TLE8457ASJ [INFINEON]

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8;
TLE8457ASJ
型号: TLE8457ASJ
厂家: Infineon    Infineon
描述:

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8

电信 信息通信管理 光电二极管 电信集成电路
文件: 总33页 (文件大小:1124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
1
Overview  
Features  
Single-wire LIN transceiver for transmission rates up to 20 kBit/s  
Compliant to ISO 17987-4, LIN specification 2.2A and SAE J2602  
5 V or 3.3 V Low Drop-Out Linear Voltage Regulator with 70 mA current  
capability  
Stable with ceramic output capacitor of 1 µF  
Ultra low current consumption in Sleep Mode of max. 16µA  
Ultra low current consumption in Standby Mode: typical 20 µA  
Very low leakage current on the BUS pin  
V
CC undervoltage detection with RESET output  
TxD protected with dominant time-out function and state check after  
mode change to Normal Operation Mode  
Initialization watchdog with automatic transition to Sleep Mode  
BUS short to VBAT protection and BUS short to GND handling  
Over-temperature protection and supply undervoltage detection  
Very high ESD robustness; ±8kV according to IEC61000-4-2  
Optimized for high Electromagnetic Compatibility (EMC);  
Very low emission and high immunity to interference  
Available in standard PG-DSO-8 and leadless PG-TSON-8 packages  
PG-TSON-8 package supports Automated Optical Inspection (AOI)  
Green Product (RoHS compliant)  
AEC Qualified  
Applications  
LIN slave satellite modules  
Window lifters  
Rain/light sensors  
Sun roof control modules  
Wiper modules  
Ambient lighting  
Data Sheet  
www.infineon.com/transceivers  
1
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Overview  
Description  
The TLE8457 is a monolithic integrated LIN transceiver and Low Drop-Out voltage regulator. The device is  
designed to supply a microcontroller and peripherals with up to 70mA, provide protection through VCC  
undervoltage reset, while also offering bi-directional bus communication compliant to LIN Specification 2.2A  
and SAE J2602. With the ultra low quiescent current consumption of typical 20 µA in Standby Mode the  
TLE8457 is especially suited for applications that are permanently supplied by the battery.  
Based on the Infineon BiCMOS technology the TLE8457 provides excellent ESD robustness together with a very  
high level of electromagnetic compatibility (EMC). The TLE8457 is AEC qualified and tailored to withstand the  
harsh conditions of the automotive environment.  
Type  
LDO VCC Output Voltage Package  
Marking  
8457A  
8457A  
8457B  
8457B  
TLE8457ASJ  
TLE8457ALE  
TLE8457BSJ  
TLE8457BLE  
5 V  
PG-DSO-8  
PG-TSON-8  
PG-DSO-8  
PG-TSON-8  
5 V  
3.3 V  
3.3 V  
Data Sheet  
2
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
4.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus Wake-up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Power-Up / Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
VS Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VCC Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Initialization Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
TxD Time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Over-temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.2  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.4  
4.5  
4.5.1  
4.5.2  
4.6  
5
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.1  
5.2  
5.3  
6
6.1  
6.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ESD Robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Transient Robustness according to ISO 7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LIN Physical Layer Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.1  
7.2  
7.3  
7.4  
8
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Data Sheet  
3
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Block Diagram  
2
Block Diagram  
Linear Regulator  
8
VCC  
Bandgap  
Reference  
Driver  
Current Limitation  
V
CC Undervoltage  
Detection  
Control  
VCC  
1
VS  
RNRST  
7
NRST  
EN  
Supply Monitor  
Rslave  
Control  
Wake  
Receiver  
2
VCC  
REN  
Over-Temperature  
and Over-Current  
Protection  
RTxD  
Transmitter  
4
BUS  
6
5
Driver  
TxD  
RxD  
Time-Out  
VCC  
Receiver  
BUS  
RF-  
Filter  
3
GND  
VS /2  
TLE8457_BLOCK_DIAGRAM  
Figure 1  
Block diagram  
Data Sheet  
4
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
VS  
EN  
1
2
3
4
8
7
6
5
VCC  
VCC  
VS  
EN  
1
2
3
4
8
7
6
5
NRST  
TxD  
NRST  
TxD  
RxD  
(PAD)  
GND  
BUS  
GND  
BUS  
RxD  
PG-TSON-8  
(Top side X-Ray view)  
PG-DSO-8  
TLE8457_PINNING  
Figure 2  
Pin configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
VS  
Battery Supply Voltage;  
Decoupling capacitor required  
2
EN  
Enable Input;  
Integrated pull-down resistor  
Logical “high” to select Normal Operation Mode  
3
4
GND  
Ground  
BUS  
BUS Input / Output;  
Integrated LIN Slave Termination  
5
6
7
RxD  
Receive Data Output;  
Monitors the LIN bus signal in Normal Operation Mode  
Indicates a wake-up event in Init Mode  
TxD  
Transmit Data Input;  
Integrated pull-up resistor  
Logical “low” to drive a dominant signal on the LIN bus  
NRST  
Undervoltage Reset Output;  
Integrated pull-up resistor  
Logical “low” during Reset  
Voltage Regulator Output;  
Output capacitor requirements specified in Functional Device Characteristics  
8
VCC  
PAD  
Connect to PCB heat sink area. Do not connect to other potential than GND  
Data Sheet  
5
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4
Functional Description  
4.1  
Operating Modes  
The operation mode of the TLE8457 is controlled with the EN and TxD input pins (see Figure 3 and Table 2).  
The TLE8457 has 3 major operation modes:  
Normal Operation Mode  
Standby Mode  
Sleep Mode  
Additionally the TLE8457 has an Init Mode that is automatically entered when powering up, detecting wake-  
up events or in case of malfunctions.  
Power-up  
Recovery from over-  
temperature event on  
voltage regulator  
Standby Mode  
1
LIN transceiver: Off  
LDO regulator: On  
EN: Low  
11  
