TLE8366EV50XUMA1 [INFINEON]

Switching Regulator, Voltage-mode, 3.6A, 420kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, MS-012, SOP-8;
TLE8366EV50XUMA1
型号: TLE8366EV50XUMA1
厂家: Infineon    Infineon
描述:

Switching Regulator, Voltage-mode, 3.6A, 420kHz Switching Freq-Max, PDSO8, GREEN, PLASTIC, MS-012, SOP-8

开关 光电二极管
文件: 总19页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8366  
1.8A DC/DC Step-Down Voltage Regulator  
TLE8366EV50  
TLE8366EV  
TLE8366EV33  
Data sheet  
Rev. 1.0, 2009-05-18  
Automotive Power  
1.8A DC/DC Step-Down Voltage Regulator  
TLE8366  
1
Overview  
1.8A step down voltage regulator  
Output voltage versions: 5.0 V, 3.3 V and adjustable  
± 2% output voltage tolerance (+-4% for full load current range)  
Integrated power transistor  
PWM regulation with feedforward  
Input voltage range from 4.75V to 45V  
370 kHz switching frequency  
Synchronization input  
Very low shutdown current consumption (<2uA)  
Soft-start function  
PG-DSO-8  
Input undervoltage lockout  
Suited for automotive applications: Tj = -40 °C to +150 °C  
Green Product (RoHS compliant)  
AEC Qualified  
Description  
The TLE8366 is a PWM step-down DC/DC converter with an integrated 1.8 A power switch, packaged in a small  
PG-DSO-8 with exposed pad. There are three versions available, two fixed voltage with 5.0 V (TLE8366EV50) or  
3.3 V (TLE8366EV33) and a variable voltage variant named TLE8366EV with a reference feedback voltage of only  
600 mV. The wide input voltage range from 4.75 to 45 V makes the TLE8366 suitable for a wide variety of  
applications. The device is designed to be used under harsh automotive environment.  
The switching frequency of nominal 370 kHz allows the use of small and cost-effective inductors and capacitors,  
resulting in a low, predictable output ripple and in minimized consumption of board space. (If desired the device  
could be synchronized to an external frequency source between 200 and 530 kHz.)  
The TLE8366 includes safety features such as a cycle-by-cycle current limitation, over-temperature shutdown and  
input under voltage lockout. The enable function, in shutdown mode with less than 2 µA current consumption,  
enables easy power management in battery-powered systems.  
The voltage regulation loop provides an excellent line and load regulation. The stability of the loop could be  
adjusted by using an external compensation network. This compensation network combined with voltage mode  
regulation and a feed-forward control path guarantees a highly effective line transient rejection. During start-up the  
integrated soft-start limits the inrush current peak and prevents from a voltage overshoot.  
Type  
Package  
Marking  
8366EV50  
8366EV33  
8366EV  
TLE8366EV50  
TLE8366EV33  
TLE8366EV  
PG-DSO-8  
PG-DSO-8  
PG-DSO-8  
Data sheet  
2
Rev. 1.0, 2009-05-18  
TLE8366  
Block Diagram  
2
Block Diagram  
EN  
VS  
7
8
Enable  
Charge Pump  
Over  
Temperature  
Shutdown  
BDS  
BUO  
FB  
5
Feedforward  
COMP  
Buck  
3
Converter  
6
4
SYNC  
Oscillator  
1
Bandgap  
Soft start ramp  
generator  
Reference  
TLE8366  
2
GND  
Figure 1  
Block Diagram  
Data sheet  
3
Rev. 1.0, 2009-05-18  
TLE8366  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
TLE8366  
SYNC  
GND  
COMP  
FB  
1
2
3
4
8
7
6
5
VS  
EN  
BUO  
BDS  
S08_PIN.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin Symbol Function  
1
SYNC  
Synchronization Input.  
Connect to an external clock signal in order to synchronize/adjust the switching frequency.  
If not used connect to GND.  
2
3
GND  
COMP  
Ground.  
Compensation Input.  
Frequency compensation for regulation loop stability.  
Connect to compensation RC-network.  
4
FB  
Feedback Input.  
For the adjustable output voltage versions (TLE8366EV) connect via voltage divider to output  
capacitor.  
For the fixed voltage version (TLE8366EV50, TLE8366EV33) connect this pin directly to the  
output capacitor.  
5
6
BDS  
BUO  
Buck Driver Supply Input.  
Connect the bootstrap capacitor between this pin and pin BUO.  
Buck Switch Output.  
Source of the integrated power-DMOS transistor. Connect directly to the cathode of the catch  
diode and the buck circuit inductance.  
7
8
EN  
VS  
Enable Input.  
Active-high enable input with integrated pull down resistor.  
Supply Voltage Input.  
Connect to supply voltage source.  
Exposed Pad Connect to heatsink area and GND by low inductance wiring.  
Data sheet  
4
Rev. 1.0, 2009-05-18  
TLE8366  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min.  
-0.3  
-0.3  
Max.  
Voltages  
4.1.1  
Synchronization Input  
Compensation Input  
Feedback Input  
VSYNC  
VCOMP  
VFB  
5.5  
6.2  
5.5  
6.2  
10  
V
V
V
V
V
t < 10s2)  
4.1.2  
4.1.3  
4.1.4  
t < 10s2)  
TLE8366EV50;  
TLE8366EV33  
-0.3  
-0.3  
4.1.5  
4.1.6  
5.5  
V
V
TLE8366EV  
Buck Driver Supply Input  
VBDS  
VBUO  
VBUO  
- 0.3  
+ 5.5  
4.1.7  
4.1.8  
4.1.9  
Buck Switch Output  
Enable Input  
Supply Voltage Input  
VBUO  
VEN  
VVS  
-2.0  
-40  
-0.3  
V
45  
45  
VS + 0.3  
V
V
V
Temperatures  
4.1.10  
4.1.11  
Junction Temperature  
Storage Temperature  
Tj  
Tstg  
-40  
-55  
150  
150  
°C  
°C  
ESD Susceptibility  
4.1.12  
4.1.13  
4.1.14  
ESD Resistivity  
ESD Resistivity to GND  
ESD Resistivity corner pins to GND  
VESD  
VESD  
VESD  
-2  
-500  
-750  
2
500  
750  
kV  
V
V
HBM 3)  
CDM 4)  
CDM 4)  
1) Not subject to production test, specified by design  
2) Exposure to those absolute maximum ratings for extended periods of time (t > 10s) may affect device reliability  
3) ESD susceptibility HBM according to EIA/JESD 22-A 114B (1.5k,100pF).  
4) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data sheet  
5
Rev. 1.0, 2009-05-18  
 
