IRAUDAMP9 [INFINEON]

Class D Audio Power Amplifier;
IRAUDAMP9
型号: IRAUDAMP9
厂家: Infineon    Infineon
描述:

Class D Audio Power Amplifier

文件: 总39页 (文件大小:4434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRAUDAMP9  
1.7 kW / 2-Single Channel  
Class D Audio Power Amplifier  
Using the IRS2092S and IRFB4227  
By  
Israel Serrano and Jun Honda  
CAUTION:  
International Rectifier recommends the following guidelines for safe operation and  
handling of IRAUDAMP9 demo board:  
Always wear safety glasses when operating demo board  
Avoid physical contact with exposed metal surfaces when operating the demo board  
Turn off demo board when placing or removing measurement probes  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 1 of 39  
TABLE OF CONTENTS  
PAGE  
INTRODUCTION............................................................................................................................................... 3  
SPECIFICATIONS............................................................................................................................................ 3  
CONNECTION SETUP AND DESCRIPTION ...............................................................................................5-6  
TEST PROCEDURES ...................................................................................................................................... 6  
PERFORMANCE AND TEST GRAPHS .......................................................................................................7-9  
IRAUDAMP9 OVERVIEW .............................................................................................................................. 10  
FUNCTIONAL DESCRIPTIONS................................................................................................................... 100  
CLASS D OPERATION................................................................................................................................... 100  
Gate Driver Buffer Stage………………………………………………………………………………………… 11  
POWER SUPPLIES AND PSRR........................................................................................................................ 12  
BUS PUMPING ............................................................................................................................................... 12  
HOUSE KEEPING POWER SUPPLY................................................................................................................... 13  
INPUT............................................................................................................................................................ 13  
OUTPUT ........................................................................................................................................................ 13  
HIGH OUTPUT PEAK SHUTDOWN (HOPS) CIRCUIT ......................................................................................... 13  
GAIN SETTING / VOLUME CONTROL ................................................................................................................ 14  
EFFICIENCY................................................................................................................................................... 14  
OUTPUT FILTER DESIGN AND PREAMPLIFIER................................................................................................... 15  
SELF-OSCILLATING PWM MODULATOR .......................................................................................................... 16  
ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY......................................................................................... 16  
SWITCHES AND INDICATORS........................................................................................................................... 16  
STARTUP AND SHUTDOWN ............................................................................................................................. 17  
STARTUP AND SHUTDOWN SEQUENCING ........................................................................................................ 17  
PROTECTION SYSTEM OVERVIEW................................................................................................................... 20  
Ouput Over-Current Protection (OCP).................................................................................................... 20  
Low-side Current Sensing ................................................................................................................. 20  
High-side Current Sensing ................................................................................................................ 21  
Input Bus Over-Voltage Protection (OVP) .............................................................................................. 21  
Input Bus Under-Voltage Protection (UVP)............................................................................................. 22  
Speaker DC-Offset- Protection (DCP) .................................................................................................... 21  
Offset Null (DC Offset) Adjustment......................................................................................................... 21  
Over-Temperature Protection (OTP) ...................................................................................................... 22  
Thermal Considerations.......................................................................................................................... 22  
SHORT CIRCUIT PROTECTION RESPONSE ....................................................................................................... 23  
SCHEMATIC DIAGRAMS .................................................................................................................................. 25  
IRAUDAMP9 FABRICATION BILL OF MATERIALS (BOM)....................................................................... 30  
IRAUDAMP9 PCB SPECIFICATIONS........................................................................................................... 34  
REVISION CHANGES DESCRIPTIONS........................................................................................................ 39  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 2 of 39  
Introduction  
The IRAUDAMP9 reference design is a single-channel 1.7-kW ( @ 2load) half-bridge Class D audio  
power amplifier. This reference design demonstrates how to use the IRS2092S Class D audio controller and  
external gate buffer, to implement protection circuits, and design an optimum PCB layout using the  
IRFB4227 (x 2 Pairs) TO-220 MOSFETs. This reference design may require additional heatsink or fan for  
normal operation (one-eighth of continuous rated power). The reference design provides all the required  
housekeeping power supplies for ease of use. The 1-channel design is capable of delivering higher than its  
rated power with provision of larger heat sink ( Rth <2° C / W).  