13  
NRST: High  
Init Mode  
12  
CC  
LIN transceiver: Off  
LDO regulator: On  
EN: Low  
10  
8
RxD: Wake-up source1)  
NRST: High2)  
2
7
e
EN  
ag  
volt  
BUS Wake-up  
under  
6
VCC  
9
5
3
Normal Operation Mode  
Sleep Mode  
LIN transceiver: Off  
LDO regulator: Off  
EN: Low  
LIN transceiver: On  
LDO regulator: On  
EN: High  
AND  
EN  
TxD  
4
NRST: Low  
NRST: High  
1) Wake-up Source:  
RxD:  
RxD:  
logical „high“ after Power-up or Reset  
logical „low“ after BUS Wake-up detection  
2) Reset:  
NRST will stay „low“ during LDO failures and for the Reset time tRST  
TLE8457_MODE_DIAGRAM  
Figure 3  
Operation mode state diagram  
Data Sheet  
6
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
Table 1  
Operation mode transitions  
No. Reason for transition  
Comment  
1
2
3
4
5
6
Power-on detection  
The VS supply voltage rise above the VS,PON power-on reset level  
Triggered by logical “high” level  
Mode change with EN input  
V
CC undervoltage detection  
VCCoutput voltage fall below the reset threshold level  
Mode change with EN and TxD inputs Triggered by logical “low” level on EN and TxD  
Mode change with EN input  
Bus wake-up detection  
Triggered by logical “high” level  
RxD set “low” for signalling the bus wake-up event to the  
microcontroller  
7
8
Bus wake-up detection  
RxD set “low” for signalling the bus wake-up event to the  
microcontroller  
Initialization watchdog timer  
elapsed  
Forced transition to Sleep Mode because of no response from  
microcontroller after power-on, wake-up, reset or if local errors  
are preventing VCC to power up  
9
Mode change with EN and TxD inputs Triggered by logical “low” level on EN while TxD is held “high”  
10 Mode change with EN input  
11 Bus wake-up detection  
Triggered by logical “high” level  
RxD set “low” for signalling the bus wake-up event to the  
microcontroller  
12 VCC undervoltage detection  
Detection of failure due to VCC undervoltage or recovery from an  
over-temperature event  
13 Recovery from LDO over-  
temperature event  
When over-temperature on the LDO is detected the TLE8457 is  
disabled. After recover the device is activated in Init Mode  
Table 2  
Mode  
Operating Mode Control  
Control  
Functionality  
Comments  
EN  
TxD  
VCC  
Off  
On  
NRST  
RxD  
Sleep  
Init  
Low  
Low  
Low  
High1)  
Low  
High2)  
Floating  
Low  
RxD “low” after a bus wake-up  
High  
RxD “high” after power-up or reset  
Standby Low  
High1)  
On  
On  
High  
High  
High  
Normal  
High  
Low  
High  
Low  
High  
RxD reflects the signal on the bus  
TxD driven by the microcontroller  
Operation  
1) The TxD input has a pull-up structure to VCC and is default set to logical “high” if left open.  
2) NRST is logical “low” during VCC undervoltage and while issuing a reset pulse to the microcontroller.  
Data Sheet  
7
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.1.1  
Normal Operation Mode  
In Normal Operation Mode both the voltage regulator and the LIN transceiver are active. The TLE8457  
supports data transmission rates up to 20 kBit/s: Data from the microcontroller is transmitted to the LIN bus  
via the TxD input, while the receiver detects the data stream on the LIN bus and forwards it to the RxD output.  
After entering Normal Operation Mode the TLE8457 requires a logical “high” signal for the time tto,rec on the  
TxD input before releasing the data communication; The transmitter remains deactivated as long as the signal  
on the TxD input pin remains logical “low”, preventing possible bus communication disturbance (see  
Figure 4).  
From Normal Operation Mode the TLE8457 can be set to Standby Mode or Sleep Mode.  
EN  
tMODE,HIGH  
tMODE,LOW  
t
VCC  
t
t
t
t
NRST  
Data transmission  
RxD  
TxD  
tto,rec  
Data transmission  
Standby mode  
Normal Operation mode  
Sleep mode  
TLE8457_NORMAL_MODE  
Figure 4  
Entering Normal Operation Mode, transition to Sleep Mode  
4.1.2  
Standby Mode  
Standby Mode is a low power mode with ultra low quiescent current consumption while the voltage regulator  
remains active, supplying for example a microcontroller in Stop mode. No LIN bus communication is possible,  
the transmitter and the receiver are disabled. The low power receiver is still active and the device can wake-  
up by a message on the LIN bus.  
For changing the operation mode change from Standby Mode to Sleep Mode, the device has first to be set in  
Normal Operation Mode, then in Sleep Mode (see Figure 4).  
Data Sheet  
8
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.1.3  
Init Mode  
After a power-up event the TLE8457 enters Init Mode by default. In this mode the LIN transceiver is disabled,  
but the voltage regulator is switched on. Following the linear voltage regulator has reached its nominal output  
voltage VCC and the NRST output set “high”, the external microcontroller can change the mode to Normal  
Operation Mode. If the Initialization Watchdog timer elapses before a “high” signal is detected on the EN input,  
the TLE8457 will autonomously transition to Sleep Mode (see “Initialization Watchdog” on Page 15). The  
Initialization Watchdog protection in Init Mode is always activated after starting up the voltage regulator and  
after a reset pulse, triggered by the NRST output going “high”.  
In Init Mode the TLE8457 indicates wake-up information on the RxD output. After a power-up and reset event,  
the RxD output will be “high”. If the TLE8457 is in Init Mode after BUS wake-up detection, the RxD output will  
be “low”.  
Transitions to Init Mode can be controlled with the EN input when in Sleep Mode, or automatic forced after:  
Bus wake-up event on the BUS pin.  
Power-up event on the supply VS.  
Power-on reset caused by the supply VS.  
Voltage regulator failure event due to VS undervoltage.  
Recovery of an over-temperature event on the voltage regulator.  
VS  
VS,PON  
t
LIN  
t
t
tWK,bus  
VCC  
NRST  
t
RxD  
EN  
RxD signals Power-up  
RxD signals Bus Wake-up  
t
t
The device remains in Init mode while the  
signal on the EN pin is „low“  