 
TLE8366  
General Product Characteristics  
4.2  
Functional Range  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
4.75  
0.60  
18  
33  
Max.  
45  
16  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
Supply Voltage  
Output Voltage adjust range  
Buck inductor  
Buck capacitor  
Buck capacitor ESR  
VS  
VCC  
LBU  
CBU1  
ESRBU1  
Tj  
V
V
µH  
µF  
TLE8366EV  
56  
120  
0.3  
150  
1)  
Junction Temperature  
-40  
°C  
1) See section ““Application Information” on Page 14” for loop compensation requirements.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
4.3  
Thermal Resistance  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
10  
52  
Max.  
12  
4.3.1  
4.3.2  
Junction to Case1)  
RthJC  
RthJA  
K/W  
K/W  
Junction to ambient1)  
2)  
1) Not subject to production test, specified by design.  
2) According to Jedec JESD52-1,-5,-7 at natural convection on 2s2p FR4 PCB for 1W power dissipation. PCB  
76.2x114.3x1.5mm3 with 2 inner copper layers of 70µm thickness. Thermal via array conected to the first inner copper layer  
under the exposed pad.  
Data sheet  
6
Rev. 1.0, 2009-05-18  
 
 
TLE8366  
Buck Regulator  
5
Buck Regulator  
5.1  
Description  
5.1.1  
Arrangement  
The step-down (or buck) regulator consists of several functional blocks, which shall be explained in the following:  
The oscillator, the regulator, the safety functions, the gate driver and the internal MOSFET.  
5.1.1.1  
Regulator Block  
The oscillator creates a saw-tooth signal, which is supplied to the PWM comparator and the Schmitt-Trigger 1. The  
frequency of the oscillator might be synchronized to an external frequency connected to pin sync.  
The Error Amplifier compares the feedback signal to the reference voltage. At the variable voltage version the  
feedback pin shall be connected to an external resistor divider, the fixed voltage versions contain an internal  
resistor divider. The soft start function is included by the ramp generator between the reference voltage source  
and the error amplifier. It generates a defined ramp after the initialization of the device. (The device is initialized  
after signal EN turns to high (with supply voltage at VS present) or with rising Supply voltage (with EN = H  
connected to VS) or at restarting after a thermal shutdown. The ramp starts, if the Buck Driver Supply (BDS)  
external capacitor is charged.  
Only for the variable voltage version: If the feedback signal at pin FB gets lost, an internal pull-up current source  
will pull the pin too high thus preventing the output voltage from overshooting.  
A compensation network needs to be connected to the output of the error amplifier using pin COMP.  
The PWM comparator creates the Pulse-Width Modulated (PWM) signal by comparing the error amplifier output  
with the saw-tooth signal from the oscillator.  
5.1.1.2  
Safety Functions Block  
The safety functions block consists of the Error-Flip Flop, the Nor1 Gate and the PWM-Flip-Flop.  
The Error Flip-Flop collects the failure events such as the over-current shutdown of the internal MOSFET, the  
