IRGSL4062DPBF [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE; 绝缘栅双极型晶体管,超快软恢复二极管
IRGSL4062DPBF
型号: IRGSL4062DPBF
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
绝缘栅双极型晶体管,超快软恢复二极管

晶体 二极管 双极型晶体管 功率控制 栅 超快软恢复二极管 快速软恢复二极管
文件: 总12页 (文件大小:461K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97355B  
IRGS4062DPbF  
IRGSL4062DPbF  
INSULATED GATE BIPOLAR TRANSISTOR WITH  
ULTRAFAST SOFT RECOVERY DIODE  
Features  
• Low VCE (ON) Trench IGBT Technology  
C
VCES = 600V  
• Low switching losses  
IC = 24A, TC = 100°C  
• Maximum Junction temperature 175 °C  
• 5 µS short circuit SOA  
G
tSC 5µs, TJ(max) = 175°C  
• SquareRBSOA  
• 100% of the parts tested for 4X rated current (ILM  
• Positive VCE (ON) Temperature co-efficient  
• Ultra fast soft Recovery Co-Pak Diode  
• Tightparameterdistribution  
)
E
VCE(on) typ. = 1.65V  
n-channel  
• LeadFreePackage  
C
C
Benefits  
• High Efficiency in a wide range of applications  
E
E
C
G
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
G
D2Pak  
TO-262  
IRGS4062DPbF  
IRGSL4062DPbF  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
600  
48  
Units  
V
Collector-to-Emitter Voltage  
Continuous Collector Current  
Continuous Collector Current  
Pulse Collector Current  
VCES  
IC @ TC = 25°C  
24  
IC @ TC = 100°C  
96  
ICM  
Clamped Inductive Load Current  
Diode Continous Forward Current  
Diode Continous Forward Current  
Diode Maximum Forward Current  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
96  
A
ILM  
48  
IF @ TC = 25°C  
24  
IF @ TC = 100°C  
96  
IFM  
±20  
±30  
250  
125  
V
VGE  
W
PD @ TC = 25°C  
PD @ TC = 100°C  
-55 to +175  
TJ  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
°C  
TSTG  
300 (0.063 in. (1.6mm) from case)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
–––  
Typ.  
–––  
–––  
0.50  
80  
Max.  
0.60  
1.53  
–––  
Units  
Rθ (IGBT)  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance Junction-to-Case-(each Diode)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
JC  
Rθ (Diode)  
JC  
°C/W  
Rθ  
CS  
Rθ  
–––  
JA  
1
www.irf.com  
12/07/09  
IRGS/SL4062DPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
GE = 0V, IC = 100µA  
V(BR)CES  
V
600  
4.0  
0.30  
1.60  
2.03  
2.04  
V
V(BR)CES/TJ  
VGE = 0V, IC = 1mA (25°C-175°C)  
IC = 24A, VGE = 15V, TJ = 25°C  
IC = 24A, VGE = 15V, TJ = 150°C  
IC = 24A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 700µA  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
5,6,7  
1.95  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
9,10,11  
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
9, 10,  
VGE(th)/ TJ  
V
CE = VGE, IC = 1.0mA (25°C - 175°C)  
VCE = 50V, IC = 24A, PW = 80µs  
VGE = 0V, VCE = 600V  
11, 12  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-18  
17  
gfe  
ICES  
Collector-to-Emitter Leakage Current  
2.0  
25  
µA  
VGE = 0V, VCE = 600V, TJ = 175°C  
IF = 24A  
775  
1.80  
1.28  
VFM  
IGES  
8
Diode Forward Voltage Drop  
2.6  
V
IF = 24A, TJ = 175°C  
V
GE = ±20V  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
24  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 24A  
50  
75  
20  
31  
201  
700  
901  
53  
31  
115  
41  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
CT1  
13  
nC  
µJ  
ns  
V
CC = 400V  
21  
IC = 24A, VCC = 400V, VGE = 15V  
CT4  
CT4  
115  
600  
715  
41  
RG = 10 , L = 200µH, LS = 150nH, TJ = 25°C  
Energy losses include tail & diode reverse recovery  
IC = 24A, VCC = 400V, VGE = 15V  
R
G = 10, L = 200µH, LS = 150nH, TJ = 25°C  
22  
td(off)  
tf  
Turn-Off delay time  
Fall time  
104  
29  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 24A, VCC = 400V, VGE=15V  
13, 15  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
420  
840  
1260  
40  
RG=10, L=100µH, LS=150nH, TJ = 175°C  
Energy losses include tail & diode reverse recovery  
IC = 24A, VCC = 400V, VGE = 15V  
µJ  
ns  
pF  
WF1, WF2  
14, 16  
CT4  
RG = 10 , L = 200µH, LS = 150nH  
24  
td(off)  
tf  
TJ = 175°C  
WF1  
Turn-Off delay time  
Fall time  
125  
39  
WF2  
Cies  
Coes  
Cres  
VGE = 0V  
23  
Input Capacitance  
1490  
129  
45  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 175°C, IC = 96A  
4
V
CC = 480V, Vp =600V  
CT2  
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
Rg = 10 , VGE = +15V to 0V  
V
CC = 400V, Vp =600V  
22, CT3  
WF4  
5
µs  
Rg = 10 , VGE = +15V to 0V  
TJ = 175°C  
Erec  
trr  
Reverse Recovery Energy of the Diode  
Diode Reverse Recovery Time  
621  
89  
µJ  
ns  
A
17, 18, 19  
20, 21  
WF3  
V
CC = 400V, IF = 24A  
VGE = 15V, Rg = 10 , L =200µH, Ls = 150nH  
Irr  
Peak Reverse Recovery Current  
37  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10.  
‚ Pulse width limited by max. junction temperature.  
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
2
www.irf.com  
IRGS/SL4062DPbF  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
300  
250  
200  
150  
100  
50  
0
0
0
20 40 60 80 100 120 140 160 180  
(°C)  
0
20 40 60 80 100 120 140 160 180  
T
(°C)  
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
1000  
100  
100  
10  
1
10µsec  
10  
100µsec  