Un-powered  
Init mode  
Normal Operation mode  
TLE8457_INIT_MODE  
Figure 5  
Entering Init Mode after power-up  
Data Sheet  
9
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.1.4  
Sleep Mode  
Sleep Mode is a low power mode with quiescent current consumption reduced to a minimum while the device  
can still wake-up by a message on the LIN bus. Both the transceiver and the voltage regulator are switched off.  
4.1.5  
Bus Wake-up event  
A bus wake-up event, also called remote wake-up, causes a transition from a low power mode to Init Mode. A  
falling edge on the LIN bus, followed by a dominant bus signal for the time tWK,bus results in a bus wake-up  
event. The mode change to Init Mode becomes active with the following rising edge on the LIN bus, when bus  
voltage exceeds VBUS,wk. The TLE8457 remains in low power mode until it detects a state change on the LIN bus  
from dominant to recessive (see Figure 6). In Init Mode a logical “low” signal on the RxD output indicates a bus  
wake-up event.  
In case the TLE8457 detects a bus wake-up event while already being in Init, the wake-up event will be  
signalled with a logical “low” level on RxD and override the previous wake source (see Figure 5).  
VBUS,wk  
VBUS  
VBUS,dom  
tWK,bus  
t
Sleep mode  
Init mode  
VCC,UV,ON  
VCC  
t
t
tRST  
NRST  
EN  
t
TxD is „high“ because of internal  
pull-up structure  
TxD  
RxD  
t
t
RxD „low“ indicates a Bus  
Wake-up event  
TLE8457_BUS_WAKE  
Figure 6  
Bus wake-up behavior  
Data Sheet  
10  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.1.6  
Mode Transition via EN pin  
The EN input is used for operation mode control of the TLE8457. By setting the EN input logical “high” for the  
time tMODE,HIGH while being in Init Mode or Standby Mode, a transition to Normal Operation Mode will be  
triggered.  
If the voltage level at the EN input is set logical “high” while the TLE8457 is in Sleep Mode, a transition to Init  
Mode is initiated. If the EN input is continuously held “high” though powering up the voltage regulator and the  
following reset pulse, Normal Operation Mode will be entered.  
From Normal Operation Mode the TLE8457 can be set to either Sleep Mode or Standby Mode. If the EN input is  
set “low” for the time tMODE,LOW while the TxD input is held logical “high”, the mode will change to Standby  
Mode. For a transition to Sleep Mode, the TxD must be set logical “low” before the time tMODE,LOW elapses after  
EN goes “low” (see Figure 7). It is recommended to program a short delay time from EN is set “low” until TxD  
is set “low”, for preventing driving the bus dominant though mode transition to Sleep Mode.  
The EN input has an integrated pull-down resistor to ensure the device remains in a low power mode if the EN  
input is left open. The EN input has an integrated hysteresis (see Figure 7).  
The TLE8457 changes the operation modes regardless of the signal on the BUS pin. In the case of a short circuit  
failure between the LIN bus and GND, resulting in a permanent dominant signal, the TLE8457 can be set to  
Sleep Mode.  
VEN,ON  
EN hysteresis  
EN  
TxD  
VEN,OFF  
t
tMODE,LOW  
tMODE,HIGH  
tMODE,LOW  
tMODE,HIGH  
t
t
tRST  
NRST  
Normal Operation  
mode  
Normal Operation  
mode  
Normal Operation  
mode  
Standby mode  
Sleep mode  
Init mode  
TLE8457_MODE_CONTROL  
Figure 7  
Operation mode control  
The EN input is blocked while the TLE8457 is in Init Mode and NRST is “low”, no mode transitions to Normal  
Operation Mode is possible while a reset pulse is issued. After the NRST output goes “high”, mode control with  
the EN input is released. At the same time the Initialization Watchdog timer starts (see “Initialization  
Watchdog” on Page 15).  
Note:  
If the TLE8457 is being forced to Sleep Mode by the Initialization Watchdog while the EN input is  
externally being held at a logical “high” level, the device will reinitiate Init Mode after the VCC  
voltage has been discharged below ~1 V. In such applications additional supervision means are  
recommended.  
Data Sheet  
11  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.2  
Power Supplies  
The TLE8457 is designed for being supplied by the battery line through an external reverse polarity protection  
diode at the VS pin (see Figure 18). An input capacitor is needed for damping input line transients.  
4.2.1  
Power-Up / Power-Down  
During power-up the TLE8457 will enter Init Mode when the VS supply reaches the power-on reset level VS,PON  
The voltage regulator output VCC will track the VS supply voltage until VCC reaches its nominal voltage level. As  
CC reaches the under-voltage level VCC,UVC, a reset pulse is issued, the NRST output will stay logical “low” for  
.
V
the reset time tRST and then be set logical “high”. As NRST goes “high”, the EN input will become active and the  
TLE8457 can change operating mode accordingly (see Table 2).  
VS  
VS,UV,ON  
VS,UV,OFF  
VCC  
VS  
VCC,UV  
VCC,UV  
VCC  
VS,PON  
VS,PON  
t
tRST  
NRST  
EN  
t
t
un-powered  
Init mode  
Normal Operation mode  
Transmission blocked  
Init mode  
un-powered  
TLE8457_VS_POWER-UP_DOWN  
Figure 8  
Power-up and power-down behavior  
While powering down the TLE8457 will block the LIN transmitter if being in Normal Operation Mode as the VS  
supply voltage falls below VS,UV,OFF. The voltage regulator will start tracking the VS supply voltage when falling  
below VCC + VDR. As VCC falls below the undervoltage level VCC,UV the NRST output will be set logical “low” and  
the TLE8457 will enter Init Mode. When the VS supply voltage falls below the power-on-reset level VS,PON the  
voltage regulator will be disabled and the TLE8457 considered un-powered.  
Data Sheet  
12  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.2.2  
VS Undervoltage Detection  
Undervoltage release level VS,UV,ON  
VS  
Undervoltage hysteresis VS,UV,hys  
Undervoltage blocking level VS,UV,OFF  
Power-on reset level VS,PON  
Blanking time tblank,UV  
t
Normal Operation mode  
No communication possible  
