IRF7759L2TR1PBF [INFINEON]

RoHS Compliant, Halogen Free; 符合RoHS ,无卤素
IRF7759L2TR1PBF
型号: IRF7759L2TR1PBF
厂家: Infineon    Infineon
描述:

RoHS Compliant, Halogen Free
符合RoHS ,无卤素

文件: 总11页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96283  
IRF7759L2TRPbF  
IRF7759L2TR1PbF  
DirectFET™ Power MOSFET ‚  
l RoHS Compliant, Halogen Free   
Typical values (unless otherwise specified)  
l Lead-Free (Qualified up to 260°C Reflow)  
VDSS  
75V min ±20V max  
VGS  
RDS(on)  
1.8m@ 10V  
Vgs(th)  
l Ideal for High Performance Isolated Converter  
Primary Switch Socket  
l Optimized for Synchronous Rectification  
Qg tot  
Qgd  
l Low Conduction Losses  
200nC  
62nC  
3.0V  
l High Cdv/dt Immunity  
l Low Profile (<0.7mm)  
l Dual Sided Cooling Compatible   
l Compatible with existing Surface Mount Techniques   
l Industrial Qualified  
S
S
S
S
S
S
S
S
G
D
D
DirectFET™ ISOMETRIC  
L8  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The IRF7759L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to  
achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package  
is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection  
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package  
allows dual sided cooling to maximize thermal transfer in power systems.  
The IRF7759L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses  
in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system  
reliability improvements, and makes this device ideal for high performance power converters.  
Absolute Maximum Ratings  
Max.  
75  
Parameter  
Units  
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
±20  
160  
113  
26  
V
GS  
(Silicon Limited)  
(Silicon Limited)  
(Silicon Limited)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
I
@ TC = 25°C  
D
D
D
D
@ TC = 100°C  
@ TA = 25°C  
@ TC = 25°C  
A
375  
640  
257  
96  
DM  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
8
6
4
2
0
1.95  
1.85  
1.75  
1.65  
I
= 96A  
D
T
= 25°C  
A
V
= 7.0V  
GS  
V
V
= 8.0V  
= 10V  
GS  
T
= 125°C  
J
GS  
V
= 15V  
GS  
T
= 25°C  
14  
J
2
4
6
8
10  
12  
16  
18  
20  
15  
30  
45  
60  
75  
90  
105  
V
Gate -to -Source Voltage (V)  
GS,  
I , Drain Current (A)  
D
Fig 1. Typical On-Resistance vs. Gate Voltage  
Fig 2. Typical On-Resistance vs. Drain Current  
Notes:  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
† Starting TJ = 25°C, L = 0.056mH, RG = 25, IAS = 96A.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
www.irf.com  
1
11/16/09  
IRF7759L2TR/TR1PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
75  
–––  
0.02  
1.8  
3.0  
-11  
–––  
–––  
–––  
–––  
–––  
200  
37  
–––  
–––  
2.3  
V
V/°C  
mΩ  
V
Reference to 25°C, ID = 2mA  
V
/ T  
J
∆Β  
–––  
–––  
2.0  
DSS  
VGS = 10V, ID = 96A  
RDS(on)  
VGS(th)  
4.0  
VDS = VGS, ID = 250µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
74  
––– mV/°C  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
VGS = 20V  
20  
µA  
250  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
nA  
VGS = -20V  
-100  
VDS = 25V, ID = 96A  
gfs  
–––  
300  
–––  
–––  
93  
S
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 38V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
VGS = 10V  
ID = 96A  
11  
nC  
62  
91  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
See Fig. 9  
73  
VDS = 16V, VGS = 0V  
60  
nC  
Gate Resistance  
1.1  
18  
VDD = 38V, VGS = 10V  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
ID = 96A  
Rise Time  
37  
ns  
RG=1.8Ω  
Turn-Off Delay Time  
80  
Fall Time  
33  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 12222 –––  
––– 1465 –––  
VDS = 25V  
Output Capacitance  
pF ƒ = 1.0MHz  
VGS = 0V, VDS = 1.0V, f=1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
––– 7457 –––  
––– 955 –––  
609  
–––  
VGS = 0V, VDS = 60V, f=1.0MHz  
Output Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
IS  