output overvoltage shutdown and the temperature shutdown.  
The over-current shutdown signal is created by the OC comparator. It detects the voltage across an internal shunt  
resistor. If the current exceeds the reference level, the pulse is shut down and the MOSFET switched off.  
The bootstrap under-voltage shutdown is created by the BDS UV comparator, which compares the bootstrap  
capacitor voltage to a reference level. If the bootstrap capacitor voltage is too low, the pulse will be shut down and  
the MOSFET switched off.  
If the output voltage exceeds a reference value, the pulse will also be shut down and the MOSFET switched off.  
Data sheet  
7
Rev. 1.0, 2009-05-18  
TLE8366  
Buck Regulator  
An internal temperature sensor detects the temperature of the device, it will be switched off if the junction  
temperature exceeds 175 °C.  
The error Flip flop is set by the Schmitt Trigger 1 and will be reset by one of these signals. This will close the NOR1  
gate and shutdown the pulse. The bootstrap capacitor monitoring is connected directly to the NOR1 gate.  
The bootstrap under-voltage shutdown is created by the BDS UV comparator, which compares the bootstrap  
capacitor voltage to a reference level. If the bootstrap capacitor voltage is too low, the pulse will be shut down.  
PWM pulses are passing through the NOR 1 gate. In case if one of the mentioned failures will occur this gate will  
be closed and the pulse switched immediately off.  
The PWM Flip-Flop is set by NAND2, which combines the clock from the Schmitt Trigger 1 with the output from  
NOR1. The PWM Flip-Flop is reset by the output of the NOR1.  
5.1.1.3  
Internal Power Stage  
The gate driver consists of the Gate driver itself, an inverter for the PWM signal and the gate driver supply. The  
gate Driver Supply is connected over pin BDS to the BDS capacitor. A charge pump is integrated to support the  
gate drive in cases of low input voltage, small differential voltage between input supply and output voltage and  
during start up. To minimize emissions the charge pump is switched off if the input voltage is high enough to charge  
the bootstrap capacitor.  
5.1.2  
Operation Mode  
The PWM pulses are voltage controlled. The error amplifier and the PWM comparator are creating the PWM  
pulses using the oscillator saw-tooth signal and the feedback voltage. The pulse-width modulation is done so that  
the feedback voltage (at pin FB for the adjustable version) is similar to the reference voltage (0.6 V).  
Between input voltages from 8.0 to 36 V the integrated feed forward path provides a fast line transient rejection.  
(feed-forward means sensing the input voltage and react on fluctuations before they influence the output)  
To achieve a stable output voltage even under low duty cycle conditions (light load down to zero output load and/or  
high input voltage) a pulse skipping mode is implemented. Pulse skipping is also used for operation with low supply  
voltages leading to duty cycles > 92%.  
Data sheet  
8
Rev. 1.0, 2009-05-18  
TLE8366  
Buck Regulator  
OC  
VS  
Comp.  
COMP  
FB  
L when Overcurrent  
NOR1  