Applications  
Pro-Audio amplifiers  
Powered speakers  
Active Sub-woofers  
P.A. Systems  
Car audio amplifier  
Musical Instrument Amplifier  
Features  
Output Power:  
Residual Noise:  
Distortion:  
1.7 kW Single channel (2 load, 1kHz, THD+N=10%),  
290μV, IHF-A weighted, AES-17 filter  
0.07% THD+N @ 600W, 2Ω  
Efficiency:  
97% @ 1.7 kW, 2Ω  
Multiple Protection Features:  
Output Over-current protection (OCP), high side and low side  
Input Over-voltage protection (OVP),  
Input Under-voltage protection (UVP),  
Output DC-offset protection (DCP),  
Over-temperature protection (OTP)  
PWM Modulator:  
Self-oscillating half-bridge topology with optional clock synchronization  
Specifications  
General Test Conditions (unless otherwise noted)  
Notes / Conditions  
Supply Voltages  
±75V  
2Ω  
300kHz  
33dB  
Load Impedance  
Self-Oscillating Frequency  
Gain Setting  
No input signal, Adjustable  
1Vrms  
input  
yields  
1-kW  
sinusoidal output power  
Electrical Data  
Typical  
Notes / Conditions  
IR Devices Used  
IRS2092S Audio Controller and Gate-Driver,  
IRFB4227 (x 2 Pairs) TO-220 MOSFETs  
Modulator  
Self-oscillating, second order sigma-delta modulation, analog input  
Power Supply Range  
± 48V to ±80V  
1200W  
1700W  
2 Ω  
+67mA , -105mA  
13.2 W  
Bipolar power supply  
1kHz Sinewave  
1kHz Sinewave  
Non-inductive Resistive load  
No input signal  
No input signal  
@ +/- 75V 1.7 kW, 2Ω  
@ +/- 75V 1.2 kW, 2Ω  
@ +/- 75V 125 W (1/8 Po-rated), 2Ω  
Output Power CH1: (1% THD+N)  
Output Power CH1: (10% THD+N)  
Rated Load Impedance  
Idling Supply Current  
Total Idle Power Consumption  
System Efficiency  
97%  
94%  
74 %  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 3 of 39  
Audio Performance  
Class D  
Output  
0.024%  
0.025%  
0.025%  
0.049%  
1.0 %  
Notes / Conditions  
THD+N, @ 1W  
THD+N, @ 125W  
THD+N, @ 250W  
THD+N, @ 500W  
THD+N, @ 1250W  
THD+N, @ 1700W  
1kHz, +/-75Vbus,  
2-ohm load  
10.0%  
A-weighted, AES-17 filter,  
Single-channel operation  
Self-oscillating – 300kHz  
AP BW:<10Hz- 20kHz AES17  
IHF-A weighted  
Dynamic Range  
99.4 dB  
Residual Noise, 22Hz - 20kHz AES17  
290μV  
Damping Factor  
Frequency Response : 20Hz-20kHz  
81.9  
±1dB  
1kHz, relative to 2load  
1W, 2Load  
Thermal Performance  
Typical  
TC = 56°C  
Notes / Conditions  
No signal input, TA=25°C, after 5  
min  
Idling  
125W (1/8 rated power)  
1.2 kW  
TC = 104°C  
Continuous @ TA=25°C  
*requires larger heatsink design  
for continuous operation  
At OTP shutdown after 130 sec,  
TA=25°C  
TC = 118°C  
Physical Specifications  
Dimensions  
7.76”(L) x 5.86”(W) x 2.2”(H)  
192 mm (L) x 149mm (W) x 56mm(H)  
0.54kgm  
Weight  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 4 of 39  
Connection Setup  
75V, 18ADC supply  
75V,18A DC supply  
3000W,Non-inductive Resistors  
2-Ohm  
J1  
G
S3  
CH1 Output  
J3  
J8  
VS pins (CH1-O)  
S2  
Normal  
Protection  
J6  
J7  
CH1  
Input  
R100  
Volume  
R130  
S1  
Audio Signal Generator  
Figure 1 Typical Test Setup  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 5 of 39  
Connector Description  
CH1 IN  
J7  
J3  
J1  
J6  
J8  
Analog input for CH1  
Positive and negative supply (+B / -B)  
Output for CH1  
External clock sync  
DC protection relay output  
POWER  
CH1 OUT  
EXT CLK  
DCP OUT  
Test Procedures  
Test Setup:  
1. Connect 2Ω - 3000 W dummy loads to the output connectors (J1 as shown on Figure 1).  
2. Connect the Audio Precision Analyzer (AP) signal Generator output to J7.  
3. Initially set the voltages of the dual power supplies to ±75V with current limits to 0.5 A.  
4. Make sure to TURN OFF the dual power supplies before connecting to the unit under test  
(UUT).  
5. Set switch S1 to middle position (self oscillating).  
6. Set volume level knob R130 fully counter-clockwise (minimum volume).  
7. Connect the dual power supply to J3 as shown in Figure 1.  
Power up:  
8. Turn ON the dual power supply. The ±B supplies must be applied and removed at the  
same time.  
9. Red LED (Protection) should turn on almost immediately and turn off after about 3s.  
10. Green LED (Normal) then turns on after the red LED is extinguished and should stay ON.  
11. Note the quiescent current for the positive supply should be 67mA ±10mA at +75V.  
12. Quiescent current for the negative supply should be 105mA ±15mA at –75V.  
13. Push switch S3 (Trip and Reset push-button) to restart the LEDs sequence, which should  
be the same as noted above in steps 9 and 10.  
Switching Frequency test  
14. Monitor switching waveform at VS1/J4 (pins 9-12) of CH1 on Daughter Board using an  
oscilloscope.  
15. For IRAUDAMP9, the self-oscillating switching frequency is pre-calibrated to 300 kHz.  
To modify the IRAUDAMP9 frequency, adjust the potentiometer P1 for CH1.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 6 of 39  
Audio Functional Tests:  
16. Set the current limit of the dual power supplies to ~18A. Make sure the volume control  
potentiometer is turned to full counterclockwise position. Apply 1V rms @ 1 kHz from the  
Audio Signal Generator to the audio input connector J7.  
17. Turn control volume, R130 clock-wise to obtain an output reading of 1.0 kW. For all the  
subsequent tests as shown on the Audio Precision graphs below, measurements are taken  
across J1 with an AES-17 Filter. Observe that a 1 VRMS input generates an output voltage  
of ~44.8 VRMS. Alternatively, a 100-mVrms input would give an output of ~ 10.03W that  
corresponds to 4.48Vrms across a 2-ohm load.  
18. Using an oscilloscope monitor the output signals at J1 while sweeping the audio input  
signal from 10 mVRMS to 2 VRMS. The waveform must be a non distorted sinusoidal signal.  
Test Setup using Audio Precision Analyzer (Ap):  
19. Use an unbalanced-floating signal from the generator outputs.  
20. Use balanced inputs taken across output terminal J1.  
21. Connect Ap chasis ground to GND at terminal J7.  
22. Select the AES-17 filter (pull-down menu) for all the testing except frequency response.  
23. Use input signal ranging from 15 mVRMS to 1 VRMS  
.
