to the link partner  
that the link is down because the advertising device detected a fault.  
Datasheet  
17  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
When the LXT972A receives a Remote Fault indication from its partner during auto-negotiation it:  
sets bit 5.13 in the Link Partner Base Page Ability Register, and  
sets the Remote Fault bit 1.4 in the MII Status Register to pass this information to the local  
controller.  
3.2.2  
MII Data Interface  
The LXT972A supports a standard Media Independent Interface (MII). The MII consists of a data  
interface and a management interface. The MII Data Interface passes data between the LXT972A  
and a Media Access Controller (MAC). Separate parallel buses are provided for transmit and  
receive. This interface operates at either 10Mbps or 100Mbps. The speed is set automatically, once  
the operating conditions of the network link have been determined. Refer to MII Operationon  
page 25 for additional details.  
3.2.3  
Configuration Management Interface  
The LXT972A provides both an MDIO interface and a Hardware Control Interface for device  
configuration and management.  
3.2.3.1  
MDIO Management Interface  
The LXT972A supports the IEEE 802.3 MII Management Interface also known as the  
Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to  
monitor and control the state of the LXT972A. The MDIO interface consists of a physical  
connection, a specific protocol that runs across the connection, and an internal set of addressable  
registers.  
Some registers are required and their functions are defined by the IEEE 802.3 standard. The  
LXT972A also supports additional registers for expanded functionality. The LXT972A supports  
multiple internal registers, each of which is 16 bits wide. Specific register bits are referenced using  
an X.Ynotation, where X is the register number (0-31) and Y is the bit number (0-15).  
The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this  
interface is controlled by the MDDIS input pin. When MDDIS is High, the MDIO read and write  
operations are disabled and the Hardware Control Interface provides primary configuration control.  
When MDDIS is Low, the MDIO port is enabled for both read and write operations and the  
Hardware Control Interface is not used.  
MDIO Addressing  
The protocol allows one controller to communicate between two LXT972A chips. Pin ADDR0 is  
set high or low to determine the chip address.  
18  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
MDIO Frame Structure  
The physical interface consists of a data line (MDIO) and clock line (MDC). The frame structure is  
shown in Figure 3 and Figure 4 (read and write). MDIO Interface timing is shown in Table 32 on  
page 53.  
Figure 3. Management Interface Read Frame Structure  
MDC  
MDIO  
(Read)  
High Z  
D0  
A4  
A3  
A0  
R4  
R3  
R0  
D14  
D15  
D1  
Z
0
32 "1"s  
0
1
1
0
Turn  
Around  
Data  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Write  
Read  
Figure 4. Management Interface Write Frame Structure  
MDC  
MDIO  
(Write)  
A4  
A3  
A0  
R4  
R3  
R0  
D15  
D14  
D1  
D0  
32 "1"s  
0
1
0
1
0
1
Turn  
Around  
Idle  
Preamble  
ST  
Op Code  
PHY Address  
Register Address  
Data  
Idle  
Write  
3.2.3.2  
MII Interrupts  
The LXT972A provides a single interrupt pin (MDINT). Interrupt logic is shown in Figure 5. The  
LXT972A also provides two dedicated interrupt registers. Register 18 provides interrupt enable  
and mask functions and Register 19 provides interrupt status. Setting bit 18.1 = 1, enables the  
device to request interrupt via the MDINT pin. An active Low on this pin indicates a status change  
on the LXT972A. Interrupts may be caused by four conditions:  
Auto-negotiation complete  
Speed status change  
Duplex status change  
Link status change  
3.2.3.3  
Hardware Control Interface  
The LXT972A provides a Hardware Control Interface for applications where the MDIO is not  
desired. The Hardware Control Interface uses the three LED driver pins to set device configuration.  
Refer to Section 3.4.5, Hardware Configuration Settingson page 23 for additional details.  
Datasheet  
19  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 5. Interrupt Logic  
Event X Mask Reg  
AND  
Event X Status Reg  
OR  
Interrupt Pin (MDINT)  
.
.
NAND  
.
Per Event  
Force Interrupt  
Interrupt Enable  
1. Interrupt (Event) Status Register is cleared on read.  
3.3  
Operating Requirements  
3.3.1  
Power Requirements  
The LXT972A requires three power supply inputs (VCCD, VCCA, and VCCIO). The digital and  
analog circuits require 3.3V supplies (VCCD and VCCA). These inputs may be supplied from a  
single source. Each supply input must be decoupled to ground.  
An additional supply may be used for the MII (VCCIO). The supply may be either +2.5V or  
+3.3V. Also, the inputs on the MII interface are tolerant to 5V signals from the controller on the  
other side of the MII interface. Refer to Table 19 on page 45 for MII I/O characteristics.  
As a matter of good practice, these supplies should be as clean as possible.  
3.3.2  
Clock Requirements  
3.3.2.1  
External Crystal/Oscillator  
The LXT972A requires a reference clock input that is used to generate transmit signals and recover  
receive signals. It may be provided by either of two methods: by connecting a crystal across the  
oscillator pins (XI and XO), or by connecting an external clock source to pin XI. The connection of  
a clock source to the XI pin requires the XO pin to be left open. A crystal-based clock is  
recommended over a derived clock (i.e., PLL-based) to minimize transmit jitter. Refer to the  
LXT971A/972A Design and Layout Guide for a list of recommended clock sources.  
A crystal is typically used in NIC applications. An external 25 MHz clock source, rather than a  
crystal, is frequently used in switch applications. Refer to Table 20 on page 45 for clock timing  
requirements  
3.3.2.2  
MDIO Clock  
The MII management channel (MDIO) also requires an external clock. The managed data clock  
(MDC) speed is a maximum of 8 MHz. Refer to Table 32 on page 53 for details.  
20  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.4  
Initialization  
When the LXT972A is first powered on, reset, or encounters a link failure state, it checks the  
MDIO register configuration bits to determine the line speed and operating conditions to use for  
the network link. The configuration bits may be set by the Hardware Control or MDIO interface as  
shown in Figure 6.  
3.4.1  
3.4.2  
MDIO Control Mode  
In the MDIO Control mode, the LXT972A reads the Hardware Control Interface pins to set the  
initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to  
the MDIO interface.  
Hardware Control Mode  
In the Hardware Control Mode, LXT972A disables direct write operations to the MDIO registers  
via the MDIO Interface. On power-up or hardware reset the LXT972A reads the Hardware Control  
Interface pins and sets the MDIO registers accordingly.  
The following modes are available using either Hardware Control or MDIO Control:  
Force network link operation to:  
100TX, Full-Duplex.  
100TX, Half-Duplex.  
10BASE-T, Full-Duplex.  
10BASE-T, Half-Duplex.  
Allow auto-negotiation / parallel-detection.  
When the network link is forced to a specific configuration, the LXT972A immediately begins  
operating the network interface as commanded. When auto-negotiation is enabled, the LXT972A  
begins the auto-negotiation / parallel-detection operation.  
Datasheet  
21  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 6. Initialization Sequence  
Power-up or Reset  
Read H/W Control  
Interface  
Initialize MDIO Registers  
MDIO Control  
Mode  
Hardware Control  
Mode  
MDDIS Voltage  
Level?  
Low  
High  
MDIO Controlled Operation  
(MDIO Writes Enabled)  
Disable MDIO Read and  
Write Operations  
No  
Software  
Reset?  
Yes  
Reset MDIO Registers to  
values read at H/W  
Control Interface at last  
Hardware Reset  
3.4.3  
Reduced Power Modes  
The LXT972A offers two power-down modes.  
3.4.3.1  
Hardware Power Down  
The hardware power-down mode is controlled by the PWRDWN pin. When PWRDWN is High,  
the following conditions are true:  
The LXT972A network port and clock are shut down.  
All outputs are tri-stated.  
All weak pad pull-up and pull-down resistors are disabled.  
The MDIO registers are not accessible.  
3.4.3.2  
Software Power Down  
Software power-down control is provided by bit 0.11 in the Control Register (refer to Table 37 on  
page 58). During soft power-down, the following conditions are true:  
The network port is shut down.  
The MDIO registers remain accessible.  
22  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.4.4  
Reset  
The LXT972A provides both hardware and software resets. Configuration control of Auto-  
Negotiation, speed and duplex mode selection is handled differently for each. During a hardware  
reset, Auto-Negotiation and Speed are read in from pins (refer to Table 8 on page 24 for pin  
settings and to Table 37 on page 58 for register bit definitions).  
During a software reset (0.15 = 1), these bit settings are not re-read from the pins. They revert back  
to the values that were read in during the last hardware reset. Therefore, any changes to pin values  
made since the last hardware reset are not detected during a software reset.  
During a hardware reset, register information is unavailable for 1 ms after de-assertion of the reset.  
During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be  
polled to see when the part has completed reset (0.15 = 0).  
3.4.5  
Hardware Configuration Settings  
The LXT972A provides a hardware option to set the initial device configuration. The hardware  
option uses the three LED driver pins. This provides three control bits, as listed in Table 8. The  
LED drivers can operate as either open-drain or open-source circuits as shown in Figure 7.  
.
Figure 7. Hardware Configuration Settings  
3.3V  
Configuration Bit = 1  
LED/CFG Pin  
LED/CFG Pin  
Configuration Bit = 0  