–––  
–––  
160  
showing the  
(Body Diode)  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
640  
p-n junction diode.  
TJ = 25°C, IS = 96A, VGS = 0V  
TJ = 25°C, IF = 96A, VDD = 38V  
di/dt = 100A/µs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
64  
1.3  
96  
V
ns  
nC  
Qrr  
150  
225  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
‡ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF7759L2TR/TR1PbF  
Absolute Maximum Ratings  
Max.  
125  
Parameter  
Units  
Power Dissipation  
Power Dissipation  
Power Dissipation  
P
P
P
@TC = 25°C  
@TC = 100°C  
@TA = 25°C  
D
D
D
P
J
63  
W
3.3  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
-55 to + 175  
°C  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
RθJA  
–––  
–––  
1.2  
RθJA  
°C/W  
RθJ-Can  
RθJ-PCB  
–––  
–––  
Junction-to-PCB Mounted  
0.5  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.10804  
0.61403  
0.45202  
0.00001  
0.000171  
0.053914  
0.006099  
0.036168  
τ
τ
J τJ  
τ
Cτ  
0.01  
0.001  
0.0001  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case „  
Notes:  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple incontact with top (Drain) of part.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
Š R is measured at TJ of approximately 90°C.  
θ
ƒ
Surface mounted on 1 in. square Cu  
‰Mounted on minimum footprint full size board with metalized  
board (still air).  
back and with small clip heatsink. (still air)  
www.irf.com  
3
IRF7759L2TR/TR1PbF  
1000  
100  
10  
1000  
VGS  
15V  
VGS  
TOP  
TOP  
15V  
10V  
10V  
7.00V  
5.50V  
5.00V  
4.50V  
4.00V  
3.75V  
7.00V  
5.50V  
5.00V  
4.50V  
4.00V  
3.75V  
100  
10  
BOTTOM  
BOTTOM  
3.75V  
1
3.75V  
60µs  
0.1  
0.01  
60µs  
PULSE WIDTH  
Tj = 175°C  
PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
I
= 96A  
V
= 25V  
D
DS  
V
= 10V  
60µs PULSE WIDTH  
GS  
100  
10  
1
T
= 175°C  
J
TJ = 25°C  
TJ = -40°C  
0.1  
-60  
-20  
20  
60  
100  
140  
180  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
T , Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
14  
100000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 96A  
D
C
C
C
+ C , C  
SHORTED  
V
= 60V  
= 38V  
iss  
gs  
gd  
ds  
DS  
12  
10  
8
= C  
V
rss  
oss  
gd  
DS  
= C + C  
VDS= 15V  
ds  
gd  
C
iss  
10000  
1000  
100  
C
oss  
6
C
rss  
4
2
0
0
50  
100  
150  
200  
250  
300  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
G
DS  
Fig 9. Typical Total Gate Charge vs  
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage  
Gate-to-Source Voltage  
4
www.irf.com  
IRF7759L2TR/TR1PbF  
10000  
1000  
100  
10  
OPERATION IN THIS AREA LIMITED  
T
= 175°C  
BY R (on)  
J
DS  
TJ = 25°C  
TJ = -40°C  
1000  
100  
10  
100µsec  
DC  
1msec  
1
1
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0
1
10  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
200  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
160  
120  
80  
I
= 1.0A  
D
40  
ID = 1.0mA  
ID = 250µA  
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 13. Typical Threshold Voltage vs.  
Fig 12. Maximum Drain Current vs. Case Temperature  
Junction Temperature  
1200  
I
D
TOP  
15.39A  
23.97A  
1000  
800  
600  
400  
200  
0
BOTTOM 96A  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy Vs. Drain Current  
www.irf.com  
5
IRF7759L2TR/TR1PbF  
1000  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
100  
0.01  
10  
1
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 19a, 19b.  
300  
TOP  
BOTTOM 1.0% Duty Cycle  
= 96A  
Single Pulse  
250  
200  
150  
100  
50  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy Vs. Temperature  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·ta  
Driver Gate Drive  
P.W.  
D.U.T  
Period  
D =  
Period  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs  
6
www.irf.com  
IRF7759L2TR/TR1PbF  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
