IRLS3034-7PPBF_15 [INFINEON]

Uninterruptible Power Supply;
IRLS3034-7PPBF_15
型号: IRLS3034-7PPBF_15
厂家: Infineon    Infineon
描述:

Uninterruptible Power Supply

文件: 总9页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97362  
IRLS3034-7PPbF  
HEXFET® Power MOSFET  
Applications  
l DC Motor Drive  
D
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
VDSS  
RDS(on) typ.  
40V  
1.0m  
1.4m  
380A  
c
max.  
G
ID  
ID  
(Silicon Limited)  
Benefits  
l Optimized for Logic Level Drive  
l Very Low RDS(ON) at 4.5V VGS  
l Superior R*Q at 4.5V VGS  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
240A  
S
(Package Limited)  
D
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
380c  
270c  
240  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current d  
A
1540  
PD @TC = 25°C  
380  
W
Maximum Power Dissipation  
2.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
1.3  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
°C  
300  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
250  
mJ  
A
Avalanche Currentꢀd  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy d  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Junction-to-Case kl  
Junction-to-Ambient j  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
RθJC  
RθJA  
–––  
www.irf.com  
1
1/12/09  
IRLS3034-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
V(BR)DSS/TJ  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.035 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
V
RDS(on)  
–––  
1.0  
1.2  
–––  
1.4  
1.7  
2.5  
20  
VGS = 10V, ID = 200A g  
mΩ  
VGS = 4.5V, ID = 180A g  
VGS(th)  
IDSS  
Gate Threshold Voltage  
1.0  
V
VDS = VGS, ID = 250µA  
Drain-to-Source Leakage Current  
––– –––  
µA VDS = 40V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 40V, VGS = 0V, TJ = 125°C  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = 20V  
VGS = -20V  
–––  
1.9  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 220A  
370 ––– –––  
S
––– 120 180  
nC ID = 170A  
VDS =20V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
32  
71  
49  
71  
–––  
–––  
–––  
–––  
Qgd  
VGS = 4.5V g  
Qsync  
ID = 170A, VDS =0V, VGS = 4.5V  
td(on)  
ns VDD = 26V  
tr  
Rise Time  
––– 590 –––  
––– 94 –––  
ID = 220A  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 4.5V g  
tf  
Fall Time  
––– 200 –––  
––– 10990 –––  
––– 2030 –––  
––– 1100 –––  
––– 2520 –––  
––– 3060 –––  
Ciss  
Input Capacitance  
pF VGS = 0V  
Coss  
Output Capacitance  
VDS = 40V  
Crss  
Reverse Transfer Capacitance  
ƒ = 1.0MHz, See Fig. 5  
VGS = 0V, VDS = 0V to 32V i, See Fig. 11  
VGS = 0V, VDS = 0V to 32V h  
Coss eff. (ER)  
Coss eff. (TR)  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
h
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
380  
c
(Body Diode)  
Pulsed Source Current  
(Body Diode)d  
showing the  
integral reverse  
G
ISM  
––– ––– 1540  
A
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 200A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
–––  
–––  
46  
49  
ns  
IF = 220A  
di/dt = 100A/µs g  
Qrr  
Reverse Recovery Charge  
––– 100 –––  
––– 110 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
3.7  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calculated continuous current based on maximum allowable junction  
„ ISD 220A, di/dt 1240A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
temperature. Bond wire current limit is 240A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.010mH  
RG = 25, IAS = 220A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
Š RθJC value shown is at time zero.  
2
www.irf.com  
IRFLS3034-7PPbF  
10000  
1000  
100  
100000  
10000  
1000  
100  
VGS  
10V  
VGS  
10V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
10  
2.5V  
2.5V  
10  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
I
= 200A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
5.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 170A  
V
V
= 32V  
= 20V  
D
C
C
C
+ C , C  
SHORTED  
DS  
DS  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
4.0  
3.0  
2.0  
1.0  
0.0  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
0.1  
1
10  
100  
0
25  
50  
75  
100  
125  
150  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRLS3034-7PPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
100  
10  
T
= 25°C  
Limited by package  
J
10msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
3.0  
GS  
1.0  
1
0.0  
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.5  
0
1
10  
100  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
400  
50  
Id = 5mA  
Limited By Package  
48  
46  
44  
42  
40  
300  
200  
100  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
T
, Case Temperature (°C)  
T
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
2.5  
1200  
I
D
TOP  
47A  
94A  
1000  
800  
600  
400  
200  
0
2.0  
1.5  
1.0  
0.5  
0.0  
BOTTOM 220A  
-5  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFLS3034-7PPbF  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.00741 0.000005  
τ
τ
J τJ  
Cτ  
0.05041 0.000038  
0.18384 0.001161  
0.15864 0.008809  
τ
τ
1τ1  
Ci= τi/Ri  
τ
τ
2τ2  
3τ3  
4τ4  
0.02  
0.01  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
0.01  
Tstart =25°C (Single Pulse)  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 220A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRLS3034-7PPbF  
3.0  
2.5  
2.0  
1.5  
16  
14  
12  
10  
8
I
= 89A  
= 34V  
F
V
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
1.0  
0.5  
0.0  
6
4
2
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
100 200 300 400 500 600 700  
di /dt (A/µs)  
T
, Temperature ( °C )  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
16  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
I = 134A  
F
I = 89A  
F
14  
12  
10  
8
V
= 34V  
V
= 34V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
100 200 300 400 500 600 700  
di /dt (A/µs)  
0
100 200 300 400 500 600 700 800  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
800  
I
= 134A  
F
700  
600  
500  
400  
300  
200  
100  
0
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
0
100 200 300 400 500 600 700 800  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFLS3034-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRLS3034-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFLS3034-7PPbF  
D2Pak - 7 Pin Part Marking Information  
ꢀ14  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 01/09  
www.irf.com  
9

相关型号:

IRLS3034PBF

HEXFET Power MOSFET
INFINEON

IRLS3034PBF_15

High Efficiency Synchronous Rectification in SMPS
INFINEON

IRLS3034TRL7PP

Power Field-Effect Transistor, 240A I(D), 40V, 0.0014ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, D2PAK-7/6
INFINEON

IRLS3034TRLPBF

HEXFETPower MOSFET
INFINEON

IRLS3034TRRPBF

Power Field-Effect Transistor, 195A I(D), 40V, 0.0017ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRLS3036

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRLS3036-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS3036-7PPBF_10

HEXFETPower MOSFET
INFINEON

IRLS3036PBF

HEXFET Power MOSFET
INFINEON

IRLS3036TRL-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRL7PP

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON