IRF7769L1 [INFINEON]

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. ;
IRF7769L1
型号: IRF7769L1
厂家: Infineon    Infineon
描述:

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 

文件: 总11页 (文件大小:569K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF7769L1TRPbF  
DirectFET™ Power MOSFET  
Typical values (unless otherwise specified)  
Applications  
VDSS  
VGS  
±20V max  
Qgd  
RDS(on)  
2.8m@ 10V  
Vgs(th)  
RoHS Compliant, Halogen Free   
Lead-Free (Qualified up to 260°C Reflow)   
Ideal for High Performance Isolated Converter  
Primary Switch Socket  
100V min  
Qg tot  
Optimized for Synchronous Rectification  
Low Conduction Losses  
200nC  
110nC  
2.7V  
High Cdv/dt Immunity  
Low Profile (<0.7mm)  
S
S
S
S
S
S
Dual Sided Cooling Compatible   
Compatible with existing Surface Mount Techniques   
Industrial Qualified  
G
D
D
S
S
L8  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The IRF7769L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging  
to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The  
DirectFET™ package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor  
phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods  
and processes. The DirectFET™ package allows dual sided cooling to maximize thermal transfer in power systems.  
The IRF7769L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses  
in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for  
system reliability improvements, and makes this device ideal for high performance power converters.  
Ordering Information  
Standard Pack  
Part number  
Package Type  
Note  
Form  
Quantity  
IRF7769L1TRPbF  
DirectFET Large Can  
Tape and Reel  
4000  
“TR” suffix  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
VGS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
100  
±20  
124  
88  
V
ID @ TC = 25°C  
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TA = 25°C  
ID @ TC = 25°C  
IDM  
EAS  
IAR  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)   
Pulsed Drain Current  
20  
A
375  
500  
260  
74  
Single Pulse Avalanche Energy   
mJ  
A
Avalanche Current   
12.00  
10.00  
8.00  
6.00  
4.00  
2.00  
3.10  
I
= 74A  
T = 25°C  
A
D
V
= 7.0V  
GS  
3.00  
2.90  
2.80  
V
= 8.0V  
= 10V  
GS  
V
GS  
T
= 125°C  
= 25°C  
J
V
= 15V  
GS  
T
J
0.00  
2.0  
20  
40  
60  
, Drain Current (A)  
80  
100  
4.0  
V
6.0  
8.0 10.0 12.0 14.0 16.0  
I
D
, Gate-to-Source Voltage (V)  
GS  
Fig 2. Typical On-Resistance vs. Drain Current  
Fig 1. Typical On-Resistance vs. Gate Voltage  
Notes  
Click on this section to link to the appropriate technical paper.  
Click on this section to link to the DirectFET Website.  
Surface mounted on 1 in. square Cu board, steady state.  
TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Starting TJ = 25°C, L = 0.09mH, RG = 25, IAS = 74A.  
1
2016-10-14  
IRF7769L1TRPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
100 ––– –––  
––– 0.02 –––  
V
VGS = 0V, ID = 250µA  
V/°C Reference to 25°C, ID = 2mA  
VDSS/TJ  
RDS(on)  
–––  
2.0  
2.8  
2.7  
3.5  
4.0  
VGS = 10V, ID = 74A   
m  
VGS(th)  
V
VDS = VGS, ID = 250µA  
Gate Threshold Voltage Temp. Coefficient –––  
-10 ––– mV/°C  
VGS(th)/TJ  
––– –––  
20  
VDS = 100 V, VGS = 0V  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
––– ––– 250  
VDS = 80V,VGS = 0V,TJ =125°C  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
––– ––– 100  
––– ––– -100  
410 ––– –––  
––– 200 300  
V
V
V
GS = 20V  
nA  
S
GS = -20V  
gfs  
DS = 25V, ID = 74A  
Qg  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
td(on)  
tr  
td(off)  
tf  
Pre– Vth Gate-to-Source Charge  
Post– Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
30  
–––  
–––  
VDS = 50V  
9.0  
nC VGS = 10V  
ID = 74A  
––– 110 165  
––– 51 –––  
––– 119 –––  
–––  
–––  
–––  
–––  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
Gate Resistance  
Turn-On Delay Time  
See Fig.9  
53  
1.5  
44  
32  
–––  
–––  
–––  
–––  
nC VDS = 16V,VGS = 0V  
  