Normal Operation mode  
TLE8457_VS_EARLY_UNDERVOLTAGE_A  
Figure 9  
VS early undervoltage detection  
The TLE8457 has an undervoltage detection on the supply pin VS with two different thresholds:  
In Normal Operation Mode the TLE8457 blocks the communication between the LIN bus and the  
microcontroller when detecting an early undervoltage event. The RxD output will be set “high”. However,  
no mode change will occur. After VS rises above the undervoltage release level VS,UV,REL, the bus  
communication interface will be released when the signal on the TxD input goes “high”. See Figure 9.  
In case the power supply VS drops below the power-on reset level VS,PON the TLE8457 not only blocks the  
transceiver communication, it also changes the operation mode to Init mode after recovery of VS, see  
Figure 10. In Init Mode the TLE8457 indicates a power-up event on the RxD pin. The power-on reset  
detection is active in all operation modes.  
Undervoltage release level VS,UV,ON  
VS  
Undervoltage hysteresis VS,UV,hys  
Undervoltage blocking level VS,UV,OFF  
Power-on reset level VS,PON  
Blanking time tblank,UV  
t
Init mode (EN = “low“)  
Normal Operation mode (EN = “high“)  
Power-down  
Normal Operation mode  
No communication possible  
TLE8457_VS_UNDERVOLTAGE_A  
Figure 10  
VS undervoltage detection  
Data Sheet  
13  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.3  
Voltage Regulator  
The TLE8457 has an integrated voltage regulator dedicated for supplying microcontrollers and/or on-board  
sensors under harsh automotive environment conditions. It can supply a load current up to 70 mA with an  
output voltage tolerance within ± 2%. Because of the ultra low current consumption, the TLE8457 is perfectly  
suited for applications permanently connected to the battery supply. Additionally, in Sleep Mode, the voltage  
regulator is switched off and an even lower quiescent current can be achieved.  
The voltage regulator output is protected against undervoltage, overcurrent, over-temperature and power-up  
failures. In case the load current rises above the functional range, for example during VCC short circuits, the  
output current is limited to ICC,lim. Therefore the VCC output voltage will drop and a reset pulse will be issued if  
falling below the undervoltage reset threshold.  
The VCC supply output provides a stable supply voltage with output capacitors down to 1 µF, including low ESR  
multi-layer ceramic capacitors.  
4.3.1  
VCC Undervoltage Detection  
The TLE8457 has undervoltage detection on the voltage regulator VCC output. If the VCC voltage falls below the  
undervoltage threshold VCC,UV for longer than detection time tdet,RST the NRST output will be set logical “low”  
and the TLE8457 will automatically enter Init Mode and start the Initialization Watchdog (see Chapter 4.3.2  
and Chapter 4.4).  
tdet,RST  
VCC,UV  
VCC  
t
Normal Operation mode (EN = „high“)  
Standby mode (EN = „low“)  
Normal Operation mode (EN = „high“)  
Init mode (EN = „low“)  
Init mode  
tRST  
NRST  
t
NRST goes and stays „low“ as long  
NRST stays „low“ for  
additional Reset time tRST  
as VCC is in undervoltage  
TLE8457_VCC_UNDERVOLTAGE  
Figure 11  
VCC undervoltage detection  
4.3.2  
Reset Output  
The NRST output is used for issuing reset pulses to for example an external microcontroller. In case of voltage  
regulator undervoltage or over-temperature events the NRST output will go “low” and a mode transition to  
Init Mode will be triggered. The NRST output will stay “low” until a complete recovery from the failure and  
additionally for the reset time tRST, then go “high” (see Figure 11).  
While the TLE8457 is in Init Mode and NRST is “low” mode transition to Normal Operation Mode is blocked.  
The NRST pin is internally pulled up to VCC. If needed in the application, an additional external pull-up resistor  
can be implemented.  
Data Sheet  
14  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.4  
Initialization Watchdog  
The TLE8457 features an enhanced Initialization Watchdog timer for detection of local failures and error  
handling for minimizing system current consumption. The benefit of this safety function is to prevent a  
malfunctioning ECU being stuck in Init Mode with high current consumption and draining the car battery. The  
Initialization Watchdog is only active in Init Mode, with the two use cases: VCC supply initialization and Normal  
Operation Mode activation.  
VS  
VS,PON  
1
VCC,UV  
2
VCC  
tRST  
tto,rec  
NRST  
3
Watchdog  
V
CC Supply Initialization  
Normal Operation mode Activation  
Timeout  
1
Timeout  
2
5
EN  
4
Un-powered  
Init mode  
Normal Operation mode  
If Timeout → forced transition to Sleep mode  
If Timeout → forced transition to Sleep mode  
1
VS exceeds the Power-on reset threshold → VCC Supply Initialization Watchdog is started  
CC exceeds the VCC-Undervoltage threshold → Reset timer is started  
2
V
3
4
5
Reset timer elapses → Normal Operation mode Activation Watchdog is started  
Mode change with the EN input → Mode transition to normal mode  
TxD must be „high“ for at least tto,rec after entering Normal mode for releasing the transmitter  
TLE8457_WATCHDOG  
Figure 12  
Initialization Watchdog  
VCC Supply Initialization  
The VCC supply Initialization watchdog is detecting if local errors on the ECU is preventing the VCC supply to  
power up correctly because of short circuits to ground or if components on the board are drawing too high  
currents. The timer is started when the linear regulator is switched on after power-up events or after mode  
transitions to Init mode triggered by either bus wake-up or the EN input being set “high” in Sleep Mode.  
Additionally, the timer will start when detecting VCC undervoltage and after recovery from an overtemperature  
event.  
Data Sheet  
15  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
In case the VCC voltage rise above the VCC,UV undervoltage threshold before the timer elapses, VCC is considered  