1. The LED/CFG pins automatically  
adjust their polarity upon power-  
up or reset.  
Datasheet  
23  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 8. Hardware Configuration Settings  
Resulting Register Bit Values  
Control Register Auto-Neg Advertisement  
LED/CFGn  
Desired Mode  
Pin Settings1  
Speed  
(Mbps)  
AutoNeg  
0.12  
Speed  
0.13  
FD  
0.8  
100FD  
4.8  
100TX  
4.7  
10FD  
4.6  
10T  
4.5  
Auto-Neg  
Duplex  
1
2
3
Half  
Full  
Half  
Full  
Half  
Full  
Low Low Low  
Low Low High  
Low High Low  
Low High High  
High Low Low  
High Low High  
0
1
0
1
0
1
0
10  
0
1
N/A  
Auto-Negotiation Advertisement  
Disabled  
Enabled  
0
100  
0
1
0
1
1
1
0
0
0
0
0
1
100 Only  
1
1
Half Only High High Low  
10/100  
Full or  
High High High  
Half  
1
1
1
1
1
1. Refer to Table 7 on page 15 for LED/CFG pin assignments.  
3.5  
Establishing Link  
See Figure 8 for an overview of link establishment.  
3.5.1  
Auto-Negotiation  
If not configured for forced operation, the LXT972A attempts to auto-negotiate with its link  
partner by sending Fast Link Pulse (FLP) bursts. Each burst consists of up to 33 link pulses spaced  
62.5 µs apart. Odd link pulses (clock pulses) are always present. Even link pulses (data pulses) may  
be present or absent to indicate a 1or a 0. Each FLP burst exchanges 16 bits of data, which are  
referred to as a link code word. All devices that support auto-negotiation must implement the  
Base Pagedefined by IEEE 802.3 (registers 4 and 5). LXT972A also supports the optional Next  
Pagefunction as described in Table 44 and Table 45 (registers 7 and 8).  
3.5.1.1  
3.5.1.2  
Base Page Exchange  
By exchanging Base Pages, the LXT972A and its link partner communicate their capabilities to  
each other. Both sides must receive at least three identical base pages for negotiation to continue.  
Each side identifies the highest common capabilities that both sides support and configures itself  
accordingly.  
Next Page Exchange  
Additional information, above that required by base page exchange, is also sent via Next Pages.  
The LXT972A fully supports the IEEE 802.3ab method of negotiation via Next Page exchange.  
24  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.5.1.3  
Controlling Auto-Negotiation  
When auto-negotiation is controlled by software, the following steps are recommended:  
After power-up, power-down, or reset, the power-down recovery time, as specified in Table 34  
on page 54, must be exhausted before proceeding.  
Set the auto-negotiation advertisement register bits.  
Enable auto-negotiation (set MDIO bit 0.12 = 1).  
3.5.2  
Parallel Detection  
For the parallel detection feature of auto-negotiation, the LXT972A also monitors for 10BASE-T  
Normal Link Pulses (NLP) and 100BASE-TX Idle symbols. If either is detected, the device  
automatically reverts to the corresponding operating mode. Parallel detection allows the LXT972A  
to communicate with devices that do not support auto-negotiation.  
Figure 8. Link Establishment Overview  
Power-Up, Reset,  
or Link Failure  
Start  
Disable  
Auto-Negotiation  
Enable  
0.12 = 0  
0.12 = 1  
Auto-Neg/Parallel Detection  
Check Value  
0.12  
Go To Forced  
Settings  
Attempt Auto-  
Negotiation  
Listen for 100TX  
Idle Symbols  
Listen for 10T  
Link Pulses  
YES  
NO  
Done  
Link Up?  
3.6  
MII Operation  
The LXT972A device implements the Media Independent Interface (MII) as defined in the IEEE  
802.3 standard. Separate channels are provided for transmitting data from the MAC to the  
LXT972A (TXD), and for passing data received from the line (RXD) to the MAC. Each channel  
has its own clock, data bus, and control signals. Nine signals are used to pass received data to the  
MAC: RXD<3:0>, RX_CLK, RX_DV, RX_ER, COL, and CRS. Seven signals are used to transmit  
data from the MAC: TXD<3:0>, TX_CLK, TX_EN, and TX_ER.  
Datasheet  
25  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
The LXT972A supplies both clock signals as well as separate outputs for carrier sense and  
collision. Data transmission across the MII is normally implemented in 4-bit-wide nibbles.  
3.6.1  
MII Clocks  
The LXT972A is the master clock source for data transmission and supplies both MII clocks  
(RX_CLK and TX_CLK). It automatically sets the clock speeds to match link conditions. When  
the link is operating at 100Mbps, the clocks are set to 25 MHz. When the link is operating at  
10Mbps, the clocks are set to 2.5 MHz. Figure 9 through Figure 11 show the clock cycles for each  
mode. The transmit data and control signals must always be synchronized to TX_CLK by the  
MAC. The LXT972A samples these signals on the rising edge of TX_CLK.  
3.6.2  
3.6.3  
Transmit Enable  
The MAC must assert TX_EN the same time as the first nibble of preamble, and de-assert TX_EN  
after the last bit of the packet.  
Receive Data Valid  
The LXT972A asserts RX_DV when it receives a valid packet. Timing changes depend on line  
operating speed:  
For 100TX links, RX_DV is asserted from the first nibble of preamble to the last nibble of the  
data packet.  
For 10BT links, the entire preamble is truncated. RX_DV is asserted with the first nibble of the  
Start of Frame Delimiter (SFD) 5Dand remains asserted until the end of the packet.  
3.6.4  
Carrier Sense  
Carrier sense (CRS) is an asynchronous output. It is always generated when a packet is received  
from the line and in half-duplex when a packet is transmitted.  
Carrier sense is not generated when a packet is transmitted and in full-duplex mode. Table 9  
summarizes the conditions for assertion of carrier sense, collision, and data loopback signals.  
3.6.5  
3.6.6  
Error Signals  
When LXT972A is in 100Mbps mode and receives an invalid symbol from the network, it asserts  
RX_ER and drives 1110on the RXD pins.  
When the MAC asserts TX_ER, the LXT972A drives Hsymbols out on the TPOP/N pins.  
Collision  
The LXT972A asserts its collision signal, asynchronously to any clock, whenever the line state is  
half-duplex and the transmitter and receiver are active at the same time. Table 9 summarizes the  
conditions for assertion of carrier sense, collision, and data loopback signals.  
26  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 9. 10BASE-T Clocking  
2.5 MHz during Auto-Negotiation and 10BASE-T Data & Idle  
2.5 MHz during Auto-Negotiation and 10BASE-T Data & Idle  
Constant 25 MHz  
TX_CLK  
(Sourced by LXT972)  
RX_CLK  
(Sourced by LXT972)  
XI  
Figure 10. 100BASE-X Clocking  
25 MHz once 100BASE-X  
Link Established  
2.5 MHz during Auto-Negotiation  
TX_CLK  
(Sourced by LXT972)  
25 MHz once 100BASE-X  
Link Established  
2.5 MHz during Auto-Negotiation  
RX_CLK  
(Sourced by LXT972)  
Constant 25 MHz  
XI  
Figure 11. Link Down Clock Transition  
Link Down condition/Auto Negotiate Enabled  
RX_CLK  
TX_CLK  
2.5MHz Clock  
Any Clock  
Clock transition time will not exceed 2X the  
nominal clock period: (10Mbps = 2.5 MHz; 100Mbps = 25 MHz)  
Datasheet  
27  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
3.6.7  
Loopback  
The LXT972A provides two loopback functions, operational and test (see Table 9). Loopback  
paths are shown in Figure 12.  
3.6.7.1  
Operational Loopback  
Operational loopback is provided for 10Mbps half-duplex links when bit 16.8 = 0. Data transmitted  
by the MAC (TXData) is looped back on the receive side of the MII (RXData). Operational  
loopback is not provided for 100Mbps links, full-duplex links, or when 16.8 = 1.  
3.6.7.2  
Test Loopback  
A test loopback function is provided for diagnostic testing of the LXT972A. During test loopback,  
the twisted-pair interface is disabled. Data transmitted by the MAC is internally looped back by the  
LXT972A and returned to the MAC.  
Test loopback is available for both 100TX and 10T operation. Test loopback is enabled by setting  
bits as follows:  
0.14 = 1  
0.8 = 1 (full-duplex)  
0.12 = 0 (disable auto-negotiation).  
Figure 12. Loopback Paths  
LXT972A  
10T  
Loopback  
Digital  
Block  
100X  
Loopback  
Analog  
Block  
MII  
TX Driver  
Table 9. Carrier Sense, Loopback, and Collision Conditions  
Test1  
Loopback  
Operational  
Loopback  
Speed  
Duplex Condition  
Carrier Sense  
Collision  
Full-Duplex  
Receive Only  
Transmit or Receive  
Receive Only  
Yes  
No  
No  
No  
No  
Yes  
No  
None  
100Mbps  
Half-Duplex  
Transmit and Receive  
None  
Full-Duplex  
Yes  
Yes  
No  
10Mbps  
Half-Duplex, 16.8 = 0  
Half-Duplex, 16.8 = 1  
Transmit or Receive  
Transmit or Receive  
Transmit and Receive  
Transmit and Receive  
1. Test Loopback is enabled when 0.14 = 1  
28  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.7  
100Mbps Operation  
3.7.1  
100BASE-X Network Operations  
During 100BASE-X operation, the LXT972A transmits and receives 5-bit symbols across the  
network link. Figure 13 shows the structure of a standard frame packet. When the MAC is not  
actively transmitting data, the LXT972A sends out Idle symbols on the line.  
In 100TX mode, the LXT972A scrambles and transmits the data to the network using MLT-3 line  
code (Figure 14 on page 29). MLT-3 signals received from the network are descrambled, decoded,  
and sent across the MII to the MAC.  
Figure 13. 100BASE-X Frame Format  
64-Bit Preamble  
(8 Octets)  
Destination and Source  
Address (6 Octets each)  
Packet Length  
(2 Octets)  
Data Field  
(Pad to minimum packet size)  
Frame Check Field InterFrame Gap / Idle Code  
(4 Octets)  
(> 12 Octets)  
CRC  
IFG  
P0 P1 P6 SFD DA DA SA SA L1  
L2 D0 D1 Dn  
I0  
Replaced by  
/T/R/ code-groups  
End-of-Stream Delimiter (ESD)  
Replaced by  
Start-of-Frame  
Delimiter (SFD)  
/J/K/ code-groups  
Start-of-Stream  
Delimiter (SSD)  
.
Figure 14. 100BASE-TX Data Path  
Standard Data Flow  
+1  
Parallel  
D0  
to  
0
0
0
Serial  
Scramble  
D1  
-1  
4B/5B  
MLT3  
D0 D1 D2 D3  
S0 S1 S2 S3 S4  
De-  
Scramble  
D2  
D3  
Transition = 1.  
No Transition = 0.  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Serial  
to  
Parallel  
Scrambler Bypass Data Flow  