VDD = 50V, VGS = 10V  
Rise Time  
ID = 74A  
ns  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
92  
41  
–––  
–––  
RG= 1.8  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 11560 –––  
––– 1240 –––  
––– 590 –––  
VGS = 0V  
VDS = 25V  
ƒ = 1.0MHz  
pF  
Coss  
Coss  
Output Capacitance  
Output Capacitance  
––– 6665 –––  
––– 690 –––  
VGS=0V, VDS = 1.0V,ƒ =1.0MHz  
VGS=0V, VDS = 80V,ƒ =1.0MHz  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
Continuous Source Current  
(Body Diode)  
IS  
––– ––– 124  
A
––– ––– 500  
Pulsed Source Current  
(Body Diode)  
ISM  
VSD  
Diode Forward Voltage  
––– –––  
––– 75  
1.3  
V
TJ = 25°C,IS = 74A,VGS = 0V   
trr  
Reverse Recovery Time  
Reverse Recovery Charge  
112  
ns  
TJ = 25°C ,IF = 74A,VDD = 50V  
Qrr  
––– 220 330  
nC  
di/dt = 100A/µs   
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Pulse width 400µs; duty cycle 2%  
2
2016-10-14  
IRF7769L1TRPbF  
Absolute Maximum Ratings  
Symbol  
PD @TC = 25°C Power Dissipation   
PD @TC = 100°C Power Dissipation   
Parameter  
Max.  
125  
63  
Units  
W
Power Dissipation   
3.3  
PD @TA = 25°C  
Peak Soldering Temperature  
Operating Junction and  
Storage Temperature Range  
270  
TP  
-55 to + 175  
TJ  
TSTG  
°C  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
Max.  
45  
Units  
Junction-to-Ambient   
–––  
12.5  
20  
RqJA  
Junction-to-Ambient   
Junction-to-Ambient   
Junction-to-Can   
Junction-to-PCB Mounted  
–––  
–––  
1.2  
RqJA  
°C/W  
RqJA  
RqJC  
RqJA-PCB  
–––  
–––  
0.4  
10  
1
0.1  
D = 0.50  
0.20  
Ri (°C/W)  
0.1080  
i (sec)  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.000171  
0.053914  
0.006099  
0.036168  
J J  
0.02  
0.01  
C
1 1  
0.6140  
0.4520  
2 2  
3 3  
4 4  
0.01  
Ci= iRi  
Ci= iRi  
1.47e-05  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Eecve Transient Thermal Impedance, JuncontoCase  
Notes:  
Used double sided cooling, mounting pad with large heatsink.  
Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
Surface mounted on 1 in. square Cu board, steady state.  
TC measured with thermocouple incontact with top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Ris measured at TJ of approximately 90°C.  
Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink (still air)  
Surface mounted on 1 in. square Cu  
board (still air).  
3
2016-10-14  
IRF7769L1TRPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.0V  
4.5V  
4.0V  
3.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
3.5V  
3.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 5. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
I
= 74A  
V
= 25V  
D
DS  
60µs PULSE WIDTH  
V
= 10V  
GS  
100  
10  
1
T
T
T
= 175°C  
= 25°C  
= -40°C  
J
J
J
0.1  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
2.0  
2.5  
V
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
T
, Junction Temperature (°C)  
, Gate-to-Source Voltage (V)  
GS  
J
Fig 7. Normalized On-Resistance vs. Temperature  
Fig 6. Typical Transfer Characteristics  
100000  
14  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 74A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
V
V
= 80V  
= 50V  
= 20V  
C
= C  
12  
10  
8
DS  
DS  
DS  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
10000  
1000  
100  
Coss  
Crss  
6
4
2
0
1
10  
100  
0
50  
100  
150  
200  
250  
300  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage  
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage  
4
2016-10-14  
IRF7769L1TRPbF  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
T
T
= 175°C  
= 25°C  
= -40°C  
100µsec  
J
J
J
DC  
10msec  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
1msec  
V
= 0V  
GS  
0.1  
0.1  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
0
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 11. Maximum Safe Operating Area  
Fig 10. Typical Source-Drain Diode Forward Voltage  
4.0  
125  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
75  
50  
25  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
T
, CaseTemperature (°C)  
J
C
Fig 12. Maximum Drain Current vs. Case Temperature  
Fig 13. Typical Threshold Voltage vs. Junction Temperature  
1200  
I
D
TOP  
13A  
20A  
74A  
1000  
800  
600  
400  
200  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
5
2016-10-14  
IRF7769L1TRPbF  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs. Pulse width  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 )  