=
BDS  
Error  
Amp.  
Charge  
Pump  
Gate Driver  
Supply  
PWM  
H when  
Comp.  
Error-Signal <  
Error-Ramp  
Output Stage  
OFF when H  
_
>1  
Error-Signal  
Error-Ramp  
INV  
1
Soft start  
H =  
OFF  
H =  
ON  
R
S
&
&
Q
Power  
OFF  
D-MOS  
when H  
L when  
Gate  
VRef  
R
Tj > 175 °C  
Driver  
=
&
Q
0.6 V  
BUO  
Ramp  
L when  
Generator  
Output  
Q
overvoltage  
Feedforward  
V=k VS  
PWM-FF  
X
&
Oscillator  
Schmitt-Trigger 1  
Vhigh  
NAND 2  
&
S
Q
Vmax  
Vmin  
Ramp  
Clock Error-FF  
BDS  
UV Comp.  
SYNC  
Vlow  
H when  
UV at VBDS  
tr tf tr  
tr tf tr  
t
t
=
Figure 3  
Block Diagram Buck Regulator  
5.2  
Electrical Characteristics  
Electrical Characteristics: Buck Regulator  
VS = 6.0 V to 40 V, Tj = -40 °C to +150 °C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min. Typ. Max.  
TLE8366EV50;  
VEN = VS  
5.2.1  
Output voltage  
VFB  
4.90 5.00  
5.10  
V
V
0.1A < ICC < 1.0A  
5.2.2  
5.2.3  
VFB  
VFB  
4.80 5.00  
3.23 3.30  
5.20  
3.37  
V
V
TLE8366EV50;  
V
VEN = VS;  
1mA < ICC < 1.8A  
TLE8366EV33;  
Output voltage  
Output voltage  
V
VEN = VS;  
0.1A < ICC < 1.0A  
TLE8366EV33;  
5.2.4  
5.2.5  
VFB  
VFB  
3.17 3.30  
0.588 0.60  
3.43  
V
V
V
VEN = VS;  
1mA < ICC < 1.8A  
TLE8366EV;  
0.612  
V
VEN = VS;  
FB connected to VCC;  
VS = 12V  
0.1A < ICC < 1.0A  
TLE8366EV;  
5.2.6  
VFB  
0.576 0.60  
0.624  
V
V
VEN = VS;  
FB connected to VCC;  
VS = 12V  
1mA < ICC < 1.8A  
Data sheet  
9
Rev. 1.0, 2009-05-18  
TLE8366  
Buck Regulator  
Electrical Characteristics: Buck Regulator  
VS = 6.0 V to 40 V, Tj = -40 °C to +150 °C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit Conditions  
Min. Typ. Max.  
5.2.7  
5.2.8  
5.2.9  
Minimum output load requirement ICC,MIN  
0
mA TLE8366EV501)  
mA  
TLE8366EV331)  
1
1.5  
mA TLE8366EV  
VCC > 3V1)  
5.2.10  
5.2.11  
5
mA TLE8366EV  
VCC > 1.5V1)  
10  
-1  
mA TLE8366EV  
VCC 0.6V1)  
5.2.12 FB input current  
5.2.13 FB input current  
IFB  
IFB  
-0.1  
0
µA  
µA  
TLE8366EV  
FB = 0.6V  
V
900  
TLE8366EV50,  
TLE8366EV33  
5.2.14 Power stage on-resistance  
5.2.15 Current transition rise/fall time  
5.2.16 Buck peak over current limit  
5.2.17 Bootstrap under voltage lockout,  
turn-off threshold  
Ron  
tr  
IBUOC  
VBDS,off  
2.2  
50  
500  
3.6  
mtested at 300 mA  
ns  
A
ICC=1 A 2)  
VBUO  
V
Bootstrap voltage  
decreasing  
+3.3  
5.2.18 Charge pump current  
ICP  
2
5
mA VS = 12V;  
V
BUO = VBDS = GND  
5.2.19 Charge pump switch-off threshold VBDS  
-
V
(VBDS - VBUO) increasing  
VBUO  
Dmax  
tstart  
3)  
5.2.20 Maximum duty cycle  
5.2.21 Soft start ramp  
100  
750  
%
350 500  
µs  
VFB rising from 5% to  
95% of VFB,nom  
5.2.22 Input under voltage shutdown  
threshold  
5.2.23 Input voltage startup threshold  
VS,off  
VS,on  
3.75  
V
VS decreasing  
150  
4.75  
V
mV  
VS increasing  
5.2.24 Input under voltage shutdown  
VS,hyst  
hysteresis  
1) Not subject to production test, application related parameter  
2) Not subject to production test; specified by design.  
3) Consider Chapter 4.2, Functional Range”  
Data sheet  
10  
Rev. 1.0, 2009-05-18  
 
TLE8366  
Buck Regulator  
5RQ  
ꢃꢅꢅꢁPŸ  
ꢆꢅꢅꢁPŸ  
7M  
ꢇꢁꢈꢅꢁƒ&  
ꢀꢁꢂꢃꢁƒ&  
ꢀꢁꢄꢃꢅꢁƒ&  
Figure 4  
Ron  
Data sheet  
11  
Rev. 1.0, 2009-05-18  
TLE8366  
Module Enable and Thermal Shutdown  
6
Module Enable and Thermal Shutdown  
6.1  
Description  
With the enable pin the device can be set in off-state reducing the current consumption to less than 2µA.  
The enable function features an integrated pull down resistor which ensures that the IC is shut down and the power  
switch is off in case the pin EN is left open.  
The integrated thermal shutdown function turns the power switch off in case of overtemperature. The typ. junction  
shutdown temperature is 175°C, with a min. of 160°C. After cooling down the IC will automatically restart  
operation. The thermal shutdown is an integrated protection function designed to prevent IC destruction when  
operating under fault conditions. It should not be used for normal operation.  
6.2  
Electrical Characteristics Module Enable, Bias and Thermal Shutdown  
Electrical Characteristics: Enable, Bias and Thermal Shutdown  
VS = 6.0 V to 40 V, Tj = -40 °C to +150 °C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
Typ.  
Max.  
6.2.1  
6.2.2  
Current Consumption,  
shut down mode  
Current Consumption,  
active mode  
Iq,OFF  
Iq,ON  
0.1  
2
µA  
V
EN = 0.8V;  
Tj < 105°C; VS = 16V  
7
mA  
VEN = 5.0V; ICC = 0mA;  
VS = 16V  
FB connected to VOUT  
6.2.3  
Current Consumption,  
active mode  
Iq,ON  
10  
mA  
VEN = 5.0V; ICC = 1.8A;  
VS = 16V  
1)  
FB connected to VOUT  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Enable high signal valid  
Enable low signal valid  
Enable hysteresis  
Enable high input current  
Enable low input current  
VEN,lo  
VEN,hi  
VEN,HY  
IEN,hi  
3.0  
50  
160  
V
V
0.8  
400  
30  
1
190  
1)  
200  
0.1  
175  
15  
mV  
µA  
µA  
°C  
K
V
EN = 16V  
EN = 0.5V  
IEN,lo  
V
1)  
Over temperature shutdown Tj,sd  
1)  
6.2.10 Overtemperatureshutdown Tj,sd_hyst  
hysteresis  
1) Specified by design. Not subject to production test.  
Data sheet  
12  
Rev. 1.0, 2009-05-18  
TLE8366  
Module Oscillator  
7
Module Oscillator  
7.1  
Description  
The oscillator supplies the device with a constant frequency. The power switch will be switched on and off with a  
constant frequency. The duty-cycle is derived from this frequency and some safety functions are synchronized to  
this frequency.  
The internal sawtooth signal used for the PWM generation has an amplitude proportional to the input supply  
voltage (feedforward).  
The turn-on frequency can optionally be set externally via the ’SYNC’ pin. In this case the synchronization of the  
PWM-on signal refers to the falling edge of the ’SYNC’-pin input signal. In case the synchronization to an external  
clock signal is not needed the ’SYNC’ pin should be connected to GND.  
Leaving pin SYNC open or short-circuiting it to GND leads to normal operation with the internal switching  
frequency.  
7.2  
Electrical Characteristics Module Oscillator  
Electrical Characteristics: Buck Regulator  
VS = 6.0 V to 40 V, Tj = -40 °C to +150 °C, all voltages with respect to ground (unless otherwise specified)  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Conditions  
Min.  
330  
200  
Typ.  
370  
Max.  
420  
530  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
Oscillator frequency  
fosc  
fsync  
kHz  
kHz  
V
V
MΩ  
V
SYNC = 0V  
Synchronization capture range  
