IRFH7936PBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRFH7936PBF
型号: IRFH7936PBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总9页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD-97337  
IRFH7936PbF  
HEXFET® Power MOSFET  
Applications  
l
Synchronous MOSFET for Notebook  
Processor Power  
Synchronous Rectifer MOSFET for Isolated  
DC-DC Converters in Networking Systems  
VDSS  
30V  
RDS(on) max  
Qg  
l
4.8m @V = 10V  
17nC  
GS  
Benefits  
S
S
l
l
l
Very low RDS(ON) at 4.5V VGS  
Low Gate Charge  
Fully Characterized Avalanche Voltage and  
Current  
D
D
D
D
S
G
l
l
l
l
l
100% Tested for RG  
Lead-Free (Qualified up to 260°C Reflow)  
RoHS compliant (Halogen Free)  
Low Thermal Resistance  
PQFN  
Large Source Lead for more reliable Soldering  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
30  
Units  
VDS  
V
V
Gate-to-Source Voltage  
± 20  
20  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
@ TA = 70°C  
@ TC = 25°C  
16  
A
76  
160  
3.1  
2.0  
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
D
D
W
W/°C  
°C  
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.025  
-55 to + 150  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
2.8  
Units  
Junction-to-Case  
RθJC  
RθJA  
°C/W  
Junction-to-Ambient  
–––  
40  
Notes  through are on page 9  
www.irf.com  
1
07/17/08  
IRFH7936PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.022 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
48  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
4.1  
6.0  
4.8  
6.8  
V
GS = 10V, ID = 20A  
mΩ  
VGS = 4.5V, ID = 16A  
VGS(th)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
1.8  
2.35  
––– mV/°C  
V
V
V
DS = VGS, ID = 50µA  
DS = 24V, VGS = 0V  
-6.3  
–––  
–––  
–––  
1.0  
µA  
150  
VDS = 24V, VGS = 0V, TJ = 125°C  
VGS = 20V  
VGS = -20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
nA  
––– -100  
gfs  
Qg  
–––  
17  
–––  
26  
S
VDS = 15V, ID = 16A  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
4.5  
2.0  
5.5  
5.0  
7.5  
9.0  
1.5  
17  
–––  
–––  
–––  
–––  
–––  
–––  
2.3  
–––  
–––  
–––  
–––  
VDS = 15V  
VGS = 4.5V  
ID = 16A  
nC  
See Fig.17 & 18  
nC  
V
V
DS = 16V, VGS = 0V  
Gate Resistance  
Turn-On Delay Time  
td(on)  
tr  
td(off)  
tf  
DD = 15V, VGS = 4.5V  
Rise Time  
Turn-Off Delay Time  
12  
19  
ID = 16A  
RG=1.8Ω  
See Fig.15  
ns  
Fall Time  
7.0  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 2360 –––  
VGS = 0V  
pF  
Output Capacitance  
Reverse Transfer Capacitance  
–––  
–––  
450  
210  
–––  
–––  
VDS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
28  
16  
Units  
mJ  
Single Pulse Avalanche Energy  
EAS  
IAR  
Avalanche Current  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
MOSFET symbol  
–––  
–––  
3.9  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
–––  
–––  
160  
S
p-n junction diode.  
T = 25°C, I = 16A, V  
= 0V  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
–––  
–––  
–––  
–––  
14  
1.0  
21  
23  
V
ns  
J
S
GS  
T = 25°C, I = 16A, VDD = 15V  
J
F
Qrr  
ton  
15  
nC di/dt = 300A/µs  
See Fig.16  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRFH7936PbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 150°C  
TOP  
TOP  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.9V  
2.7V  
5.0V  
4.5V  
3.5V  
3.3V  
3.0V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
1
2.7V  
2.7V  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 20A  
D
V
= 10V  
GS  
100  
10  
1
T
= 150°C  
J
T
= 25°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
-60 -40 -20  
0
20 40 60 80 100 120 140160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance  
Fig 3. Typical Transfer Characteristics  
vs.Temperature  
www.irf.com  
3
IRFH7936PbF  
10000  
14.0  
12.0  
10.0  
8.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 16A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
V
V
= 24V  
= 15V  
C
= C  
rss  
gd  
DS  
DS  
C
= C + C  
ds gd  
oss  
C
iss  
1000  
C
oss  
6.0  
4.0  
C
rss  
2.0  
100  
0.0  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
5
10 15 20 25 30 35 40 45  
Q , Total Gate Charge (nC)  
V
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-SourceVoltage  
Drain-to-Source Voltage  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
1msec  
T
= 150°C  
J
T
= 25°C  
J
10msec  
DC  
1
1
T
= 25°C  
A
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
0.1  
1
10  
100  
V
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRFH7936PbF  
2.5  
2.0  
1.5  
1.0  
20  
15  
10  
5
I
= 50µA  
D
0
-75 -50 -25  
0
25 50 75 100 125 150  
25  
50  
75  
100  
125  
150  
T
, Temperature ( °C )  
T
, Ambient Temperature (°C)  
J
A
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
AmbientTemperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.05  
Ri (°C/W) τi (sec)  
τ
τ
J τJ  
τ
1.6431  
4.6179  
16.903  
16.855  
0.000308  
0.017766  
0.9436  
0.02  
0.01  
AτA  
τ
1 τ1  
τ
τ
2 τ2  
3 τ3  
4 τ4  
Ci= τi/Ri  
Ci= τi/Ri  
40.8  
0.1  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + T  
SINGLE PULSE  
( THERMAL RESPONSE )  
A
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRFH7936PbF  
14  
12  
10  
8
220  
200  
180  
160  
140  
120  
100  
80  
I
= 20A  
I
D
D
TOP  
3.0A  
5.1A  
BOTTOM 16A  
T
= 125°C  
J
6
4
2
60  
40  
T
= 25°C  
6
J
20  
0
0
2
4
8
10 12 14 16 18 20  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 12. On-Resistance vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy  
vs. Drain Current  
RD  
VDS  
15V  
VGS  
D.U.T.  
RG  
DRIVER  
+
L
+VDD  
V
DS  
-
VGS  
PulseWidth ≤ 1 µs  
DutyFactor≤ 0.1  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
0.01  
t
p
Fig 15a. Switching Time Test Circuit  
Fig 14a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
VDS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 15b. Switching Time Waveforms  
Fig 14b. Unclamped Inductive Waveforms  
6
www.irf.com  
IRFH7936PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
LowStrayInductance  
Ground Plane  
LowLeakageInductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Current Regulator  
Id  
Vds  
Same Type as D.U.T.  
Vgs  
50KΩ  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
Qgs1  
V
GS  
3mA  
I
I
Qgs2  
Qgd  
Qgodr  
G
D
Current Sampling Resistors  
Fig 18. Gate Charge Waveform  
Fig 17. Gate Charge Test Circuit  
www.irf.com  
7
IRFH7936PbF  
PQFN Package Details  
PQFN Part Marking  
INTERNATIONAL  
RECTIFIER LOGO  
6
DATE CODE  
PART NUMBER  
XXXX  
ASSEMBLY SITE CODE  
(Per SCOP 200-002)  
MARKING CODE  
XYWWX  
XXXXX  
(Per Marking Spec.)  
PIN 1  
IDENTIFIER  
LOT CODE  
(Eng Mode - Min. last 4 digits of EATI #)  
(Prod Mode - 4 digits SPN code)  
TOP MARKING (LASER)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRFH7936PbF  
PQFN Tape and Reel  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.22mH, RG = 25, IAS = 16A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Rthjc is guaranteed by design  
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/08  
www.irf.com  
9

相关型号:

IRFH7936TRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRFH8201

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFH8201PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8201PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8201TRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRFH8202PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8202PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8202TRPBF

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON

IRFH8303PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8303PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFH8303TRPBF

Power Field-Effect Transistor, N-Channel, Metal-Oxide Semiconductor FET
INFINEON

IRFH8307PBF

Compatible with Existing Surface Mount Techniques
INFINEON