successfully initialized and the timer is disabled. If the timer elapses before VCC powers up correctly, the  
TLE8457 will autonomously transition to Sleep Mode.  
Normal Operation Mode Activation  
After the TLE8457 has generated a reset pulse the Initialization Watchdog is started for monitoring the  
activation of Normal Operation Mode. The microcontroller must set the EN input “high” before the timer  
elapses after tInit_WD, else the TLE8457 will autonomously transition to Sleep Mode.  
tInit_WD  
EN  
t
tRST  
NRST  
t
Standby mode / Sleep mode / unpowered  
Init mode  
Sleep mode  
TLE8457_INITIALIZATION_TIMEOUT  
Figure 13  
Enable activation time-out  
Data Sheet  
16  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.5  
LIN Transceiver  
The LIN interface is a single wire, bi-directional bus, used for in-vehicle networks. The integrated LIN  
transceiver of the TLE8457 is the interface between the microcontroller and the physical LIN bus (see  
Figure 18). Data from the microcontroller is driven to the LIN bus via the TxD input. The transmit data stream  
on the TxD input is converted to a LIN bus signal with optimized slew rates in order to minimize the  
electromagnetic emission of the LIN network. The RxD output reads back the information from the LIN bus to  
the microcontroller. The receiver has an integrated filter network for noise suppression from the LIN bus and  
to increase the electromagnetic immunity level of the transceiver.  
The LIN specification defines two valid bus levels (see Figure 14):  
Dominant state with the LIN bus voltage level near GND, actively driven by a transceiver.  
Recessive state with the LIN bus voltage pulled up to the supply voltage VS through the bus termination.  
By setting the TxD input of the TLE8457 to a logical “low” signal, the transceiver generates a dominant level on  
the BUS interface pin. The receiver reads back the signal on the LIN bus and indicates the dominant LIN bus  
signal with a logical “low” on the RxD output to the microcontroller. By setting the TxD input “high”, the  
transceiver sets the LIN interface pin to the recessive level. At the same time the recessive level on the LIN bus  
is indicated by a logical “high” signal on the RxD output.  
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8457 for  
master node applications, a termination resistor of 1 kand a diode must be connected between the LIN bus  
and the power supply VS (see Figure 18).  
VCC  
TxD  
t
Recessive  
Dominant  
Recessive  
VS  
Vth_REC  
BUS  
RxD  
Vth_DOM  
t
VCC  
t
TLE8457_LIN_COMMUNICATION_A  
Figure 14  
LIN bus signals  
Data Sheet  
17  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Functional Description  
4.5.1  
TxD Time-out  
The TxD time-out feature protects the LIN bus against permanent blocking in case the logical signal on the TxD  
input is continuously “low”, caused by for example a malfunctioning microcontroller or a short circuit on the  
printed circuit board. In Normal Operation Mode, a logical “low” signal on the TxD input for time t > tTxD  
disables the transmitter’s output driver stage (see Figure 15). The receiver will remain active and the data on  
the bus are still monitored on the RxD output.  
The TLE8457 will release the output stage after a TxD time-out event first when detecting a logical “high”  
signal on the respective TxD input for the time tto,rec  
.
Recovery of the microcontroller error  
Release after TxD time-out  
TxD time-out due to e.g. microcontroller error  
tTxD  
tto,rec  
Normal communication  
Normal communication  
TxD  
t
VBUS  
t
TLE8457_TXD_TIMEOUT_A  
Figure 15  
TxD time-out  
4.5.2  
Short Circuit  
The BUS pin of TLE8457 can withstand short circuits to either GND or to the power supply VS. The integrated  
over-temperature protection may disable the transmitter if a permanent short circuit on the BUS pin causes  
the TLE8457 to overheat.  
4.6  
Over-temperature Protection  
The TLE8457 has two independent over-temperature detectors for protecting the device against thermal  
overstress; on the voltage regulator pass element and on the LIN bus transmitter. In case the junction  
temperature at the LIN transmitter increase above the thermal shut down level TJSD, it will be disabled until  
the transmitter’s junction temperature cools down below TJ < TJSD - T. No other effect nor mode change will  
occur. After a LIN transmitter over-temperature recovery the TxD input requires a logical “high” signal before  
restarting data transmission.  
If an over-temperature event is detected on the voltage regulator, it will be disabled and the NRST output will  
be set “low”. During the over-temperature condition no functionality of the TLE8457 is available. After the  
junction temperature cools down below TJ < TJSD - T, the TLE8457 will automatically enter Init Mode and be  
reactivated.  
Note:  
Depending on the over-temperature circumstance, either only the LIN transmitter will detect over-  
temperature, for example due to bus short circuit or severe EMC injection, only the voltage regulator  
detector or both (simultaneously or sequentially).  
Data Sheet  
18  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
General Product Characteristics  
5
General Product Characteristics  
5.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings Voltages, Currents and Temperatures1)  
All voltages with respect to ground; positive current flowing into pin; unless otherwise specified  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Voltage  
Supply input voltage  
Bus input voltage  
Logic voltages at EN and TxD  
VS  
-0.3  
-27  
45  
40  
7.0  
V
V
V
V
LIN Spec 2.2A (Par. 11) P_5.1.1  
VBUS  
Vlogic,in  
P_5.1.2  
P_5.1.3  
P_5.1.4  
-0.3  
-0.3  
Logic voltages at RxD and NRST Vlogic,out  
VCC +  
0.3  
Voltage regulator output  
Currents  
VCC  
-0.3  
7.0  
V
P_5.1.5  
Output current at RxD  
Output current at NRST  
Temperature  
IRxD  
-15  
15  
10  
mA  
mA  
P_5.1.6  
P_5.1.7  
INRST  
Junction temperature  
Storage temperature  
ESD Susceptibility  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_5.1.8  