1.Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
19a, 19b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
280  
240  
200  
160  
120  
80  
TOP  
BOTTOM 1% Duty Cycle  
= 74A  
Single Pulse  
I
D
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
40  
T
jmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
0
ZthJC(D, tav) = Transient thermal resistance, see Figures 3)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
J
I
av = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)· av  
t
Fig 16. Maximum Avalanche Energy vs. Temperature  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
6
2016-10-14  
IRF7769L1TRPbF  
Fig 18a. Gate Charge Test Circuit  
Fig 18b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
D.U.T  
AS  
R
+
-
G
V
DD  
I
A
20V  
0.01  
t
p
I
AS  
Fig 19a. Unclamped Inductive Test Circuit  
Fig 19b. Unclamped Inductive Waveforms  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
7
2016-10-14  
IRF7769L1TRPbF  
DirectFET™ Board Footprint, L8 Outline  
(Large Size Can, 8-Source Pads)  
Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
8
2016-10-14  
IRF7769L1TRPbF  
DirectFET® Outline Dimension, L8 Outline  
(Large Size Can, 8-Source Pads)  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN  
MAX  
0.360  
0.280  
0.236  
0.026  
0.024  
0.048  
0.040  
0.030  
0.017  
0.057  
0.104  
0.215  
0.029  
0.007  
0.003  
A
B
C
D
E
F
9.05  
6.85  
5.90  
0.55  
0.58  
1.18  
0.98  
0.73  
0.38  
1.35  
2.55  
5.35  
0.68  
0.09  
0.02  
9.15  
7.10  
6.00  
0.65  
0.62  
1.22  
1.02  
0.77  
0.42  
1.45  
2.65  
5.45  
0.74  
0.17  
0.08  
0.356  
0.270  
0.232  
0.022  
0.023  
0.046  
0.039  
0.029  
0.015  
0.053  
0.100  
0.211  
0.027  
0.003  
0.001  
G
H
J
K
L
L1  
M
P
R
DirectFETPart Marking  
GATE MARKING  
LOGO  
+
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
9
2016-10-14  
IRF7769L1TRPbF  
DirectFETTape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
+
NOTE:  
Controlling dimensions in mm  
Std reel quantity is 4000 parts. (ordered as IRF7769L1TRPBF).  
REEL DIMENSIONS  
DIMENSIONS  
METRIC  
STANDARD OPTION (QTY 4000)  
IMPERIAL  
METRIC  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
MIN  
MAX  
12.10  
4.10  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
A
B
C
D
E
F
4.69  
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
330.00  
20.20  
12.80  
1.50  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
N.C  
N.C  
0.520  
N.C  
13.20  
N.C  
16.30  
7.60  
99.00  
N.C  
3.940  
0.880  
0.720  
0.760  
100.00  
22.40  
18.40  
19.40  
7.40  
10.10  
N.C  
G
H
0.650  
0.630  
16.40  
15.90  
G
H
0.063  
1.60  
Note: For the most current drawing please refer to website at http://www.irf.com/package/  
Qualification Information  
Industrial *  
(per JEDEC JESD47Fguidelines)  
Qualification Level  
MSL1  
DirectFET (Large -Can)  
Moisture Sensitivity Level  
RoHS Compliant  
(per JEDEC J-STD-020D†)  
Yes  
Applicable version of JEDEC standard at the time of product release.  
*
Industrial qualification standards except autoclave test conditions.  
10  
2016-10-14  
IRF7769L1TRPbF  
Revision History  
Date  
Comments  
2/13/2013  
 TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document  
 Changed datasheet with “Infineon” logo –all pages.  
 Corrected Outline Dimension, L8 Outline on page 9.  
 Added disclaimer on last page.  
10/14/2016  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2015  
All Rights Reserved.  
IMPORTANT NOTICE  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
WARNINGS  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  
11  
2016-10-14  

相关型号:

IRF7769L1PBF

RoHS Compliant, Halogen Free
INFINEON

IRF7769L1PBF_15

Optimized for Synchronous Rectification
INFINEON

IRF7769L1TRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF7769L2TR1PBF

Power Field-Effect Transistor, 20A I(D), 100V, 0.0035ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-9
INFINEON

IRF7769L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7779L2PBF

Optimized for Synchronous Rectification
INFINEON

IRF7779L2PBF_15

Optimized for Synchronous Rectification
INFINEON

IRF7779L2TR1PBF

Power Field-Effect Transistor, 11A I(D), 150V, 0.0011ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, ISOMETRIC-9
INFINEON

IRF7779L2TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF7780MPBF

Brushed Motor drive applications
INFINEON

IRF7780MPBF_15

Brushed Motor drive applications
INFINEON

IRF7780MTRPBF

Brushed Motor drive applications
INFINEON