S0  
+1  
Parallel  
to  
Serial  
S1  
0
0
0
-1  
MLT3  
S2  
S0 S1 S2 S3 S4  
Transition = 1.  
No Transition = 0.  
Serial  
to  
S3  
All transitions must follow  
pattern: 0, +1, 0, -1, 0, +1...  
Parallel  
S4  
Datasheet  
29  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
As shown in Figure 13 on page 29, the MAC starts each transmission with a preamble pattern. As  
soon as the LXT972A detects the start of preamble, it transmits a Start-of-Stream Delimiter (SSD,  
symbols J and K) to the network. It then encodes and transmits the rest of the packet, including the  
balance of the preamble, the SFD, packet data, and CRC.  
Once the packet ends, the LXT972A transmits the End-of Stream-Delimiter (ESD, symbols T and  
R) and then returns to transmitting Idle symbols. 4B/5B coding is shown in Table 10 on page 33.  
Figure 15 shows normal reception with no errors. When the LXT972A receives invalid symbols  
from the line, it asserts RX_ER as shown in Figure 16.  
Figure 15. 100BASE-TX Reception with no Errors  
RX_CLK  
RX_DV  
preamble SFD SFD DA DA DA DA  
CRC  
CRC  
CRC  
CRC  
RXD<3:0>  
RX_ER  
Figure 16. 100BASE-TX Reception with Invalid Symbol  
RX_CLK  
RX_DV  
preamble SFD SFD DA DA XX XX XX XX XX XX XX XX XX XX  
RXD<3:0>  
RX_ER  
30  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.7.2  
Collision Indication  
Figure 17 shows normal transmission. Upon detection of a collision, the COL output is asserted  
and remains asserted for the duration of the collision as shown in Figure 18.  
Figure 17. 100BASE-TX Transmission with no Errors  
TX_CLK  
TX_EN  
TXD<3:0>  
CRS  
P
R
E
A
M
B
L
E
DA DA DA DA DA DA DA DA DA  
COL  
Figure 18. 100BASE-TX Transmission with Collision  
TX_CLK  
TX_EN  
TXD<3:0>  
CRS  
P
R
E
A
M
B
L
E
JAM  
JAM  
JAM  
JAM  
COL  
3.7.3  
100BASE-X Protocol Sublayer Operations  
With respect to the 7-layer communications model, the LXT972A is a Physical Layer 1 (PHY)  
device. The LXT972A implements the Physical Coding Sublayer (PCS), Physical Medium  
Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model  
defined by the IEEE 802.3u standard. The following paragraphs discuss LXT972A operation from  
the reference model point of view.  
3.7.3.1  
PCS Sublayer  
The Physical Coding Sublayer (PCS) provides the MII interface, as well as the 4B/5B encoding/  
decoding function.  
For 100TX operation, the PCS layer provides IDLE symbols to the PMD-layer line driver as long  
as TX_EN is de-asserted.  
Datasheet  
31  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Preamble Handling  
When the MAC asserts TX_EN, the PCS substitutes a /J/K symbol pair, also known as the Start-of-  
Stream Delimiter (SSD), for the first two nibbles received across the MII. The PCS layer continues  
to encode the remaining MII data, following the coding in Table 10 on page 33, until TX_EN is de-  
asserted. It then returns to supplying IDLE symbols to the line driver.  
In the receive direction, the PCS layer performs the opposite function, substituting two preamble  
nibbles for the SSD.  
Dribble Bits  
The LXT972A handles dribbles bits in all modes. If between one through four dribble bits are  
received, the nibble is passed across the MII, padded with 1s if necessary. If between five through  
seven dribble bits are received, the second nibble is not sent onto the MII bus.  
Figure 19. Protocol Sublayers  
MII Interface  
LXT972A  
PCS  
Sublayer  
Encoder/Decoder  
Serializer/De-serializer  
PMA  
Link/Carrier Detect  
Sublayer  
Scrambler/  
De-scrambler  
PMD  
Sublayer  
100BASE-TX  
32  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 10. 4B/5B Coding  
4B Code  
Code Type  
5B Code  
4 3 2 1 0  
Name  
Interpretation  
3 2 1 0  
0 0 0 0  
0 0 0 1  
0 0 1 0  
0 0 1 1  
0 1 0 0  
0 1 0 1  
0 1 1 0  
0
1 1 1 1 0  
0 1 0 0 1  
1 0 1 0 0  
1 0 1 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 11  
1 1 0 0 0  
1 0 0 0 1  
0 1 1 0 1  
0 0 1 1 1  
0 0 1 0 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 1 0 0  
1 0 0 0 0  
1 1 0 0 1  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
Data F  
1
2
3
4
5
6
DATA  
0 1 1 1  
1 0 0 0  
7
8
1 0 0 1  
9
1 0 1 0  
A
1 0 1 1  
B
1 1 0 0  
C
1 1 0 1  
D
1 1 1 0  
E
1 1 1 1  
F
IDLE  
undefined  
0 1 0 1  
I 1  
Idle. Used as inter-stream fill code  
J 2  
Start-of-Stream Delimiter (SSD), part 1 of 2  
CONTROL  
0 1 0 1  
K 2  
Start-of-Stream Delimiter (SSD), part 2 of 2  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
undefined  
T 3  
End-of-Stream Delimiter (ESD), part 1 of 2  
R 3  
End-of-Stream Delimiter (ESD), part 2 of 2  
H 4  
Transmit Error. Used to force signaling errors  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
INVALID  
1. The /I/ (Idle) code group is sent continuously between frames.  
2. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/.  
3. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/.  
4. An /H/ (Error) code group is used to signal an error condition.  
Datasheet  
33  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
3.7.3.2  
PMA Sublayer  
Link  
In 100Mbps mode, the LXT972A establishes a link whenever the scrambler becomes locked and  
remains locked for approximately 50ms. Whenever the scrambler loses lock (receiving less than 12  
consecutive idle symbols during a 2ms window), the link are taken down. This provides a very  
robust link, essentially filtering out any small noise hits that may otherwise disrupt the link.  
Furthermore, 100M idle patterns will not bring up a 10M link.  
The LXT972A reports link failure via the MII status bits (1.2 and 17.10) and interrupt functions. If  
auto-negotiation is enabled, link failure causes the LXT972A to re-negotiate.  
Link Failure Override  
The LXT972A normally transmits data packets only if it detects the link is up. Setting bit 16.14 = 1  
overrides this function, allowing the LXT972A to transmit data packets even when the link is  
down. This feature is provided as a diagnostic tool. Note that auto-negotiation must be disabled to  
transmit data packets in the absence of link. If auto-negotiation is enabled, the LXT972A  
automatically transmits FLP bursts if the link is down.  
Carrier Sense  
For 100TX links, a start-of-stream delimiter (SSD) or /J/K symbol pair causes assertion of carrier  
sense (CRS). An end-of-stream delimiter (ESD) or /T/R symbol pair causes de-assertion of CRS.  
The PMA layer also de-asserts CRS if IDLE symbols are received without /T/R; however, in this  
case RX_ER is asserted for one clock cycle when CRS is de-asserted.  
Usage of CRS for Interframe Gap (IFG) timing is not recommended for the following reasons:  
De-assertion time for CRS is slightly longer than assertion time. This causes IFG intervals to  
appear somewhat shorter to the MAC than it actually is on the wire.  
CRS de-assertion is not aligned with TX_EN de-assertion on transmit loopbacks in half-  
duplex mode.  
Receive Data Valid  
The LXT972A asserts RX_DV to indicate that the received data maps to valid symbols. However,  
RXD outputs zeros until the received data is decoded and available for transfer to the controller.  
3.7.3.3  
Twisted-Pair PMD Sublayer  
The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and  
descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10T), as well as  
receiving, polarity correction, and baseline wander correction functions.  
Scrambler/Descrambler  
The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using  
an 11-bit, data-independent polynomial. The receiver automatically decodes the polynomial  
whenever IDLE symbols are received.  
34  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Scrambler Seeding. Once the transmit data (or Idle symbols) are properly encoded, they are  
scrambled to further reduce EMI and to spread the power spectrum using an 11-bit scrambler seed.  
Five seed bits are determined by the PHY address, and the remaining bits are hard coded in the  
design.  
Scrambler Bypass. The scrambler/descrambler can be bypassed by setting bit 16.12 = 1.  
Scrambler bypass is provided for diagnostic and test support.  
Baseline Wander Correction  
The LXT972A provides a baseline wander correction function which makes the device robust  
under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is by  
definition unbalanced. This means that the average value of the signal voltage can wander”  
significantly over short time intervals (tenths of seconds). This wander can cause receiver errors at  
long-line lengths (100 meters) in less robust designs. Exact characteristics of the wander are  
completely data dependent.  
The LXT972A baseline wander correction characteristics allow the device to recover error-free  
data while receiving worst-case killerpackets over all cable lengths.  
Polarity Correction  
The 100BASE-TX descrambler automatically detects and corrects for the condition where the  
receive signal at TPIP and TPIN is inverted.  
Programmable Slew Rate Control  
The LXT972A device supports a slew rate mechanism whereby one of four pre-selected slew rates  
can be used. This allows the designer to optimize the output waveform to match the characteristics  
of the magnetics. The slew rate is determined by the TxSLEW pins as shown in Table 4 on page 14.  
3.8  
10Mbps Operation  
The LXT972A operates as a standard 10BASE-T transceiver. The LXT972A supports all the  
standard 10Mbps functions. During 10BASE-T (10T) operation, the LXT972A transmits and  
receives Manchester-encoded data across the network link. When the MAC is not actively  
transmitting data, the LXT972A drives link pulses onto the line.  
In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals  
received from the network are decoded by the LXT972A and sent across the MII to the MAC.  
3.8.1  
10T Preamble Handling  
The LXT972A offers two options for preamble handling, selected by bit 16.5. In 10T Mode when  
16.5 = 0, the LXT972A strips the entire preamble off of received packets. CRS is asserted  
coincident with SFD. RX_DV is held Low for the duration of the preamble. When RX_DV is  