P_5.1.9  
Ts  
Electrostatic discharge voltage VESD  
at VS and BUS vs. GND  
-8  
8
kV  
kV  
V
Human Body Model  
P_5.1.10  
P_5.1.11  
P_5.1.12  
P_5.1.13  
(100pF via 1.5 k)2)  
Electrostatic discharge voltage VESD  
all other pins  
-2  
2
Human Body Model  
(100pF via 1.5 k)2)  
Electrostatic discharge voltage VESD  
corner pins  
-750  
-500  
750  
500  
Charged Device  
Model3)  
Electrostatic discharge voltage VESD  
at all other pins  
V
Charged Device  
Model3)  
1) Not subject to production test, specified by design  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100pF)  
3) ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
19  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
General Product Characteristics  
5.2  
Functional Range  
Table 4  
Operating Range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltage  
Supply Voltage range for Normal VS(nor)  
Operation  
5.5  
3.0  
28  
40  
V
V
LIN Spec 2.2A Param. P_5.2.12  
10  
Extended Supply Voltage Range VS(ext)  
for Operation  
Parameter deviations P_5.2.22  
possible  
Stability Requirement on VCC  
1) 3)  
Output capacitor range  
Output capacitor ESR  
Thermal parameter  
CVCC  
1.0  
µF  
,
P_5.2.3  
P_5.2.4  
2) 3)  
ESR(CVCC) –  
5.0  
,
3)  
Junction temperature  
Tj -40  
150  
°C  
P_5.2.5  
1) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%.  
2) Relevant ESR value at f = 10 kHz.  
3) Not subject to production test, specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Data Sheet  
20  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
General Product Characteristics  
5.3  
Thermal Characteristics  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, please visit www.jedec.org.  
Table 5  
Thermal Resistance1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
P_5.3.1  
Min.  
Thermal Resistance, PG-DSO-8 Package Version  
Junction ambient RthJA  
Thermal Resistance, PG-TSON-8 Package Version  
Max.  
2)  
2)  
130  
K/W  
K/W  
Junction ambient  
Junction ambient  
Junction ambient  
RthJA  
60  
P_5.3.2  
P_5.3.5  
190  
70  
K/W Footprint only3)  
K/W 300mm2 heatsink on P_5.3.6  
PCB3)  
Thermal Shutdown Junction Temperature  
Thermal shutdown temperature TJSD  
160  
180  
10  
200  
°C  
K
TJSD increasing  
JSD decreasing  
P_5.3.3  
P_5.3.4  
Thermal shutdown hysteresis  
ΔT  
T
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 μm Cu, 2 x 35 μm  
Cu). Where applicable a thermal via array under the exposed pad contacted to the first inner copper layer.  
3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board; The product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 inner copper layer (1 x 70 μm Cu).  
Data Sheet  
21  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
6
Electrical Characteristics  
6.1  
Functional Device Characteristics  
Table 6  
Electrical Characteristics  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Current consumption at VS,  
transmitter in Recessive state  
IS,rec  
0.1  
0.1  
70  
0.3  
1.0  
71  
0.7  
3.0  
73  
mA ICC = 50 µA; Without RLIN  
TxD = “high”; VBUS = VS  
;
P_6.1.1  
P_6.1.2  
P_6.1.3  
P_6.1.4  
Current consumption at VS,  
transmitter in Dominate state  
IS,dom  
mA ICC = 50 µA; Without RLIN;  
TxD = “low”; VBUS = 0 V  
Current consumption at VS,  
Dominate State  
IS,dom_max  
mA ICC = 70 mA; Without RLIN;  
TxD = “low”; VBUS = 0 V  
Current consumption at VS in IS,standby  
Standby Mode  
20  
40  
µA Standby Mode;  
ICC = 50 µA;  
IS,standby = IS - ICC  
VS = VBUS = 13.5 V;  
Current consumption at VS in IS,Sleep  
Sleep Mode  
7
16  
µA Sleep Mode; VS = 13.5 V;  
P_6.1.5  
P_6.1.6  
V
BUS = VS; VCC = 0V  
800 µA Sleep Mode;  
VS = 13.5 V; VBUS = 0 V;  
CC = 0V  
Current consumption at VS in IS,SC_GND  
Sleep Mode. Bus shorted to  
GND  
250  
V
Power-up / Power-down  
Power-on reset level on VS  
VS,PON  
3.0  
V
P_6.1.7  
P_6.1.8  
P_6.1.9  
P_6.1.10  
Undervoltage threshold, VS on VS,UV,ON  
Undervoltage threshold, VS off VS,UV,OFF  
4.7  
4.4  
5.15 5.5  
4.85 5.2  
V
Rising edge  
V
Falling edge  
2)  
Undervoltage hysteresis on VS VS,UV,hys  
VS,UV,hys = VS,UV,ON - VS,UV,OFF  
200 300  
mV  
2)  
Undervoltage blanking time  
Enable Input: EN  
tBLANK,UV  
10  
µs  
P_6.1.11  
HIGH level input voltage  
LOW level input voltage  
Input hysteresis  
VEN,ON  
VEN,OFF  
VEN,hys  
REN  
2
V
P_6.1.12  
P_6.1.13  
P_6.1.14  
P_6.1.15  
P_6.1.16  
0.8  
V
50  
15  
10  
200  
30  
mV  
kΩ  
µs  
Pull-down resistance  
60  
50  
Delay time for mode change, tMODE,LOW  
EN “low”  
2)  
Delay time for mode change, tMODE,HIGH  
EN “high”  
5
µs  
P_6.1.17  
P_6.1.18  
Initialization Watchdog time tInit_WD  
200  
1000 ms  
Data Sheet  
22  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Ci EN  
Values  
Unit Note or Test Condition  
Number  
P_6.1.83  
Min. Typ. Max.  
2)  
Input capacitance  
5
pF  
Reset Output: NRST  
HIGH level leakage current  
LOW level output voltage  
Reset time  
2)  
INRST,H  
VNRST  
tRST  
4
5
5
µA  
P_6.1.19  
P_6.1.20  
P_6.1.21  
P_6.1.22  
0.4  
16  
20  
V
INRST = 1.5 mA; VCC > 1 V;  
10  
10  
ms  
kΩ  
Internal pull-up resistance  
RNRST  
Voltage Regulator Output, 5 V versions (TLE8457ASJ and TLE8457ALE): VCC  
Output voltage  
VCC  
4.9  
5.0  
5.1  
V
0.05 mA < ICC < 70 mA;  
5.8 V < VS < 28 V  
P_6.1.23  
P_6.1.24  
P_6.1.25  
P_6.1.26  
Output voltage drop  
VDR  
250 650 mV ICC < 70 mA  
180 480 mV ICC < 50 mA  
3)  
VDR = VS - VCC  
Output voltage drop, 50mA  
VDR = VS - VCC  
VDR,50  
VDR,20  
Output voltage drop, 20mA  
80  
200 mV ICC < 20 mA  
VDR = VS - VCC  
Output current limitation  
Load regulation  
ICC,lim  
-150  
-70  
50  
mA 0 V < VCC < 4.8 V  
P_6.1.27  
P_6.1.28  
VCC,lo  
25  
mV 0.05 mA < ICC < 70 mA;  
VS = 13.5 V  
Line regulation  
VCC,li  
25  
60  
50  
mV ICC = 1 mA;  
5.8 V < VS < 28 V  
dB 2); ICC = 50 mA; f = 100 Hz; P_6.1.30  
Vr = 0.5 Vpp; VS = 13.5 V  
P_6.1.29  
Power supply ripple rejection PSRR  
50  
Undervoltage reset threshold VCC,UV  
4.27 4.4  
4.5  
V
VCC decreasing  
P_6.1.31  