SYNC signal high level valid  
SYNC signal low level valid  
SYNC input internal pull-down  
1)  
1)  
VSYNC,hi 2.9  
VSYNC,lo  
RSYNC  
0.8  
1.4  
0.60  
1.0  
V
SYNC = 5V  
1) Synchronization of PWM-on signal to falling edge.  
Data sheet  
13  
Rev. 1.0, 2009-05-18  
TLE8366  
Application Information  
8
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
8.1  
Frequency Compensation  
The stability of the output voltage can be achieved with a simple RC connected between pin COMP and GND. The  
standard configuration using the swiching frequency of the internal oscillator is a ceramic capacitor CCOMP = 22nF  
and RCOMP = 22k. By slight modifications to the compensation network the stability can be optimized for different  
application needs, such as varying switching frequency (using the sychronizing function), different types of buck  
capacitor (ceramic or tantalum) etc.  
The compensation network is essential for control loop stability. Leaving pin COMP open might lead to instable  
operation.  
8.2  
Compensating a tantalum buck capacitor CBU1  
The control loop is optimized for use of ceramic buck capacitors CBU. In order to maintain stability also for tantalum  
capacitors with ESR up to 300m, an additional compensation capacitance CCOMP2 at pin COMP to GND is  
required. It’s value calculates:  
CCOMP2 = CBU * ESR(CBU) / RCOMP ,  
whereas CCOMP2 needs to stay below 5nF.  
Application _C-COMP2.vsd  
COMP  
3
TLE8366  
CCOMP  
CCOMP2  
2
RCOMP  
GND  
Figure 5  
High-ESR buck capacitor compensation  
8.3  
Catch Diode  
In order to minimize losses and for fast recovery, a schottky catch diode is required. Disconnecting the catch diode  
during operation might lead to destruction of the IC.  
Data sheet  
14  
Rev. 1.0, 2009-05-18  
TLE8366  
Application Information  
8.4  
TLE8366EV50, TLE8366EV33 with fixed Output Voltage  
LI  
D1  
22…47µH  
VBatt  
Ignition Key  
Terminal 15  
EN  
VS  
7
8
Enable  
Charge Pump  
Over  
Temperature  
Shutdown  
BDS  
BUO  
5
Feedforward  
CBOT  
220nF  
LBU  
COMP  
SYNC  
Buck  
3
1
Converter  
6
4
VCC  
47µH  
DBU  
CCOMP  
CBU1  
100µF  
Oscillator  
CBU2  
FB  
220nF  
RCOMP  
Bandgap  
Soft start ramp  
generator  
Reference  
TLE8366EV50  
TLE8366EV33  
2
ApplicationDiagram _8366 -fix.vsd  
GND  
Figure 6  
Application Diagram TLE8366EV50 or TLE8366EV33  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application  
Data sheet  
15  
Rev. 1.0, 2009-05-18  
TLE8366  
Application Information  
8.5  
Adjustable Output Voltage Device  
LI  
D1  
22…47µH  
VBatt  
Ignition Key  
Terminal 15  
EN  
VS  
7
8
Biasing &  
Enable  
Charge Pump  
Over  
Temperature  
Shutdown  
BDS  
5
Feedforward  
CBOT  
220nF  
LBU  
COMP  
SYNC  
Buck  
3
1
Converter  
BUO  
DBU  
6
4
VOUT  
47µH  
CCOMP  
CBU1  
100µF  
Oscillator  
CBU2  
R1  
R2  
FB  
220nF  
RCOMP  
Bandgap  
Soft start ramp  
generator  
CFB  
Reference  
TLE8366EV  
2
ApplicationDiagram _8366 -var.vsd  
GND  
Figure 7  
Application Diagram TLE8366EV  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application  
The output voltage of the TLE8366EV can be programmed by a voltage divider connected to the feedback pin FB.  
The divider cross current should be 300 µA at minimum, therefore the maximum R2 calculates:  
R2 VFB / IR2 --> R2 0.6V / 300 µA = 2 kΩ  
For the desired output voltage level VCC, R1 calculates then (neglecting the small FB input current):  
V
V
CC  
R
= R ---------- 1 .  
2
   