Vgs(th)  
20K  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 18a. Gate Charge Test Circuit  
Fig 18b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
V
R
D.U.T  
AS  
GS  
G
V
DD  
-
I
A
20V  
t
0.01Ω  
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
IRF7759L2TR/TR1PbF  
DirectFET™ Board Footprint, L8 (Large Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
8
www.irf.com  
IRF7759L2TR/TR1PbF  
DirectFET™ Outline Dimension, L8 Outline (LargeSize Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
DIMENSIONS  
IMPERIAL  
MIN  
0.356  
7.10 0.270  
METRIC  
MAX  
9.15  
CODE  
MIN  
9.05  
6.85  
5.90  
0.55  
0.58  
1.18  
0.98  
0.73  
0.38  
1.34  
2.52  
0.59  
0.03  
0.09  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.017  
0.030  
0.017  
0.058  
0.106  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.00  
0.65  
0.62  
0.232  
0.022  
0.023  
1.22 0.046  
1.02  
0.77  
0.42  
1.47  
2.69  
0.70  
0.08  
0.18  
0.015  
0.029  
0.015  
0.053  
0.099  
0.023  
0.001  
0.003  
G
H
J
K
L
M
N
P
DirectFET™ Part Marking  
GATE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
9
IRF7759L2TR/TR1PbF  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm Std reel  
quantity is 4000 parts. (ordered as IRF7759L2PBF).  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
METRIC  
MAX  
IMPERIAL  
MIN  
CODE  
MAX  
N.C  
MIN  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
22.4  
18.4  
18.4  
N.C  
0.520  
N.C  
100.0  
N.C  
N.C  
0.889  
0.724  
0.724  
G
H
0.646  
0.626  
16.4  
15.9  
LOADED TAPE FEED DIRECTION  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
NC  
MAX  
12.10  
4.10  
16.30  
7.60  
7.40  
10.10  
NC  
0.469  
0.154  
0.626  
0.291  
0.284  
0.390  
0.059  
0.059  
A
B
C
D
E
F
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
G
H
0.063  
1.60  
10  
www.irf.com  
IRF7759L2TR/TR1PbF  
Part number  
Package Type  
Standard Pack  
Form  
Tape and Reel  
Tape and Reel  
Note  
Quantity  
4000  
1000  
IRF7759L2TRPbF  
IRF7759L2TR1PbF  
DirectFET2 Large Can  
DirectFET2 Large Can  
"TR" suffix  
"TR1" suffix  
Qualification Information†  
Industrial ††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
Comments: This family of products has passed JEDEC’s Industrial  
qualification. IR’s Consumer qualification level is granted by extension of the  
higher Industrial level.  
MSL1  
Moisture Sensitivity Level  
RoHS Compliant  
DFET2  
(per JEDEC J-STD-020D†††  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site  
http://www.irf.com/product-info/reliability  
†† Higher qualification ratings may be available should the user have such requirements.  
Please contact your International Rectifier sales representative for further information:  
http://www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
This product has been designed and qualified to MSL1 rating for the Industrial market.  
Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/2009  
www.irf.com  
11  

相关型号:

IRF7759L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7769L1

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRF7769L1PBF

RoHS Compliant, Halogen Free
INFINEON

IRF7769L1PBF_15

Optimized for Synchronous Rectification
INFINEON

IRF7769L1TRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF7769L2TR1PBF

Power Field-Effect Transistor, 20A I(D), 100V, 0.0035ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-9
INFINEON

IRF7769L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7779L2PBF

Optimized for Synchronous Rectification
INFINEON

IRF7779L2PBF_15

Optimized for Synchronous Rectification
INFINEON

IRF7779L2TR1PBF

Power Field-Effect Transistor, 11A I(D), 150V, 0.0011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-9
INFINEON

IRF7779L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7780MPBF

Brushed Motor drive applications
INFINEON