Undervoltage reset hysteresis VCC,UV,hy  
Undervoltage detection time tdet,RST  
50  
1
100  
mV  
µs  
P_6.1.32  
P_6.1.33  
20  
2); VCC = 3.5 V  
C
NRST = 20 pF  
Voltage Regulator Output, 3.3 V versions (TLE8457BSJ and TLE8457BLE): VCC  
Output voltage  
VCC  
3.234 3.300 3.366 V  
0.05 mA < ICC < 70 mA;  
4.066 V < VS < 28 V  
P_6.1.34  
P_6.1.35  
P_6.1.36  
P_6.1.37  
P_6.1.38  
Output voltage drop  
VDR = VS - VCC  
VDR  
380 770 mV ICC < 70 mA  
280 550 mV ICC < 50 mA  
110 220 mV ICC < 20 mA  
– -70 mA 0 V < VCC < 3.1 V  
Output voltage drop, 50mA  
VDR = VS - VCC  
VDR,50  
VDR,20  
ICC,lim  
Output voltage drop, 20mA  
VDR = VS - VCC  
Output current limitation  
-150  
Data Sheet  
23  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Load regulation  
Line regulation  
VCC,lo  
VCC,li  
25  
25  
60  
50  
50  
mV 0.05 mA < ICC < 70 mA;  
VS = 13.5 V  
P_6.1.39  
P_6.1.40  
mV ICC = 1 mA;  
4.066 V < VS < 28 V  
dB 2); ICC = 50 mA; f = 100 Hz; P_6.1.41  
Vr = 0.5 Vpp; VS = 13.5 V  
Power supply ripple rejection PSRR  
50  
Undervoltage reset threshold VCC,UV  
2.82 2.90 2.96  
V
VCC decreasing  
P_6.1.42  
Undervoltage reset hysteresis VCC,UV,hy  
Undervoltage detection time tdet,RST  
33  
1
66  
mV  
µs  
P_6.1.43  
P_6.1.44  
20  
2); VCC = 2.31 V  
CNRST = 20 pF  
Receiver Output: RxD  
HIGH level output voltage  
LOW level output voltage  
Transmission Input: TxD  
VRxD,H  
VRxD,L  
0.8  
× VCC  
V
V
IRxD = -2 mA; VBUS = VS  
IRxD = 2 mA; VBUS = 0 V  
P_6.1.45  
P_6.1.46  
0.2  
× VCC  
HIGH level input voltage range VTxD,H  
0.7  
× VCC  
V
V
Recessive state  
Dominant state  
P_6.1.47  
P_6.1.48  
LOW level input voltage range VTxD,L  
0.3  
× VCC  
Input hysteresis  
VTxD,hys  
RTxD  
tTxD  
200  
15  
8
mV  
kΩ  
ms  
µs  
P_6.1.49  
P_6.1.50  
P_6.1.51  
P_6.1.52  
P_6.1.93  
Pull-up resistance  
TxD time-out  
30  
18  
60  
28  
10  
2)  
TxD recessive release time  
Input capacitance  
Bus Receiver: BUS  
tto,rec  
Ci  
2)  
5
pF  
Receiver threshold voltage,  
recessive to dominant edge  
Vth_dom  
VBUSdom  
Vth_rec  
0.4  
× VS × VS  
0.44  
V
V
V
V
VS < 18V;  
P_6.1.53  
P_6.1.54  
P_6.1.55  
P_6.1.56  
P_6.1.57  
Receiver dominant state  
-27  
0.4  
× VS  
LIN Spec 2.2A (Par. 17)4)  
VS < 18V;  
Receiver threshold voltage,  
dominant to recessive edge  
0.56 0.6  
× VS × VS  
Receiver recessive state  
VBUSrec  
VBUS_CNT  
0.6  
× VS  
40  
LIN Spec 2.2A (Par. 18)5)  
Receiver center voltage  
0.475 0.5  
0.525 V  
LIN Spec 2.2A (Par. 19)6)  
× VS × VS × VS  
VS < 18V;  
Data Sheet  
24  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Receiver hysteresis  
VHYS  
0.07 0.12 0.175 V  
× VS × VS × VS  
LIN Spec 2.2A (Par. 20)7)  
VS < 18V;  
P_6.1.58  
P_6.1.59  
Wake-Up threshold voltage  
Bus Transmitter: BUS  
VBUS,wk  
0.4  
0.5  
0.6  
V
× VS × VS × VS  
Bus recessive output voltage VBUS,ro  
0.8  
VS  
V
TxD = “high”; Open load P_6.1.60  
× VS  
Bus short circuit current  
Leakage current  
Leakage current  
Leakage current  
Leakage current  
IBUS_LIM  
40  
85  
-0.5  
1
125 mA VBUS = 18 V;  
LIN Spec 2.2A (Par. 12);  
P_6.1.61  
P_6.1.62  
P_6.1.63  
P_6.1.64  
P_6.1.65  
IBUS_NO_GND -1  
IBUS_NO_BAT  
IBUS_PAS_dom -1  
5
5
mA VS = 0 V; VBUS = -12 V;  
LIN Spec 2.2A (Par. 15)  
µA VS = 0 V; VBUS = 18 V;  
LIN Spec 2.2A (Par. 16)  
-0.5  
1
mA VS = 18 V; VBUS = 0 V;  
LIN Spec 2.2A (Par. 13)  
IBUS_PAS_rec  
µA VS = 8 V; VBUS = 18 V;  
Driver stage “off”;  
TxD = “high”;  
LIN Spec 2.2A (Par. 14)  
Forward voltage serial diode VSerDiode  
Bus pull-up resistance Rslave  
0.4  
20  
1.0  
60  
V
ISerDiode = - 75 µA  
LIN Spec 2.2A (Par.21)  
P_6.1.66  
40  
kLIN Spec 2.2A (Par. 26)  
VTxD = 0 V; RLIN = 500 ;  
V
P_6.1.67  
P_6.1.68  
Bus dominant output voltage VBUS,do  
maximum load  
1.4  
VS = 5.5 V;  
Bus dominant output voltage VBUS,do  
maximum load  
VTxD = 0 V; RLIN = 500 ;  
VS = 18 V;  
2)  
P_6.1.98  
P_6.1.95  
2.0  
30  
V
Input capacitance  
CiBUS  
pF  
Dynamic Transceiver Characteristics: BUS  
Dominant time for Bus Wake- tWK,bus  
up  
30  
150 µs  
P_6.1.69  
P_6.1.70  
Propagation delay:  
LIN Spec 2.2A (Par. 31)  
LIN bus Dominant to RxD Low trx_pdft  
LIN bus Recessive to RxD High trx_pdr  
1
1
3.5  
3.5  
6
6
µs  
µs  
CRxD = 20 pF  
Receiver delay symmetry  
trx_sym  
-2  
2
µs  
LIN Spec 2.2A (Par. 32)  
P_6.1.71  
t
C
rx_sym = trx_pdf - trx_pdr  
RxD = 20 pF  
;
Data Sheet  
25  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_6.1.72  
Min. Typ. Max.  
Duty cycle D1  
D1  
0.396 –  
Duty cycle 1 8)  
(for worst case at 20 kBit/s)  
THRec(max) = 0.744 × VS;  
THDom(max) =0.581 × VS;  
VS = 7.0 … 18 V; tbi = 50 µs;  
LIN Spec 2.2A (Par. 27)  
D1 = tbus_rec(min) / 2 × tbit  
Duty cycle D1  
VS supply 5.5 V to 7.0 V  
(for worst case at 20 kBit/s)  
D1  
D2  
0.396 –  
Duty cycle 1 8)  
THRec(max) = 0.760 × VS;  
THDom(max) = 0.593 × VS;  
5.5 V < VS < 7.0 V;  
tbit = 50 µs  
Duty cycle 2 8)  
THRec(min)= 0.422 × VS;  
THDom(min)= 0.284 × VS;  
VS = 7.6 … 18 V;  
P_6.1.73  
P_6.1.74  
D1 = tbus_rec(min) / 2 × tbit  
Duty cycle D2  
(for worst case at 20 kBit/s)  
0.581  
D2 = tbus_rec(max) / 2 × tbit  
t
bit = 50 µs;  
LIN Spec 2.2A (Par. 28)  
Duty cycle 2 8)  
THRec(min)= 0.41 × VS;  
THDom(min)= 0.275 × VS;  
6.1 V < VS < 7.6 V;  
tbit = 50 µs;  
Duty cycle 38)  
THRec(max) = 0.778 × VS;  
THDom(max) =0.616 × VS;  
VS = 7.0 … 18 V;  
Duty cycle D2  
VS supply 6.1 V to 7.6 V  
(for worst case at 20 kBit/s)  
D2  
D3  
0.581  
P_6.1.75  
P_6.1.76  
D2 = tbus_rec(max) / 2 × tbit  
Duty cycle D3  
VS supply 7.0 V to 18.0 V  
(for worst case at 10.4 kBit/s)  
0.417 –  
0.417 –  
D3 = tbus_rec(min) / 2 × tbit  
tbit = 96 µs;  
LIN Spec 2.2A (Par. 29)  
Duty cycle 3 8)  
Duty cycle D3  
D3  
P_6.1.77  
VS supply 5.5 V to 7.0 V  
(for worst case at 10.4 kBit/s)  
THRec(max) = 0.797 × VS;  
THDom(max) = 0.630 × VS;  
5.5 V < VS < 7.0 V;  
D3 = tbus_rec(min) / 2 × tbit  
tbit = 96 µs;  
Data Sheet  
26  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
Table 6  
Electrical Characteristics (cont’d)  