1
1msec  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
10  
100  
(V)  
1000  
10000  
10  
100  
(V)  
1000  
V
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =15V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 18V  
GE  
V
= 18V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
www.irf.com  
3
IRGS/SL4062DPbF  
90  
120  
100  
80  
60  
40  
20  
0
V
= 18V  
GE  
80  
70  
60  
50  
40  
30  
20  
10  
0
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
-40°c  
25°C  
175°C  
0
1
2
3
4
5
6
7
8
0.0  
1.0  
2.0  
3.0  
V
(V)  
F
V
(V)  
CE  
Fig. 7 - Typ. IGBT Output Characteristics  
Fig. 8 - Typ. Diode Forward Characteristics  
TJ = 175°C; tp = 80µs  
tp = 80µs  
20  
18  
16  
14  
12  
20  
18  
16  
14  
12  
I
I
I
= 12A  
= 24A  
= 48A  
I
I
I
= 12A  
= 24A  
= 48A  
CE  
CE  
CE  
CE  
CE  
CE  
10  
8
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 10 - Typical VCE vs. VGE  
Fig. 9 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = -40°C  
120  
100  
80  
60  
40  
20  
0
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
J
T
= 175°C  
J
I
I
I
= 12A  
CE  
CE  
CE  
= 24A  
= 48A  
6
4
2
0
0
5
10  
15  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 11 - Typical VCE vs. VGE  
Fig. 12 - Typ. Transfer Characteristics  
CE = 50V; tp = 10µs  
TJ = 175°C  
V
4
www.irf.com  
IRGS/SL4062DPbF  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1000  
100  
10  
td  
OFF  
E
OFF  
td  
ON  
t
F
E
ON  
t
R
1
0
10  
20  
30  
(A)  
40  
50  
60  
10  
20  
30  
(A)  
40  
50  
I
C
I
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V  
1000  
1600  
1400  
1200  
td  
OFF  
E
ON  
1000  
E
OFF  
100  
800  
600  
400  
200  
0
td  
ON  
t
F
t
R
10  
0
25  
50  
75  
()  
100  
125  
0
25  
50  
75  
100  
125  
R
G
Rg ()  
Fig. 16 - Typ. Switching Time vs. RG  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V  
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V  
40  
45  
R
10Ω  
G =  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
R
22  
G =  
G =  
R
R
47Ω  
100Ω  
G =  
0
10  
20  
30  
40  
50  
60  
0
25  
50  
75  
(Ω)  
100  
125  
I
(A)  
R
F
G
Fig. 17 - Typ. Diode IRR vs. IF  
Fig. 18 - Typ. Diode IRR vs. RG  
TJ = 175°C  
TJ = 175°C  
www.irf.com  
5
IRGS/SL4062DPbF  
45  
40  
35  
30  
25  
20  
15  
10  
5
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
48A  
10  
22  
47  
24A  
12A  
100  
0
500  
1000  
1500  
0
500  
1000  
1500  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 20 - Typ. Diode QRR vs. diF/dt  
CC = 400V; VGE = 15V; TJ = 175°C  
Fig. 19 - Typ. Diode IRR vs. diF/dt  
VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C  
V
280  
16  
14  
12  
10  
8
1000  
800  
240  
200  
160  
120  
80  
R
= 47Ω  
G
R
= 10Ω  
G
600  
400  
200  
0
R
= 22Ω  
G
R
= 100Ω  
G
6
40  
4
0
10  
20  
30  
(A)  
40  
50  
60  
8
10  
12  
14  
(V)  
16  
18  
I
V
GE  
F
Fig. 22 - VGE vs. Short Circuit Time  
Fig. 21 - Typ. Diode ERR vs. IF  
VCC = 400V; TC = 25°C  
TJ = 175°C  
10000  
1000  
100  
16  
14  
12  
10  
8
V
V
= 300V  
= 400V  
CES  
CES  
Cies  
6
Coes  
Cres  
4
2
10  
0
0
20  
40  
60  
(V)  
80  
100  
0
5
10 15 20 25 30 35 40 45 50 55  
, Total Gate Charge (nC)  
V
Q
CE  
G
Fig. 24 - Typical Gate Charge vs. VGE  
Fig. 23 - Typ. Capacitance vs. VCE  
ICE = 24A; L = 600µH  
VGE= 0V; f = 1MHz  
6
www.irf.com  
IRGS/SL4062DPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.2329 0.000234  
τ
0.02  
0.01  
J τJ  
τ
τ
Cτ  
0.01  
τ
1 τ1  
Ci= τi/Ri  
2τ2  
0.3631 0.007009  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.476  
0.647  
0.406  
0.000763  
0.003028  
0.023686  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
/
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)  
www.irf.com  
7
IRGS/SL4062DPbF  
L
L
80 V  
VCC  
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4x  
- 5V  
VCC
DC  
DUT /  
DRIVER  
VCC  
DUT  
Rg  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
R =  
I
CM  
DUT  
VCC  
Rg  
Fig.C.T.5 - Resistive Load Circuit  
Fig.C.T.6 - BVCES Filter Circuit  
8
www.irf.com  
IRGS/SL4062DPbF  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
0
60  
50  
tf  
90% ICE  
VCE  
tr  
40  
ICE  
ICE  
VCE  
30  
90% test  
20  
5% VCE  
5% ICE  
10% ICE  
10  
5% VCE  
0
0
EOFF Loss  
EON  
-100  
-5  
-100  
-10  
-0.40  
0.10  
Time(µs)  
0.60  
11.70  
11.90  
12.10  
12.30  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
30  
600  
500  
400  
300  
200  
100  
0
300  
QRR  
ICE  
20  
250  
200  
150  
100  
50  
10  
tRR  
0
VCE  
-10  
Peak  
10%  
Peak  
IRR  
IRR  
-20  
-30  
0
-40  
-50  
-100  
-50  
-0.15  
-0.05  
0.05  
0.15  
0.25  
-5.00  
0.00  
5.00  
10.00  
time (µS)  
time (µS)  
Fig. WF4 - Typ. S.C. Waveform  
Fig. WF3 - Typ. Diode Recovery Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 25°C using Fig. CT.3  
www.irf.com  
9
IRGS/SL4062DPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
10  
www.irf.com  
IRGS/SL4062DPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
www.irf.com  
11  
IRGS/SL4062DPbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 12/2009  
12  
www.irf.com  