asserted, the very first two nibbles driven by the LXT972A are the SFD 5Dhex followed by the  
body of the packet.  
Datasheet  
35  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
In 10T mode with 16.5 = 1, the LXT972A passes the preamble through the MII and asserts  
RX_DV and CRS simultaneously. In 10T loopback, the LXT972A loops back whatever the MAC  
transmits to it, including the preamble.  
3.8.2  
3.8.3  
3.8.4  
10T Carrier Sense  
For 10T links, CRS assertion is based on reception of valid preamble, and de-assertion on reception  
of an end-of-frame (EOF) marker. Bit 16.7 allows CRS de-assertion to be synchronized with  
RX_DV de-assertion. Refer to Table 46 on page 64.  
10T Dribble Bits  
The LXT972A device handles dribbles bits in all modes. If between one through four dribble bits  
are received, the nibble is passed across the MII, padded with 1s if necessary. If between five  
through seven dribble bits are received, the second nibble is not sent onto the MII bus.  
10T Link Integrity Test  
In 10T mode, the LXT972A always transmits link pulses. When the Link Integrity Test function is  
enabled (the normal configuration), it monitors the connection for link pulses. Once link pulses are  
detected, data transmission is enabled and remains enabled as long as either the link pulses or data  
transmission continue. If the link pulses stop, the data transmission is disabled.  
If the Link Integrity Test function is disabled, the LXT972A transmits to the connection regardless  
of detected link pulses. The Link Integrity Test function can be disabled by setting bit 16.14 = 1.  
3.8.4.1  
Link Failure  
Link failure occurs if Link Integrity Test is enabled and link pulses or packets stop being received.  
If this condition occurs, the LXT972A returns to the auto-negotiation phase if auto-negotiation is  
enabled. If the Link Integrity Test function is disabled by setting 16.14 = 1 in the Configuration  
Register, the LXT972A transmits packets, regardless of link status.  
3.8.5  
3.8.6  
10T SQE (Heartbeat)  
By default, the Signal Quality Error (SQE) or heartbeat function is disabled on the LXT972A. To  
enable this function, set bit 16.9 = 1. When this function is enabled, the LXT972A asserts its COL  
output for 5-15 BT after each packet. See Figure 29 on page 51 for SQE timing parameters.  
10T Jabber  
If a transmission exceeds the jabber timer, the LXT972A disables the transmit and loopback  
functions. See Figure 28 on page 51 for jabber timing parameters.  
The LXT972A automatically exits jabber mode after the unjabber time has expired. This function  
can be disabled by setting bit 16.10 = 1.  
36  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.8.7  
10T Polarity Correction  
The LXT972A automatically detects and corrects for the condition where the receive signal (TPIP/  
N) is inverted. Reversed polarity is detected if eight inverted link pulses, or four inverted end-of-  
frame (EOF) markers, are received consecutively. If link pulses or data are not received by the  
maximum receive time-out period (96-128 ms), the polarity state is reset to a non-inverted state.  
3.9  
Monitoring Operations  
3.9.1  
Monitoring Auto-Negotiation  
Auto-negotiation can be monitored as follows:  
Bit 17.7 is set to 1 once the Auto-Negotiation process is completed.  
Bits 1.2 and 17.10 are set to 1 once the link is established.  
Bits 17.14 and 17.9 can be used to determine the link operating conditions (speed and duplex).  
3.9.1.1  
Monitoring Next Page Exchange  
The LXT972A offers an Alternate Next Page mode to simplify the next page exchange process.  
Normally, bit 6.1 (Page Received) remains set until read. When Alternate Next Page mode is  
enabled (16.1 = 1), bit 6.1 is automatically cleared whenever a new negotiation process takes place.  
This prevents the user from reading an old value in 6.1 and assuming that Registers 5 and 8  
(Partner Ability) contain valid information. Additionally, the LXT972A uses bit 6.5 to indicate  
when the current received page is the base page. This information is useful for recognizing when  
next pages must be resent due to a new negotiation process starting. Bits 6.1 and 6.5 are cleared  
when read.  
3.9.2  
LED Functions  
The LXT972A incorporates three direct LED drivers. On power up all the drivers are asserted for  
approximately 1 second after reset de-asserts. Each LED driver can be programmed using the LED  
Configuration Register (refer to Table 50 on page 68) to indicate one the following conditions:  
Operating Speed  
Transmit Activity  
Receive Activity  
Collision Condition  
Link Status  
Duplex Mode  
The LED drivers can also be programmed to display various combined status conditions. For  
example, setting bits 20.15:12 = 1101 produces the following combination of Link and Activity  
indications:  
If Link is down LED is off.  
If Link is up LED is on.  
Datasheet  
37  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
If Link is up and activity is detected, the LED blinks at the stretch interval selected by bits  
20.3:2 and continues to blink as long as activity is present.  
The LED driver pins also provide initial configuration settings. The LED pins are sensitive to  
polarity and automatically pulls up or pulls down to configure for either open drain or open source  
circuits (10 mA Max current rating) as required by the hardware configuration. Refer to the  
discussion of Hardware Configuration Settingson page 23 for details.  
3.9.2.1  
LED Pulse Stretching  
The LED Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms.  
If during this pulse stretch period the event occurs again, the pulse stretch time is further extended.  
When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer.  
The LED driver remains asserted until the stretch timer expires. If another event occurs before the  
stretch timer expires, the stretch timer is reset and the stretch time is extended.  
When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer.  
When the stretch timer expires the edge detector is reset so that a long event causes another pulse to  
be generated from the edge detector, which resets the stretch timer and causes the LED driver to  
remain asserted. Figure 20 shows how the stretch operation functions.  
Figure 20. LED Pulse Stretching  
Event  
LED  
stretch  
stretch  
stretch  
Note: The direct drive LED outputs in this diagram are shown as active Low.  
3.10  
Boundary Scan (JTAG1149.1) Functions  
LXT972A includes a IEEE 1149.1 boundary scan test port for board level testing. All digital input,  
output, and input/output pins are accessible. The BSDL file is available by contacting your local  
sales office (see the back page) or by accessing the Intel web site (developer.intel.com/design/  
network/).  
3.10.1  
Boundary Scan Interface  
This interface consists of five pins (TMS, TDI, TDO, TRST, and TCK). It includes a state machine,  
data register array, and instruction register. The TMS and TDI pins are internally pulled up. TCK is  
internally pulled down. TDO does not have an internal pull-up or pull-down.  
38  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
3.10.2  
3.10.3  
3.10.4  
State Machine  
The TAP controller is a 16 state machine driven by the TCK and TMS pins. Upon reset the  
TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are  
high for five TCK periods.  
Instruction Register  
After the state machine resets, the IDCODE instruction is always invoked. The decode logic  
ensures the correct data flow to the Data registers according to the current instruction. Valid  
instructions are listed in Table 12.  
Boundary Scan Register (BSR)  
Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the  
serial shift stage and the parallel output stage. There are four modes of operation as listed in Table  
11.  
Table 11. BSR Mode of Operation  
Mode  
Description  
1
2
3
4
Capture  
Shift  
Update  
System Function  
Table 12. Supported JTAG Instructions  
Name  
Code  
Description  
Mode  
Data Register  
EXTEST  
IDCODE  
SAMPLE  
TRIBYP  
SETBYP  
BYPASS  
0000  
0001  
0010  
0011  
0100  
1111  
External Test  
Test  
BSR  
ID Code Inspection  
Sample Boundary  
Force Float  
Normal  
Normal  
Normal  
Test  
ID REG  
BSR  
Bypass  
Bypass  
Bypass  
Control Boundary to 1/0  
Bypass Scan  
Normal  
Table 13. Device ID Register  
31:28  
27:12  
11:8  
7:1  
0
Version  
Part ID (hex)  
Jedec Continuation Characters  
JEDEC ID1  
Reserved  
0001  
03CB  
1110  
111 1110  
1
1. The JEDEC IS is an 8-bit identifier. The MSB is for parity and is ignored. Intels JEDEC ID is FE (1111 1110) which becomes  
111 1110  
Datasheet  
39  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
4.0  
Application Information  
4.1  
Magnetics Information  
The LXT972A requires a 1:1 ratio for both the receive and transmit transformers. The transformer  
isolation voltage should be rated at 2kV to protect the circuitry from static voltages across the  
connectors and cables. Refer to Table 14 for transformer requirements.  
A cross-reference list of magnetic manufacturers and part numbers is available in Application Note  
073, Magnetic Manufacturers, which can be found on the Intel web site (developer.intel.com/  
design/network/). Before committing to a specific component, designers should contact the  
manufacturer for current product specifications, and validate the magnetics for the specific  
application.  
Table 14. Magnetics Requirements  
Parameter  
Min  
Nom  
Max  
Units  
Test Condition  
Rx turns ratio  
Tx turns ratio  
Insertion loss  
1 : 1  
1 : 1  
0.6  
0.0  
350  
1.1  
dB  
µH  
kV  
dB  
dB  
dB  
dB  
Primary inductance  
Transformer isolation  
1.5  
Differential to common mode rejection  
40  
35  
-16  
-10  
.1 to 60 MHz  
60 to 100 MHz  
30 MHz  
Return Loss  
80 MHz  
4.2  
Typical Twisted-Pair Interface  
Table 15 provides a comparison of the RJ-45 connections for NIC and switch applications in a  
typical twisted-pair interface setting.  
Table 15. RJ-45 Pin Comparison of NIC and Switch Twisted-Pair Interfaces  
RJ-45  
Symbol  
Switch  
NIC  
TPIP  
TPIN  
1
2
3
6
3
6
1
2
TPOP  
TPON  
Figure 21 on page 41 shows a typical twisted-pair interface with the RJ-45 connections crossed  
over for a switch configuration. Figure 22 on page 42 provides a typical twisted-pair interface with  
the RJ-45 connections configured for a NIC application.  
40  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 21. Typical Twisted-Pair Interface - Switch  
270 pF 5%  
TPIP  
RJ-45  
50Ω 1%  
1:1  
1:1  
1
2
3
4
5
6
7
8
0.01 µF  
3
50Ω 1%  
TPIN  
50  
50  
50  
270 pF 5%  
TPOP  
LXT972A  
2
50  
50  
0.1µF  
50  
TPON  
1
* = 0.001 µF / 2.0 kV  
*
*
4
VCCA  
GND  
.01µF  
0.1µF  
1. Center tap current may be supplied from 3.3V VCCA as shown. Additional power savings may be realized by supplying  
the center tap from a 2.5V current source. A separate ferrite bead (rated at 50 mA) should be used to supply center tap  
current.  
2. The 100transmit load termination resistor typically required is integrated in the LXT972A.  
3. Magnetics without a receive pair center tap do not require a 2 kV termination.  
4. RJ-45 connections shown are for a standard switch application. For a standard NIC RJ-45 setup, see Figure 22.  
Datasheet  
41  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 22. Typical Twisted-Pair Interface - NIC  
RJ-45  
50  
50  
50  
270 pF 5%  
8
7
6
5
4
3
2
1
TPIN  
50Ω 1%  
1:1  
1:1  
50  
50  
0.01 µF  
3
50  
50Ω 1%  
TPIP  
270 pF 5%  
TPON  
LXT972A  
2
0.1µF  
4
TPOP  
1
* = 0.001 µF / 2.0 kV  
*
*
VCCA  
GND  
.01µF  
0.1µF  
1. Center tap current may be supplied from 3.3V VCCA as shown. Additional power savings may be realized by supplying the  
center tap from a 2.5V current source. A separate ferrite bead (rated at 50 mA) should be used to supply center tap current.  
2. The 100transmit load termination resistor typically required is integrated in the LXT972A.  
3. Magnetics without a receive pair center tap do not require a 2kV termination.  
4. RJ-45 connections shown are for a standard NIC. Tx/Rx crossover may be required for repeater & switch applications.  
42  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 23. Typical MII Interface  
TX_EN  
TX_ER  
TXD<3:0>  
TX_CLK  
RX_CLK  
X
F
M
R
MAC  
LXT972A  
RX_DV  
RJ-45  
RX_ER  
RXD<3:0>  
CRS  
COL  
Datasheet  
43  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
5.0  
Test Specifications  
Note: Table 16 through Table 34 and Figure 24 through Figure 35 represent the target specifications of  
the LXT972A. These specifications are guaranteed by test except where noted by design.”  
Minimum and maximum values listed in Table 18 through Table 34 apply over the recommended  
operating conditions specified in Table 17.  
5.1  
Electrical Parameters  
Table 16. Absolute Maximum Ratings  
Parameter  
Supply voltage  
Sym  
Min  
Max  
Units  
VCC  
TOPA  
TST  
-0.3  
0
4.0  
+70  
V
Operating temperature  
Storage temperature  
ºC  
ºC  
-65  
+150  
Caution: Exceeding these values may cause permanent damage.  
Functional operation under these conditions is not implied.  
Exposure to maximum rating conditions for extended periods may affect device reliability.  
Table 17. Operating Conditions  
1
Parameter  
Sym  
Min  
0
Typ  
Max  
70  
Units  
LXT972A_C  
(Commercial)  
Recommended operating temperature  
TOPA  
ºC  
Analog & Digital  
I/O  
Vcca, Vccd  
Vccio  
ICC  
3.14  
2.35  
3.3  
3.45  
3.45  
110  
82  
V
Recommended supply voltage2  
V
100BASE-TX  
10BASE-T  
mA  
mA  
mA  
mA  
ICC  
VCC current  
Power Down  
Auto-Negotiation  
ICC  
1
ICC  
110  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Voltages with respect to ground unless otherwise specified.  
44  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 18. Digital I/O Characteristics 1  
2
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Input Low voltage  
Input High voltage  
Input current  
VIL  
VIH  
II  
0.8  
V
V
2.0  
-10  
10  
0.4  
µA  
V
0.0 < VI < VCC  
Output Low voltage  
Output High voltage  
VOL  
VOH  
IOL = 4 mA  
IOH = -4 mA  
2.4  
V
1. Applies to all pins except MII, LED and XI/XO pins. Refer to Table 19 for MII I/O Characteristics, Table 20 for XI/XO and Table  
21 for LED Characteristics.  
2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Table 19. Digital I/O Characteristics - MII Pins  
1
Parameter  
Input Low voltage  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
VIL  
VIH  
II  
2.0  
-10  
0.8  
V
V
Input High voltage  
Input current  
10  
0.4  
µA  
V
0.0 < VI < VCCIO  
Output Low voltage  
VOL  
VOH  
VOH  
IOL = 4 mA  
2.2  
2.0  
V
IOH = -4 mA, VCCIO = 3.3V  
IOH = -4 mA, VCCIO = 2.5V  
VCCIO = 2.5V  
Output High voltage  
V
2
RO  
100  
100  
Driver output resistance  
(Line driver output enabled)  
2
RO  
VCCIO = 3.3V  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
Table 20. I/O Characteristics - REFCLK/XI and XO Pins  
Parameter  
Input Low Voltage  
Sym  
Min  
Typ1  
Max  
Units  
Test Conditions  
VIL  
VIH  
f  
2.0  
0.8  
V
V
Input High Voltage  
Input Clock Frequency Tolerance2  
Input Clock Duty Cycle2  
Input Capacitance  
±100  
65  
ppm  
%
Tdc  
CIN  
35  
3.0  
pF  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Parameter is guaranteed by design; not subject to production testing.  
Table 21. I/O Characteristics - LED/CFG Pins  
Parameter  
Output Low Voltage  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
IOL = 10 mA  
Vol  
Voh  
II  
0.4  
V
V
Output High Voltage  
Input Current  
2.4  
-10  
IOH = -10 mA  
10  
µA  
0 < VI < VCCIO  
Datasheet  
45  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 22. 100BASE-TX Transceiver Characteristics  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output voltage  
Signal amplitude symmetry  
Signal rise/fall time  
VP  
Vss  
TRF  
TRFS  
0.95  
98  
1.05  
102  
5.0  
V
Note 2  
Note 2  
Note 2  
Note 2  
%
ns  
ns  
3.0  
Rise/fall time symmetry  
0.5  
Offset from 16ns pulse width at  
50% of pulse peak  
Duty cycle distortion  
DCD  
35  
50  
65  
%
Overshoot/Undershoot  
VOS  
5
%
Jitter (measured differentially)  
1.4  
ns  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. Measured at the line side of the transformer, line replaced by 100(+/-1%) resistor.  
Table 23. 10BASE-T Transceiver Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmitter  
With transformer, line  
replaced by 100 Ω  
resistor  
Peak differential output voltage  
VOP  
-
2.2  
0
2.5  
2
2.8  
11  
V
After line model  
specified by IEEE 802.3  
for 10BASE-T MAU  
Transition timing jitter added by the  
MAU and PLS sections  
ns  
Receiver  
Receive Input Impedance  
ZIN  
-
-
22  
kΩ  
Differential Squelch Threshold  
VDS  
300  
420  
585  
mV  
Table 24. 10BASE-T Link Integrity Timing Characteristics  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Time Link Loss Receive  
Link Pulse  
TLL  
TLP  
50  
2
150  
7
ms  
Link Pulses  
Link Min Receive Timer  
Link Max Receive Timer  
Link Transmit Period  
Link Pulse Width  
TLR MIN  
TLR MAX  
Tlt  
2
7
ms  
ms  
ms  
ns  
50  
8
150  
24  
150  
Tlpw  
60  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
46  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
5.2  
Timing Diagrams  
Figure 24. 100BASE-TX Receive Timing - 4B Mode  
0ns  
250ns  
TPI  
t4  
t5  
CRS  
t3  
RX_DV  
t1  
t2  
RXD<3:0>  
RX_CLK  
t6  
t7  
COL  
Table 25. 100BASE-TX Receive Timing Parameters - 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
Test Conditions  
RXD<3:0>, RX_DV, RX_ER setup  
to RX_CLK High  
t1  
10  
ns  
ns  
RXD<3:0>, RX_DV, RX_ER hold  
from RX_CLK High  
t2  
10  
CRS asserted to RXD<3:0>, RX_DV  
Receive start of Jto CRS asserted  
Receive start of Tto CRS de-asserted  
Receive start of Jto COL asserted  
Receive start of Tto COL de-asserted  
t3  
t4  
t5  
t6  
t7  
3
5
BT  
BT  
BT  
BT  
BT  
12  
10  
16  
17  
16  
17  
22  
20  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
Datasheet  
47  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 25. 100BASE-TX Transmit Timing - 4B Mode  
0ns  
250ns  
t1  
TXCLK  
TX_EN  
t2  
TXD<3:0>  
t5  
TPO  
t4  
t3  
CRS  
Table 26. 100BASE-TX Transmit Timing Parameters - 4B Mode  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
Test Conditions  
TXD<3:0>, TX_EN, TX_ER setup to TX_CLK High  
TXD<3:0>, TX_EN, TX_ER hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t1  
t2  
t3  
t4  
t5  
12  
0
ns  
ns  
20  
24  
5.3  
24  
28  
5.7  
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPO out (Tx latency)  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 100BASE-T bit time = 10-  
8 s or 10 ns.  
48  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 26. 10BASE-T Receive Timing  
RX_CLK  
t1  
t2  
t3  
RXD,  
RX_DV,  
RX_ER  
t5  
t
4
CRS  
TPI  
t
6
t
7
9
t
t8  
COL  
Table 27. 10BASE-T Receive Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
Test Conditions  
RXD, RX_DV, RX_ER Setup to RX_CLK High  
RXD, RX_DV, RX_ER Hold from RX_CLK High  
TPIP/N in to RXD out (Rx latency)  
t1  
t2  
t3  
10  
10  
ns  
ns  
5.8  
6.0  
BT  
CRS asserted to RXD, RX_DV, RX_ER  
asserted  
t4  
t5  
5
32  
BT  
BT  
RXD, RX_DV, RX_ER de-asserted to CRS de-  
asserted  
0.3  
0.5  
TPI in to CRS asserted  
t6  
t7  
t8  
t9  
2
6
1
5
28  
10  
31  
10  
BT  
BT  
BT  
BT  
TPI quiet to CRS de-asserted  
TPI in to COL asserted  
TPI quiet to COL de-asserted  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10-  
7 s or 100 ns.  
Datasheet  
49  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 27. 10BASE-T Transmit Timing  
TX_CLK  
t
1
t2  
TXD,  
TX_EN,  
TX_ER  
t3  
t4  
CRS  
TPO  
t
5
Table 28. 10BASE-T Transmit Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units2  
Test Conditions  
TXD, TX_EN, TX_ER setup to TX_CLK High  
TXD, TX_EN, TX_ER hold from TX_CLK High  
TX_EN sampled to CRS asserted  
t1  
t2  
t3  
t4  
t5  
10  
0
2
1
ns  
ns  
BT  
BT  
BT  
TX_EN sampled to CRS de-asserted  
TX_EN sampled to TPO out (Tx latency)  
72.5  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
2. BT is the duration of one bit as transferred to and from the MAC and is the reciprocal of the bit rate. 10BASE-T bit time = 10-  
7 s or 100 ns.  
50  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 28. 10BASE-T Jabber and Unjabber Timing  
TX_EN  
TXD  
t1  
t2  
COL  
Table 29. 10BASE-T Jabber and Unjabber Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Maximum transmit time  
Unjab time  
t1  
t2  
20  
150  
750  
ms  
ms  
250  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Figure 29. 10BASE-T SQE (Heartbeat) Timing  
TX_CLK  
TX_EN  
t
1
t
2
COL  
Table 30. 10BASE-T SQE Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
COL (SQE) Delay after TX_EN off  
COL (SQE) Pulse duration  
t1  
t2  
0.65  
0.5  
1.6  
1.5  
us  
us  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
51  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 30. Auto Negotiation and Fast Link Pulse Timing  
Clock Pulse  
Data Pulse  
Clock Pulse  
TPO  
t1  
t1  
t3  
t2  
Figure 31. Fast Link Pulse Timing  
FLP Burst  
FLP Burst  
TPO  
t4  
t5  
Table 31. Auto Negotiation and Fast Link Pulse Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Clock/Data pulse width  
Clock pulse to Data pulse  
Clock pulse to Clock pulse  
FLP burst width  
t1  
t2  
t3  
t4  
t5  
55.5  
123  
100  
63.8  
127  
ns  
µs  
µs  
2
ms  
ms  
ea  
FLP burst to FLP burst  
Clock/Data pulses per burst  
8
12  
24  
17  
33  
1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.  
52  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Figure 32. MDIO Input Timing  
MDC  
t2  
t1  
MDIO  
Figure 33. MDIO Output Timing  
t4  
MDC  
t3  
MDIO  
Table 32. MDIO Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
MDIO setup before MDC, sourced  
by STA  
t1  
10  
5
ns  
MDIO hold after MDC, sourced by  
STA  
t2  
ns  
MDC to MDIO output delay, source  
by PHY  
t3  
t4  
150  
ns  
ns  
MDC period  
125  
MDC = 8 MHz  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
Datasheet  
53  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Figure 34. Power-Up Timing  
v1  
t1  
VCC  
MDIO,etc  
Table 33. Power-Up Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
Voltage threshold  
Power Up delay2  
v1  
t1  
2.9  
V
300  
µs  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
2. Power Up Delay is specified as a maximum value because it refers to the PHY's guaranteed performance - the PHY comes  
out of reset after a delay of No MORE Than 300 µs. System designers should consider this as a minimum value - After  
threshold v1 is reached, the MAC should delay No LESS Than 300 µs before accessing the MDIO port.  
Figure 35. RESET Pulse Width and Recovery Timing  
t1  
RESET  
t2  
MDIO,etc  
Table 34. RESET Pulse Width and Recovery Timing Parameters  
1
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
RESET pulse width  
RESET recovery delay2  
t1  
t2  
10  
ns  
300  
µs  
1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.  
2. Reset Recovery Delay is specified as a maximum value because it refers to the PHY's guaranteed performance - the PHY  
comes out of reset after a delay of No MORE Than 300 µs. System designers should consider this as a minimum value -  
After de-asserting RESET*, the MAC should delay No LESS Than 300 µs before accessing the MDIO port.  
54  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
6.0  
Register Definitions  
The LXT972A register set includes multiple 16-bit registers. Refer to Table 35 for a complete  
register listing.  
Base registers (0 through 8) are defined in accordance with the Reconciliation Sublayer and  
Media Independent Interfaceand Physical Layer Link Signaling for 10/100Mbps Auto-  
Negotiationsections of the IEEE 802.3 standard.  
Additional registers are defined in accordance with the IEEE 802.3 standard for adding unique  
chip functions.  
Table 35. Register Set  
Address  
Register Name  
Bit Assignments  
0
1
Control Register  
Refer to Table 37 on page 58  
Refer to Table 38 on page 58  
Refer to Table 39 on page 59  
Refer to Table 40 on page 60  
Refer to Table 41 on page 61  
Refer to Table 42 on page 62  
Refer to Table 43 on page 63  
Refer to Table 44 on page 63  
Refer to Table 45 on page 64  
Not Implemented  
Status Register #1  
2
PHY Identification Register 1  
3
PHY Identification Register 2  
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Transmit Register  
Auto-Negotiation Link Partner Received Next Page Register  
1000BASE-T/100BASE-T2 Control Register  
1000BASE-T/100BASE-T2 Status Register  
Extended Status Register  
5
6
7
8
9
10  
15  
16  
17  
18  
19  
20  
21- 29  
30  
Not Implemented  
Not Implemented  
Port Configuration Register  
Refer to Table 46 on page 64  
Refer to Table 47 on page 65  
Refer to Table 48 on page 66  
Refer to Table 49 on page 66  
Refer to Table 50 on page 68  
Status Register #2  
Interrupt Enable Register  
Interrupt Status Register  
LED Configuration Register  
Reserved  
Transmit Control Register  
Refer to Table 51 on page 69  
Datasheet  
55  
Table 36. Register Bit Map  
Bit Fields  
B8 B7  
Control Register  
Reg Title  
Addr  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Speed  
Select  
A/N  
Power  
Down  
Re-start  
A/N  
Duplex  
Mode  
Speed  
Select  
Control  
Status  
Reset Loopback  
Isolate  
COL Test  
Reserved  
0
1
Enable  
Status Register  
100Base- 100Base- 10Mbps 10Mbps 100Base- 100Base-  
MF  
Reserved Preamble  
Suppress  
100Base-  
T4  
Extended  
Status  
A/N  
Complete  
Remote  
Fault  
Link  
Jabber Extended  
Detect Capability  
X Full  
Duplex  
X Half  
Duplex  
Full  
Duplex  
Half  
Duplex  
T2 Full  
Duplex  
T2 Half  
Duplex  
A/N Ability  
Status  
PHY ID Registers  
PHY ID 1  
PHY ID2  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
2
3
PHY ID No  
MFR Model No  
Auto-Negotiation Advertisement Register  
MFR Rev No  
100Base-  
TX Full  
10Base-T  
A/N  
Next  
Remote  
Fault  
Asymm  
Pause  
100Base-  
T4  
100Base-  
TX  
Reserved  
Reserved  
Reserved  
Pause  
Full  
10Base-T  
IEEE Selector Field  
IEEE Selector Field  
4
5
Advertise  
Page  
Duplex  
Duplex  
Auto-Negotiation Link Partner Base Page Ability Register  
100Base-  
TX Full  
Duplex  
10Base-T  
Full  
Duplex  
A/N Link  
Ability  
Next  
Page  
Remote  
Fault  
Asymm  
Pause  
100Base-  
T4  
100Base-  
TX  
Ack  
Pause  
10Base-T  
Auto-Negotiation Expansion Register  
Link  
Parallel  
Detect  
Fault  
Link  
Partner  
A/N Able  
A/N  
Expansion  
Base  
Page  
Partner  
Next  
Next  
Page  
Reserved  
6
Page Able Received  
Page Able  
Auto-Negotiation Next Page Transmit Register  
A/N Next  
Next  
Message  
Page  
Reserved  
Ack 2  
Ack 2  
Toggle  
Message / Unformatted Code Field  
Message / Unformatted Code Field  
7
8
Page Txmit  
Page  
Auto-Negotiation Link Partner Next Page Receive Register  
A/N Link Next  
Page  
Next  
Page  
Message  
Page  
Ack  
Toggle  
Configuration Register  
Bypass  
TP  
CRS  
Alternate  
Jabber  
(10T)  
SQE  
(10T)  
Force  
Txmit  
Reserved  
)
Scrambler  
Loopback  
Port Config Reserved  
Select Reserved PRE_EN  
(10T)  
Reserved  
Reserved  
Next  
Reserved 16  
Link Pass Disable  
Page  
(100TX)  
(10T)  
Table 36. Register Bit Map (Continued)  
Bit Fields  
B8 B7  
Status Register #2  
Reg Title  
Addr  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Status  
10/100 Transmit Receive Collision  
Duplex  
Mode  
Auto-Neg  
Complete  
Reserved  
Link  
Auto-Neg  
Reserved Polarity  
Pause  
Error  
Reserved  
Reserved  
17  
18  
Register #2  
Mode  
Status  
Status  
Status  
Interrupt Enable Register  
Interrupt  
Enable  
Auto-Neg Speed  
Duplex  
Mask  
Interrupt  
Test  
Reserved  
Reserved  
Mask  
Link Mask Reserved Reserved  
Mask  
Enable Interrupt  
Interrupt Status Register  
Interrupt  
Status  
Auto-Neg Speed  
Duplex  
Link  
MD  
Interrupt  
Reserved  
Reserved  
Reserved  
Reserved Reserved 19  
Done  
Change Change Change  
LED Configuration Register  
Pulse  
LED Config  
LED1  
LED2  
LED3  
LED Freq  
Reserved 20  
Stretch  
Transmit Control Register  
Trans.  
Control  
Transmit  
Low Pwr  
Port Rise Time  
Control  
Reserved  
Reserved  
30  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 37. Control Register (Address 0)  
Bit  
Name  
Description  
Type 1  
Default  
1 = PHY reset  
R/W  
SC  
0.15  
Reset  
0
0 = Normal operation  
1 = Enable loopback mode  
0 = Disable loopback mode  
0.14  
0.13  
Loopback  
R/W  
0
0.6  
0.13  
Speed Selected  
1
1
0
0
1
0
1
0
Reserved  
1000Mbps (not supported)  
100Mbps  
Speed Selection  
R/W  
Note 2  
10Mbps  
Auto-Negotiation  
Enable  
1 = Enable Auto-Negotiation Process  
0 = Disable Auto-Negotiation Process  
0.12  
0.11  
0.10  
R/W  
R/W  
R/W  
Note 2  
1 = Power-down  
0 = Normal operation  
Power-Down  
Isolate  
0
0
1 = Electrically isolate PHY from MII  
0 = Normal operation  
Restart  
R/W  
SC  
1 = Restart Auto-Negotiation Process  
0 = Normal operation  
0.9  
0
Auto-Negotiation  
1 = Full Duplex  
0 = Half Duplex  
0.8  
0.7  
Duplex Mode  
Collision Test  
R/W  
R/W  
Note 2  
0
1 = Enable COL signal test  
0 = Disable COL signal test  
0.6  
0.13  
Speed Selected  
1
1
0
0
1
0
1
0
Reserved  
1000Mbps (not supported)  
100Mbps  
0.6  
Speed Selection  
Reserved  
R/W  
R/W  
0
10Mbps  
0.5:0  
Write as 0, ignore on Read  
00000  
1. R/W = Read/Write  
RO = Read Only  
SC = Self Clearing  
2. Default value of bits 0.12, 0.13 and 0.8 are determined by the LED/CFG pins (refer to Table 8 on page 24).  
Table 38. MII Status Register #1 (Address 1)  
Bit  
Name  
Description  
Type 1  
Default  
100BASE-T4  
1 = PHY able to perform 100BASE-T4  
0 = PHY not able to perform 100BASE-T4  
1.15  
RO  
0
Not Supported  
100BASE-X Full-  
Duplex  
1 = PHY able to perform full-duplex 100BASE-X  
0 = PHY not able to perform full-duplex 100BASE-X  
1.14  
1.13  
RO  
RO  
1
1
100BASE-X Half-  
Duplex  
1 = PHY able to perform half-duplex 100BASE-X  
0 = PHY not able to perform half-duplex 100BASE-X  
1. RO = Read Only  
LL = Latching Low  
LH = Latching High  
58  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 38. MII Status Register #1 (Address 1)  
Bit  
1.12  
Name  
Description  
Type 1  
Default  
1 = PHY able to operate at 10Mbps in full-duplex mode  
0 = PHY not able to operate at 10Mbps full-duplex mode  
10Mbps Full-Duplex  
RO  
1
1 = PHY able to operate at 10Mbps in half-duplex mode  
0 = PHY not able to operate at 10Mbps in half-duplex  
1.11  
1.10  
10Mbps Half-Duplex  
RO  
RO  
1
0
100BASE-T2 Full-  
Duplex  
1 = PHY able to perform full-duplex 100BASE-T2  
0 = PHY not able to perform full-duplex 100BASE-T2  
Not Supported  
100BASE-T2 Half-  
Duplex  
1 = PHY able to perform half duplex 100BASE-T2  
0 = PHY not able to perform half-duplex 100BASE-T2  
1.9  
RO  
0
Not Supported  
Extended Status  
Reserved  
1 = Extended status information in register 15  
0 = No extended status information in register 15  
1.8  
1.7  
RO  
RO  
0
0
1 = ignore when read  
1 = PHY accepts management frames with preamble suppressed  
0 = PHY will not accept management frames with preamble  
suppressed  
MF Preamble  
Suppression  
1.6  
RO  
0
Auto-Negotiation  
Complete  
1 = Auto-negotiation complete  
0 = Auto-negotiation not complete  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
RO  
RO/LH  
RO  
0
0
1
0
0
1
1 = Remote fault condition detected  
0 = No remote fault condition detected  
Remote Fault  
Auto-Negotiation  
Ability  
1 = PHY is able to perform Auto-Negotiation  
0 = PHY is not able to perform Auto-Negotiation  
1 = Link is up  
0 = Link is down  
Link Status  
RO/LL  
RO/LH  
RO  
1 = Jabber condition detected  
0 = Jabber condition not detected  
Jabber Detect  
Extended Capability  
1 = Extended register capabilities  
0 = Basic register capabilities  
1. RO = Read Only  
LL = Latching Low  
LH = Latching High  
Table 39. PHY Identification Register 1 (Address 2)  
Bit  
Name  
Description  
Type 1  
Default  
PHY ID  
Number  
2.15:0  
The PHY identifier composed of bits 3 through 18 of the OUI.  
RO  
0013 hex  
1. RO = Read Only  
Datasheet  
59  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 40. PHY Identification Register 2 (Address 3)  
Bit  
Name  
Description  
Type 1  
RO  
Default  
The PHY identifier composed of bits 19 through 24 of the  
OUI.  
3.15:10  
PHY ID number  
011110  
Manufacturers  
model number  
3.9:4  
3.3:0  
6 bits containing manufacturers part number.  
4 bits containing manufacturers revision number.  
RO  
RO  
001110  
xxxx  
Manufacturers  
revision number  
(See LXT971A/972A  
Specification Update)  
1. RO = Read Only  
Figure 36. PHY Identifier Bit Mapping  
a
b c  
Organizationally Unique Identifier  
r
s
x
PHY ID Register #2 (Address 3)  
PHY ID Register #1 (address 2) = 0013  
15  
0 15  
10 9  
4
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
1
1
1
0
0
0
1
1
1
0 0  
00  
20  
7B  
5
0
3
0
The Intel OUI is 00207B hex  
Manufacturers  
Model Number  
Revision  
Number  
60  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 41. Auto Negotiation Advertisement Register (Address 4)  
Bit  
4.15  
Name  
Description  
Type 1  
Default  
1 = Port has ability to send multiple pages.  
0 = Port has no ability to send multiple pages.  
Next Page  
Reserved  
R/W  
RO  
0
0
0
0
0
4.14  
4.13  
4.12  
4.11  
Ignore.  
1 = Remote fault.  
0 = No remote fault.  
Remote Fault  
Reserved  
R/W  
R/W  
R/W  
Ignore.  
Asymmetric  
Pause  
Pause operation defined in Clause 40 and 27.  
1 = Pause operation enabled for full-duplex links.  
0 = Pause operation disabled.  
4.10  
Pause  
R/W  
Note 2  
1 = 100BASE-T4 capability is available.  
0 = 100BASE-T4 capability is not available.  
(The LXT972A does not support 100BASE-T4 but allows this bit to be set to  
advertise in the Auto-Negotiation sequence for 100BASE-T4 operation. An  
external 100BASE-T4 transceiver could be switched in if this capability is  
desired.)  
4.9  
100BASE-T4  
R/W  
0
100BASE-TX  
full-duplex  
1 = Port is 100BASE-TX full-duplex capable.  
0 = Port is not 100BASE-TX full-duplex capable.  
4.8  
4.7  
R/W  
R/W  
Note 3  
Note 3  
1 = Port is 100BASE-TX capable.  
0 = Port is not 100BASE-TX capable.  
100BASE-TX  
1 = Port is 10BASE-T full-duplex capable.  
0 = Port is not 10BASE-T full-duplex capable.  
10BASE-T  
full-duplex  
4.6  
4.5  
R/W  
R/W  
Note 3  
Note 3  
1 = Port is 10BASE-T capable.  
10BASE-T  
0 = Port is not 10BASE-T capable.  
<00001> = IEEE 802.3.  
<00010> = IEEE 802.9 ISLAN-16T.  
Selector Field,  
S<4:0>  
4.4:0  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations should not be transmitted.  
R/W  
00001  
1. R/W = Read/Write  
RO = Read Only  
2. Default value of bit 4.10 is determined by pin 33/H8.  
3. Default values of bits 4.5, 4.6, 4.7, and 4.8 are determined by LED/CFGn pins at reset. Refer to Table 8 for details.  
Datasheet  
61  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 42. Auto Negotiation Link Partner Base Page Ability Register (Address 5)  
Bit  
5.15  
Name  
Description  
Type 1  
Default  
1 = Link Partner has ability to send multiple pages.  
0 = Link Partner has no ability to send multiple pages.  
Next Page  
RO  
N/A  
1 = Link Partner has received Link Code Word from LXT972A.  
0 = Link Partner has not received Link Code Word from the  
LXT972A.  
5.14  
Acknowledge  
RO  
N/A  
1 = Remote fault.  
0 = No remote fault.  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
N/A  
N/A  
Ignore.  
Pause operation defined in Clause 40 and 27.  
Asymmetric  
Pause  
5.11  
RO  
N/A  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
1 = Link Partner is Pause capable.  
0 = Link Partner is not Pause capable.  
5.10  
5.9  
Pause  
RO  
RO  
RO  
RO  
N/A  
N/A  
N/A  
N/A  
1 = Link Partner is 100BASE-T4 capable.  
0 = Link Partner is not 100BASE-T4 capable.  
100BASE-T4  
100BASE-TX  
full-duplex  
1 = Link Partner is 100BASE-TX full-duplex capable.  
0 = Link Partner is not 100BASE-TX full-duplex capable.  
5.8  
5.7  
1 = Link Partner is 100BASE-TX capable.  
0 = Link Partner is not 100BASE-TX capable.  
100BASE-TX  
10BASE-T  
full-duplex  
1 = Link Partner is 10BASE-T full-duplex capable.  
0 = Link Partner is not 10BASE-T full-duplex capable.  
5.6  
5.5  
RO  
RO  
N/A  
N/A  
1 = Link Partner is 10BASE-T capable.  
0 = Link Partner is not 10BASE-T capable.  
10BASE-T  
<00001> = IEEE 802.3.  
<00010> = IEEE 802.9 ISLAN-16T.  
Selector Field  
S<4:0>  
5.4:0  
<00000> = Reserved for future Auto-Negotiation development.  
<11111> = Reserved for future Auto-Negotiation development.  
Unspecified or reserved combinations shall not be transmitted.  
RO  
N/A  
1. RO = Read Only  
62  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 43. Auto Negotiation Expansion (Address 6)  
Bit  
Name  
Description  
Type 1  
Default  
6.15:6  
Reserved  
Ignore on read.  
RO  
0
This bit indicates the status of the Auto-Negotiation variable, base page. It  
flags synchronization with the Auto-Negotiation state diagram allowing  
detection of interrupted links. This bit is only used if bit 16.1 (Alternate NP  
feature) is set.  
RO/  
LH  
6.5  
Base Page  
0
1 = basepage = true  
0 = basepage = false  
RO/  
LH  
Parallel  
1 = Parallel detection fault has occurred.  
6.4  
0
Detection Fault 0 = Parallel detection fault has not occurred.  
Link Partner 1 = Link partner is next page able.  
Next Page Able 0 = Link partner is not next page able.  
6.3  
6.2  
RO  
RO  
0
1
1 = Local device is next page able.  
Next Page Able  
0 = Local device is not next page able.  
1 = Indicates that a new page has been received and the received code  
word has been loaded into register 5 (base pages) or register 8 (next  
Page Received pages) as specified in clause 28 of 802.3. This bit is cleared on read. If bit  
16.1 is set, the Page Received bit is also cleared when mr_page_rx = false  
or transmit_disable = true.  
RO  
LH  
6.1  
0
0
Link Partner A/ 1 = Link partner is auto-negotiation able.  
6.0  
RO  
N Able  
0 = Link partner is not auto-negotiation able.  
1. RO = Read Only LH = Latching High  
Table 44. Auto Negotiation Next Page Transmit Register (Address 7)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
1 = Additional next pages follow  
7.15  
R/W  
RO  
0
0
1
(NP)  
0 = Last page  
7.14  
7.13  
Reserved  
Write as 0, ignore on read  
Message Page  
(MP)  
1 = Message page  
R/W  
0 = Unformatted page  
Acknowledge 2  
(ACK2)  
1 = Complies with message  
7.12  
7.11  
R/W  
R/W  
0
0
0 = Can not comply with message  
1 = Previous value of the transmitted Link Code Word equalled logic  
zero  
0 = Previous value of the transmitted Link Code Word equalled logic  
one  
Toggle  
(T)  
Message/  
Unformatted Code  
Field  
00000000  
001  
7.10:0  
R/W  
1. RO = Read Only. R/W = Read/Write  
Datasheet  
63  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 45. Auto Negotiation Link Partner Next Page Receive Register (Address 8)  
Bit  
Name  
Description  
Type 1  
Default  
Next Page  
1 = Link Partner has additional next pages to send  
0 = Link Partner has no additional next pages to send  
8.15  
RO  
0
(NP)  
Acknowledge  
(ACK)  
1 = Link Partner has received Link Code Word from LXT972A  
0 = Link Partner has not received Link Code Word from LXT972A  
8.14  
8.13  
8.12  
RO  
RO  
RO  
0
0
0
Message Page  
(MP)  
1 = Page sent by the Link Partner is a Message Page  
0 = Page sent by the Link Partner is an Unformatted Page  
Acknowledge 2  
(ACK2)  
1 = Link Partner complies with the message  
0 = Link Partner can not comply with the message  
1 = Previous value of the transmitted Link Code Word equalled logic  
zero  
0 = Previous value of the transmitted Link Code Word equalled logic  
one  
Toggle  
(T)  
8.11  
RO  
RO  
0
0
Message/  
Unformatted Code  
Field  
8.10:0  
User definable  
1. RO = Read Only.  
Table 46. Configuration Register (Address 16, Hex 10)  
Bit  
Name  
Reserved  
Description  
Type 1  
Default  
16.15  
Write as zero, ignore on read.  
R/W  
0
Force Link Pass  
1 = Force Link pass  
0 = Normal operation  
16.14  
16.13  
R/W  
R/W  
0
0
1 = Disable Twisted Pair transmitter  
0 = Normal Operation  
Transmit Disable  
Bypass Scrambler  
(100BASE-TX)  
1 = Bypass Scrambler and Descrambler  
0 = Normal Operation  
16.12  
16.11  
16.10  
R/W  
R/W  
R/W  
0
0
0
Reserved  
Ignore  
Jabber  
(10BASE-T)  
1 = Disable Jabber Correction  
0 = Normal operation  
SQE  
(10BASE-T)  
1 = Enable Heart Beat  
0 = Disable Heart Beat  
16.9  
16.8  
R/W  
R/W  
0
0
TP Loopback  
(10BASE-T)  
1 = Disable TP loopback during half-duplex operation  
0 = Normal Operation  
CRS Select  
(10BASE-T)  
1 = CRS deassert extends to RX_DV deassert  
0 = Normal Operation  
16.7  
16.6  
R/W  
R/W  
1
0
Reserved  
Write as zero, ignore on read.  
Preamble Enable.  
16.5  
PRE_EN  
R/W  
R/W  
0
0 = Set RX_DV high coincident with SFD.  
1 = Set RX_DV high and RXD = preamble when CRS is asserted.  
16.4:3 Reserved  
Write as zero, ignore on read.  
00  
1. R/W = Read /Write, LHR = Latches High on Reset  
64  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 46. Configuration Register (Address 16, Hex 10) (Continued)  
Bit  
Name  
Reserved  
Description  
Write as zero, ignore on read.  
Type 1  
Default  
16.2  
R/W  
0
Alternate NP  
feature  
1 = Enable alternate auto negotiate next page feature.  
0 = Disable alternate auto negotiate next page feature  
16.1  
16.0  
R/W  
R/W  
0
0
Reserved  
Write as zero, ignore on read.  
1. R/W = Read /Write, LHR = Latches High on Reset  
Table 47. Status Register #2 (Address 17)  
Bit  
Name  
Reserved  
Description  
Type 1  
Default  
17.15  
Always 0.  
RO  
0
1 = LXT972A is operating in 100BASE-TX mode.  
0 = LXT972A is not operating 100BASE-TX mode.  
17.14  
17.13  
17.12  
17.11  
17.10  
17.9  
10/100 Mode  
Transmit Status  
Receive Status  
Collision Status  
Link  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
1 = LXT972A is transmitting a packet.  
0 = LXT972A is not transmitting a packet.  
1 = LXT972A is receiving a packet.  
0 = LXT972A is not receiving a packet.  
1 = Collision is occurring.  
0 = No collision.  
1 = Link is up.  
0 = Link is down.  
1 = Full-duplex.  
0 = Half-duplex.  
Duplex Mode  
Auto-Negotiation  
1 = LXT972A is in Auto-Negotiation Mode.  
0 = LXT972A is in manual mode.  
17.8  
1 = Auto-negotiation process completed.  
0 = Auto-negotiation process not completed.  
Auto-Negotiation  
Complete  
17.7  
RO  
0
This bit is only valid when auto negotiate is enabled, and is equivalent  
to bit 1.5.  
17.6  
17.5  
Reserved  
Polarity  
Reserved.  
RO  
RO  
0
0
1 = Polarity is reversed.  
0 = Polarity is not reversed.  
1 = Device Pause capable.  
0 = Device Not Pause capable.  
17.4  
17:3  
Pause  
Error  
RO  
RO  
0
0
1 = Error Occurred (Remote Fault, X,Y,Z).  
0 = No error occurred.  
17:2  
17:1  
17.0  
Reserved  
Reserved  
Reserved  
Always 0.  
Always 0.  
Always 0.  
RO  
RO  
RO  
0
0
0
1. RO = Read Only. R/W = Read/Write  
Datasheet  
65  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 48. Interrupt Enable Register (Address 18)  
Bit  
Name  
Description  
Type 1  
Default  
18.15:9 Reserved  
Write as 0; ignore on read.  
Write as 0; ignore on read.  
R/W  
R/W  
N/A  
0
18.8  
18.7  
Reserved  
ANMSK  
Mask for Auto Negotiate Complete  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Speed Interrupt  
18.6  
18.5  
18.4  
SPEEDMSK  
DUPLEXMSK  
LINKMSK  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Duplex Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
Mask for Link Status Interrupt  
1 = Enable event to cause interrupt.  
0 = Do not allow event to cause interrupt.  
18.3  
18.2  
Reserved  
Reserved  
Write as 0, ignore on read.  
Write as 0, ignore on read.  
R/W  
R/W  
0
0
1 = Enable interrupts.  
0 = Disable interrupts.  
18.1  
18.0  
INTEN  
TINT  
R/W  
R/W  
0
0
1 = Force interrupt on MDINT.  
0 = Normal operation.  
1. R/W = Read /Write  
Table 49. Interrupt Status Register (Address 19, Hex 13)  
Bit  
Name  
Description  
Type 1  
Default  
19.15:9 Reserved  
Ignore  
RO  
N/A  
0
19.8  
19.7  
Reserved  
ANDONE  
Ignore  
RO  
Auto Negotiation Status  
RO/SC  
N/A  
0
1 = Auto Negotiation has completed.  
0 = Auto Negotiation has not completed.  
Speed Change Status  
19.6  
19.5  
SPEEDCHG  
1 = A Speed Change has occurred since last reading this register.  
0 = A Speed Change has not occurred since last reading this register.  
RO/SC  
RO/SC  
Duplex Change Status  
DUPLEXCHG  
1 = A Duplex Change has occurred since last reading this register.  
0 = A Duplex Change has not occurred since last reading this register.  
0
Link Status Change Status  
19.4  
19.3  
LINKCHG  
Reserved  
1 = A Link Change has occurred since last reading this register.  
0 = A Link Change has not occurred since last reading this register.  
RO/SC  
RO  
0
0
Ignore  
1. R/W = Read/Write, SC = Self Clearing.  
66  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 49. Interrupt Status Register (Address 19, Hex 13) (Continued)  
Bit  
Name  
Description  
Type 1  
Default  
1 = MII interrupt pending.  
19.2  
MDINT  
RO  
0 = No MII interrupt pending.  
19.1  
19.0  
Reserved  
Reserved  
Ignore.  
Ignore  
RO  
RO  
N/A  
0
1. R/W = Read/Write, SC = Self Clearing.  
Datasheet  
67  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
Table 50. LED Configuration Register (Address 20, Hex 14)  
Bit  
Name  
Description  
Type 1  
Default  
0000 = Display Speed Status (Continuous, Default)  
0001 = Display Transmit Status (Stretched)  
0010 = Display Receive Status (Stretched)  
0011 = Display Collision Status (Stretched)  
0100 = Display Link Status (Continuous)  
0101 = Display Duplex Status (Continuous)  
0110 = Unused  
LED1  
0111 = Display Receive or Transmit Activity (Stretched)  
1000 = Test mode- turn LED on (Continuous)  
1001 = Test mode- turn LED off (Continuous)  
1010 = Test mode- blink LED fast (Continuous)  
1011 = Test mode- blink LED slow (Continuous)  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
20.15:12  
R/W  
0000  
Programming  
bits  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status  
0011 = Display Collision Status  
0100 = Display Link Status (Default)  
0101 = Display Duplex Status  
0110 = Unused  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
LED2  
20.11:8  
R/W  
0100  
Programming  
bits  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
0000 = Display Speed Status  
0001 = Display Transmit Status  
0010 = Display Receive Status (Default)  
0011 = Display Collision Status  
0100 = Display Link Status  
0101 = Display Duplex Status  
0110 = Unused  
0111 = Display Receive or Transmit Activity  
1000 = Test mode- turn LED on  
LED3  
20.7:4  
R/W  
0010  
Programming  
bits  
1001 = Test mode- turn LED off  
1010 = Test mode- blink LED fast  
1011 = Test mode- blink LED slow  
1100 = Display Link and Receive Status combined 2 (Stretched)3  
1101 = Display Link and Activity Status combined 2 (Stretched)3  
1110 = Display Duplex and Collision Status combined 4 (Stretched)3  
1111 = Unused  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of  
the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Values are relative approximations. Not guaranteed or production tested.  
68  
Datasheet  
3.3V Dual-Speed Fast Ethernet Transceiver Datasheet LXT972A  
Table 50. LED Configuration Register (Address 20, Hex 14) (Continued)  
Bit  
Name  
Description  
Type 1  
Default  
00 = Stretch LED events to 30 ms.  
01 = Stretch LED events to 60 ms.  
10 = Stretch LED events to 100 ms.  
11 = Reserved.  
20.3:2  
LEDFREQ5  
R/W  
00  
PULSE-  
STRETCH  
0 = Disable pulse stretching of all LEDs.  
1 = Enable pulse stretching of all LEDs.  
20.1  
20.0  
R/W  
R/W  
1
Reserved  
Ignore.  
N/A  
1. R/W = Read /Write  
RO = Read Only  
LH = Latching High  
2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up.  
The secondary LED driver (Receive or Activity) causes the LED to change state (blink).  
3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of  
the value of 20.1.  
4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex.  
Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs.  
5. Values are relative approximations. Not guaranteed or production tested.  
Table 51. Transmit Control Register #2 (Address 30)  
Bit  
Name  
Reserved  
Description  
Type2  
Default  
30.15:11  
Ignore  
R/W  
0
1 = Forces the transmitter into low power mode. Also  
forces a zero-differential transmission.  
0 = Normal transmission.  
30.12  
Transmit Low Power  
R/W  
0
00 = 2.7 ns (default is pins TXSLEW<1:0>)  
01 = 3.5 ns  
10 = 2.3 ns  
11 = 2.0 ns  
30.11:10  
30.9:0  
Port Rise Time Control1  
Reserved  
R/W  
R/W  
N/A  
0
Ignore  
1. Values are relative approximations. Not guaranteed or production tested.  
2. R/W = Read/Write  
Datasheet  
69  
LXT972A 3.3V Dual-Speed Fast Ethernet Transceiver Datasheet  
7.0  
Package Specification  
Figure 37. LXT972A LQFP Package Specifications  
64-Pin Low Profile Quad Flat Pack  
Part Number - LXT972ALC Commercial Temperature Range (0ºC to +70ºC)  
D
D1  
Millimeters  
Dim  
Min  
Max  
A
1.60  
0.15  
1.45  
0.27  
12.15  
10.1  
12.15  
10.1  
A
0.05  
1.35  
0.17  
11.85  
9.9  
1
2
A
B
E1  
D
E
D
1
E
E1  
e
11.85  
9.9  
0.50 BSC1  
L
0.45  
0.75  
L
1.00 REF  
1
3
θ
11o  
0o  
13o  
7o  
e
e
θ
/
2
1. Basic Spacing between Centers  
θ3  
L1  
A2  
A
θ
A1  
B
θ3  
L
70  
Datasheet  

相关型号:

LXT972ALC

3.3V Dual-Speed Fast Ethernet Transceiver Datasheet
INTEL

LXT972LC

Ethernet Transceiver, 1-Trnsvr, CMOS, PQFP64,
LevelOne

LXT972M

Single-Port 10/100 Mbps PHY Transceiver
INTEL

LXT973QC

Ethernet Transceiver, 2-Trnsvr, PQFP100, PLASTIC, QFP-100
INTEL

LXT973QE

Ethernet Transceiver, 2-Trnsvr, PQFP100, PLASTIC, QFP-100
INTEL

LXT974

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974A

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974AHC

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974B

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974BHC

Fast Ethernet 10/100 Quad Transceivers
INTEL

LXT974QC

LAN Transceiver
ETC

LXT975

Fast Ethernet 10/100 Quad Transceivers
INTEL