1
FB  
Add a 0.5 nF capacitor close to FB pin.  
Data sheet  
16  
Rev. 1.0, 2009-05-18  
TLE8366  
Package Outlines  
9
Package Outlines  
0.35 x 45˚  
1)  
±0.1  
3.9  
0.1 C D 2x  
8˚ MAX.  
8˚ MAX.  
0˚...8˚  
+0.06  
0.19  
0.08  
Seating Plane  
C
C
0˚...8˚  
1.27  
0.64±0.25  
0.2  
2)  
±0.09  
±0.2  
6
0.41  
M
M
D 8x  
0.2  
C A-B D 8x  
D
Bottom View  
±0.1  
3
A
1
4
8
5
1
4
8
5
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
3) JEDEC reference MS-012 variation BA  
GPS01206  
Figure 9  
Outline PG-DSO-8  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further package information, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data sheet  
18  
Rev. 1.0, 2009-05-18  
TLE8366  
Revision History  
10  
Revision History  
Rev  
Version Date  
Changes  
Rev.1.0 2009-05-18 Final data sheet  
Data sheet  
19  
Rev. 1.0, 2009-05-18  
Edition 2009-05-18  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2009 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

TLE8386-2EL

Basic Smart Boost Controller
INFINEON

TLE8386EL

Smart Boost Controller
INFINEON

TLE8386ELXT

Switching Controller, Current-mode, 0.09A, 500kHz Switching Freq-Max, PDSO14, GREEN, PLASTIC, SSOP-14
INFINEON

TLE8386ELXUMA1

Switching Controller, Current-mode, 0.09A, 500kHz Switching Freq-Max, PDSO14, GREEN, PLASTIC, SSOP-14
INFINEON

TLE84106ELXUMA1

Half Bridge Based Peripheral Driver, 1.5A, BICMOS, PDSO24, GREEN, PLASTIC, SSOP-24
INFINEON

TLE84110ELXUMA1

Half Bridge Based Peripheral Driver, 1.5A, BICMOS, PDSO24, GREEN, PLASTIC, SSOP-24
INFINEON

TLE8444SL

Quad Half-Bridge Driver IC
INFINEON

TLE8457ALE

Telecom Circuit, 1-Func, BICMOS, PDSO8, TSON-8
INFINEON

TLE8457ALEXUMA1

Telecom Circuit, 1-Func, BICMOS, PDSO8, TSON-8
INFINEON

TLE8457ASJ

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8
INFINEON

TLE8457ASJXUMA1

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8
INFINEON

TLE8457BLE

Telecom Circuit, 1-Func, BICMOS, PDSO8, TSON-8
INFINEON