相关型号:

IRGSL4640DPBF

Insulated Gate Bipolar Transistor
INFINEON

IRGSL4B60K

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGSL4B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGSL4B60KD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGSL4B60KD1TRL

Insulated Gate Bipolar Transistor, 11A I(C), 600V V(BR)CES, N-Channel, TO-262AA, TO-262, 3 PIN
INFINEON

IRGSL4B60KD1TRR

Insulated Gate Bipolar Transistor, 11A I(C), 600V V(BR)CES, N-Channel, TO-262AA, TO-262, 3 PIN
INFINEON

IRGSL4B60KPBF

Insulated Gate Bipolar Transistor, 12A I(C), 600V V(BR)CES, N-Channel, TO-262, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGSL4B60KTRL

Insulated Gate Bipolar Transistor, 12A I(C), 600V V(BR)CES, N-Channel, TO-262AA, TO-262, 3 PIN
INFINEON

IRGSL6B60K

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGSL6B60KD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGSL6B60KDPBF

Insulated Gate Bipolar Transistor, 13A I(C), 600V V(BR)CES, N-Channel, TO-262, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGSL6B60KDTRL

Insulated Gate Bipolar Transistor, 13A I(C), 600V V(BR)CES, N-Channel, TO-262AA, TO-262, 3 PIN
INFINEON