5.5 V < VS < 28 V; RLIN = 500 ; -40°C < Tj < 150°C;  
all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified.  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
P_6.1.78  
Min. Typ. Max.  
Duty cycle D4  
VS supply 7.6 V to 18.0 V  
(for worst case at 10.4 kBit/s)  
D4  
0.590  
Duty cycle 48)  
THRec(min) = 0.389 × VS;  
THDom(min) = 0.251 × VS;  
VS = 7.6 … 18 V;  
tbit = 96 µs;  
LIN Spec 2.2A (Par. 30)  
D4 = tbus_rec(max) / 2 × tbit  
Duty cycle D4  
D4  
0.590  
Duty cycle 48)  
P_6.1.79  
VS supply 6.1 V to 7.6 V  
(for worst case at 10.4 kBit/s)  
THRec(min) = 0.378 × VS;  
THDom(min)= 0.242 × VS;  
6.1 V < VS < 7.6 V;  
D4 = tbus_rec(max) / 2 × tbit  
tbit = 96 µs;  
1) Load current on VCC specified positive direction out of pin.  
2) Not subject to production test, specified by design.  
3) Measured when the output voltage VCC has dropped 100 mV from the nominal value obtained at VS = 13.5V  
4) Minimum limit specified by design.  
5) Maximum limit specified by design.  
6) VBUS_CNT = (Vth_dom + Vth rec) / 2;.  
7) VHYS = Vth_rec - Vth_dom  
.
8) Bus load according to LIN Spec 2.2A:  
Load 1 = 1 nF / 1 k= CBUS / RLIN  
Load 2 = 6.8 nF / 660 = CBUS / RLIN  
Load 3 = 10 nF / 500 = CBUS / RLIN  
Data Sheet  
27  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Electrical Characteristics  
6.2  
Diagrams  
VCC  
VS  
CVCC  
100 nF  
NRST  
CNRST  
EN  
RLIN  
TxD  
BUS  
RxD  
CRxD  
CBus  
GND  
TLE8457_TEST_CIRCUIT_A  
Figure 16  
Simplified test circuit for dynamic transceiver characteristics  
tBit  
tBit  
tBit  
TxD  
(input to transmitting node)  
tBus_dom(max)  
tBus_rec(min)  
THRec(max)  
THDom(max)  
Thresholds of receiving node 1  
Thresholds of receiving node 2  
VSUP  
(Transceiver supply of  
transmitting node)  
THRec(min)  
THDom(min)  
tBus_dom(min)  
tBus_rec(max)  
RxD  
(output of receiving node 1)  
trx_pdf(1)  
trx_pdr(1)  
RxD  
(output of receiving node 2)  
trx_pdr(2)  
trx_pdf(2)  
Duty Cycle D1, D3 = tBUS_rec(min) / (2 x tBIT  
)
Duty Cycle D2, D4 = tBUS_rec(max) / (2 x tBIT  
)
TLE8457_LIN_TIMING_DIAGRAM_A  
Figure 17  
Timing diagram for dynamic transceiver characteristics  
Data Sheet  
28  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Application Information  
7
Application Information  
Note:  
7.1  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Application Example  
VBat  
5 V or 3.3V  
VI  
VQ  
VCC  
22μF  
100nF  
1μF  
100nF  
TLE42xx  
GND  
LIN  
BUS  
INH  
Pull-Up  
to MCU  
Supply  
2.4kΩ  
7
8
Micro Controller  
e.g XC22xx  
VS  
INH  
100nF  
TLE7258  
1
4
2
RxD  
TxD  
1kΩ  
6
1
4
EN  
BUS  
1nF  
GND  
GND  
5
ECU_1  
8
VS  
VCC  
VCC  
22μF  
100nF  
1μF  
100nF  
TLE8457  
5
7
6
2
Micro Controller  
e.g XC22xx  
RxD  
NRST  
TxD  
BUS  
EN  
220pF  
GND  
3
GND  
ECU_X  
Figure 18  
Simplified application circuit  
Data Sheet  
29  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Application Information  
7.2  
ESD Robustness according to IEC61000-4-2  
Test for ESD robustness according to IEC61000-4-2 (150 pF, 330 ) have been performed. The results and test  
conditions are available in a separate test report.  
Table 7  
ESD Robustness according to IEC61000-4-2  
Performed Test  
Results Unit  
Remarks  
Electrostatic discharge voltage at pin VS, BUS versus GND  
+8  
kV  
1)Positive pulse  
1)Negative pulse  
Electrostatic discharge voltage at pin VS, BUS versus GND  
-8  
kV  
1) ESD susceptibility according LIN EMC 1.3 Test Specification, Section 4.3. (IEC 61000-4-2) - Tested by external test  
house.  
7.3  
Transient Robustness according to ISO 7637-2  
Test for transient robustness according to ISO 7637-2 have been performed. The results and test conditions  
are available in a separate test report.  
Table 8  
Automotive Transient Robustness according to ISO 7637-2  
Performed Test  
Pulse 1  
Results  
-100  
Unit  
V
V
V
V
Pulse 2  
+75  
Pulse 3a  
-150  
+100  
Pulse 3b  
7.4  
LIN Physical Layer Compatibility  
As the LIN physical layer is independent from higher LIN layers (for example LIN protocol layer), all nodes with  
a LIN physical layer according to this revision can be mixed with LIN physical layer nodes, which are according  
to older revisions (LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1 and LIN 2.2), without any restrictions.  
Data Sheet  
30  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Package Outlines  
8
Package Outlines  
0.35 x 45˚  
1)  
4-0.2  
C
1.27  
B
0.1  
±0.25  
0.64  
+0.1 2)  
-0.06  
0.41  
±0.2  
6
M
M
0.2  
A B 8x  
0.2  
C 8x  
8
5
4
1
A
1)  
5-0.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
GPS01181  
Figure 19  
PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8)  
±±0.  
204  
±±0.  
±0.  
±±0.  
±±0.  
±±0.  
3
±03  
±038  
±0±5  
Z
±±0.  
±065  
Pin . Marking  
±±0.  
Pin . Marking  
Z (4:.)  
±03  
PG-TSON-8-.-PO V±.  
±0±7 MIN0  
Figure 20  
PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
31  
Rev. 1.0  
2016-08-05  
TLE8457  
LIN Transceiver with integrated Voltage Regulator  
Revision History  
9
Revision History  
Table 9  
Revision  
1.0  
Revision History  
Data  
Changes  
Data Sheet created  
2016-08-05  
Data Sheet  
32  
Rev. 1.0  
2016-08-05  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2016-08-05  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
WARNINGS  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

TLE8457ASJXUMA1

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8
INFINEON

TLE8457BLE

Telecom Circuit, 1-Func, BICMOS, PDSO8, TSON-8
INFINEON

TLE8457BLEXUMA1

Telecom Circuit, 1-Func, BICMOS, PDSO8, TSON-8
INFINEON

TLE8457BSJ

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8
INFINEON

TLE8457BSJXUMA1

Telecom Circuit, 1-Func, BICMOS, PDSO8, SOP-8
INFINEON

TLE8457CLE

Line Transceiver,
INFINEON

TLE8457CSJ

Line Transceiver,
INFINEON

TLE8457DLE

Line Transceiver,
INFINEON

TLE8457DSJ

Line Transceiver,
INFINEON

TLE8458G

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON
INFINEON

TLE8458GU

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON