IRF3007SPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF3007SPBF
型号: IRF3007SPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总11页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95494  
IRF3007SPbF  
AUTOMOTIVE MOSFET IRF3007LPbF  
Typical Applications  
l
HEXFET® Power MOSFET  
42 Volts Automotive Electrical Systems  
l
Lead-Free  
D
VDSS = 75V  
DS(on) = 0.0126Ω  
ID = 62A  
Features  
l
l
l
l
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
R
G
Repetitive Avalanche Allowed up to Tjmax  
S
Description  
Specifically designed for Automotive applications, this design of  
HEXFET® Power MOSFETs utilizes the lastest processing  
techniquestoachieveextremelylow on-resistancepersiliconarea.  
Additional features of this HEXFET power MOSFET are a 175°C  
junction operating temperature, fast switching speed and improved  
repetitive avalanche rating. These combine to make this design an  
extremely efficient and reliable device for use in Automotive  
applications and a wide variety of other applications.  
D2Pak  
TO-262  
IRF3007L  
IRF3007S  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
62  
44  
A
320  
PD @TC = 25°C  
PowerDissipation  
120  
W
W/°C  
V
LinearDeratingFactor  
0.8  
VGS  
Gate-to-SourceVoltage  
± 20  
EAS  
Single Pulse Avalanche Energy‚  
Single Pulse Avalanche Energy Tested Value‡  
Avalanche Current  
290  
946  
mJ  
EAS (6 sigma)  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
TJ  
Repetitive Avalanche Energy†  
Operating Junction and  
mJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
°C  
300 (1.6mm from case )  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
1.25  
62  
Units  
°C/W  
RθJC  
RθJA  
Junction-to-Ambient (PCB Mounted,steady state)**  
–––  
** This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).  
For recommended footprint and soldering techniques refer to application note #AN-994.  
www.irf.com  
1
07/01/04  
IRF3007S/LPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient  
––– 0.084 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– 10.5 12.6 mVGS = 10V, ID = 48A „  
2.0  
––– 4.0  
V
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 48A  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
180 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
S
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
89 130  
ID = 48A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
21  
30  
32  
45  
nC VDS = 60V  
VGS = 10V  
12 –––  
80 –––  
55 –––  
49 –––  
VDD = 38V  
ID = 48A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 4.6Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 3270 –––  
––– 520 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
–––  
78 –––  
ƒ = 1.0MHz, See Fig. 5  
Coss  
––– 3500 –––  
––– 340 –––  
––– 640 –––  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 60V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
80†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 320  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
––– ––– 1.3  
––– 85 130  
––– 280 420  
V
TJ = 25°C, IS = 48A, VGS = 0V „  
ns  
TJ = 25°C, IF = 48A, VDD = 38V  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Coss eff. is a fixed capacitance that gives the same charging time  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Starting TJ = 25°C, L = 0.24mH  
RG = 25, IAS = 48A, VGS=10V (See Figure 12).  
ƒ ISD 48A, di/dt 330A/µs, VDD V(BR)DSS  
TJ 175°C  
„ Pulse width 400µs; duty cycle 2%.  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
This value determined from sample failure population. 100%  
tested to this value in production.  
2
www.irf.com  
IRF3007S/LPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM4.5V  
BOTTOM4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
20µs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
T
= 175°C  
J
80  
60  
40  
20  
0
100  
10  
1
T
= 175°C  
J
T
= 25°C  
J
T
= 25°C  
J
V
= 25V  
V
= 25V  
DS  
20µs PULSE WIDTH  
DS  
20µs PULSE WIDTH  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
0
40  
80  
120  
160  
V
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF3007S/LPbF  
20  
16  
12  
8
6000  
V
= 0V,  
= C  
f = 1 MHZ  
+ C C  
GS  
V
= 60V  
I = 48A  
DS  
D
C
,
iss  
gs  
gd  
ds  
VDS= 38V  
VDS= 15V  
SHORTED  
5000  
4000  
3000  
2000  
1000  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds gd  
Ciss  
4
Coss  
Crss  
0
0
0
40  
G
80  
120  
160  
1
10  
100  
Q
Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10000  
1000  
100  
10  
1000.0  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
10.0  
1.0  
T
= 175°C  
J
100µsec  
1msec  
1
10msec  
Tc = 25°C  
Tj = 175°C  
T
= 25°C  
J
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
1
10  
, Drain-toSource Voltage (V)  
DS  
100  
1000  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-toDrain Voltage (V)  
V
V
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3007S/LPbF  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
80A  
=
I
D
V
= 10V  
GS  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
T , Junction Temperature  
( C)  
T
, Case Temperature (°C)  
J
C
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
P
DM  
0.02  
0.01  
t
1
t
2
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3007S/LPbF  
700  
600  
500  
400  
300  
200  
100  
0
15V  
I
D
TOP  
20A  
34A  
BOTTOM 48A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
2
V0GVS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.0  
2.0  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
3mA  
T
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF3007S/LPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
0.01  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
0.1  
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
300  
TOP  
BOTTOM 50% Duty Cycle  
= 48A  
Single Pulse  
I
D
200  
100  
0
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF3007S/LPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF3007S/LPbF  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLYLINE "L"  
F530S  
DAT E CODE  
YEAR 0 = 2000  
WE E K 02  
Note: "P" in assembly line  
pos ition indicates "Lead-F ree"  
ASSEMBLY  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DAT E CODE  
P = DE S IGNAT E S L E AD-F R E E  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
ASSEMBLY  
LOT CODE  
WEE K 02  
A = ASSEMBLYSITE CODE  
www.irf.com  
9
IRF3007S/LPbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
AS SEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WE E K 19  
Note: "P" in assembly line  
pos ition indicates "L ead-F ree"  
AS S E MB L Y  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MB L Y  
LOT CODE  
WE E K 19  
A = AS S E MB LY S IT E CODE  
10  
www.irf.com  
IRF3007S/LPbF  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
11.60 (.457)  
11.40 (.449)  
FEED DIRECTION  
TRL  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
15.42 (.609)  
15.22 (.601)  
23.90 (.941)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
26.40 (1.039)  
24.40 (.961)  
4
3
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 07/04  
www.irf.com  
11  

相关型号:

IRF300P226

Power Field-Effect Transistor,
INFINEON

IRF300P227

300V Single N-Channel StrongIRFET™ in a TO-247AC package
INFINEON

IRF3103

HEXFET㈢ Power MOSFET
INTERFET

IRF320

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF320

2.8A and 3.3A, 350V and 400V, 1.8 and 2.5 Ohm, N-Channel Power MOSFETs
INTERSIL

IRF320

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

IRF320-323

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

IRF3202SPBF

HEXFET Power MOSFET
INFINEON

IRF3205

Power MOSFET(Vdss=55V, Rds(on)=8.0mohm, Id=110A)
INFINEON

IRF3205

Advanced Process Technology Ultra Low On-Resistance
KERSEMI

IRF3205

Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating
TYSEMI