24. Run Ap test programs for all subsequent tests as shown in Figure 2 below.  
Performance and test graphs  
±B Supply = ± 75V, 2 Load  
Figure 2 THD+N vs. Power  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 7 of 39  
4-ohm  
2-ohm  
Figure 3 Frequency response  
Figure 4 THD+N vs. Frequency at 10W and 125W  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 8 of 39  
No signal, Self Oscillator @ 300kHz  
Figure 5 Noise Floor  
.
Figure 6. 1-VRMS output Frequency Spectrum  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 9 of 39  
IRAUDAMP9 Overview  
The IRAUDAMP9 features a single-channel self-oscillating PWM modulator. This topology results  
in the lowest component count, highest performance and robust design. It represents an analog  
version of a second-order sigma-delta modulation having a Class D switching stage inside the  
loop. The benefit of the sigma-delta modulation, in comparison to the carrier-signal based  
modulation, is that all the error in the audible frequency range is shifted to the inaudible upper-  
frequency range by nature of its operation. Also, sigma-delta modulation allows a designer to  
apply a sufficient amount of error correction.  
The IRAUDAMP9 self-oscillating topology incorporates the following functional blocks.  
Front-end integrator  
PW Modulator and Level shifters  
Gate driver and buffer  
Power MOSFETs  
Output LPF  
R-FB  
Rfb filter  
.
Cfbfilter  
pF  
+B  
Raa  
Caa  
GNDD  
AGND  
0V  
+VAA  
Hi-side buffer  
0V  
AGND  
C1integrator  
Q1n  
C2integrator  
nF  
VB  
Q4A  
Q4B  
COMP  
IRS2092S  
e  
Rgate  
HO  
pF  
0V  
IRFB4227  
IRFB4227  
AGND  
AGND  
0V  
Rin  
IN-  
Q1p  
np  
INPUT  
-
Modulator  
and  
Shift level  
Vo  
Vs  
VS  
L-out  
AGND  
Lo-side buffer  
+
GND  
VCC  
LO  
AGND  
LP Filter  
Cout  
Integrator  
Q2n  
Q3A  
Q3B  
CSD  
e  
AGND  
GNDD  
Heatsink  
IRFB4227  
IRFB4227  
+VCC  
Q2  
-VSS  
COM  
Css  
.
AGND  
-B  
Rss  
.
Green  
Red  
LEDs  
Trip  
D
(TO-220  
Case Temp.)  
OTP  
HOPS  
DCP  
RESET  
OVP / UVP  
Fig. 7 Functional block diagram  
Functional Description  
Class-D Operation  
The C2integrator, C1integrator, R21 + potentiometer P1 form a front-end second-order integrator. This  
integrator receives a rectangular feedback signal from the Class D switching stage and outputs a  
quadratic oscillatory waveform as a carrier signal. To create the modulated PWM signal, the input  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 10 of 39  
signal shifts the average value of this quadratic waveform (through gain relationship between  
[(R38+R39) / (R154+R40)] ratio) so that the duty varies according to the instantaneous value of  
the analog input signal. The IRS2092S input comparator processes the signal to create the  
required PWM signal. This PWM signal is internally level-shifted down to the negative supply rail  
where it is split into two signals, with opposite polarity and added dead time, for high-side and low-  
side MOSFET gate signals, respectively. The IRS2092S drives 2 pairs of IRFB4227 TO-220  
MOSFETs in the power stage to provide the amplified PWM waveform. The amplified analog  
output is re-created by demodulating the amplified PWM. This is done by means of the LC low-  
pass filter (LPF) formed by L4 and C34, which filters out the switching carrier signal.  
Gate Driver Buffer Stage  
High power designs such as IRAUDAMP9 that use multiple mosfets in parallel connection to  
handle large amount of switching current often require far more than +/-1A drive current even for a  
brief moment due to mosfets’ gate drive requirement (high total gate charge, Qg). In order to  
facilitate this high drive current, a buffer stage is devised to source and sink this high gate charge.  
This stage consists of NPN-PNP BJT transistors in totem pole configuration. It serves as a high-  
speed buffer amplifier that receives input from IRS2092S HO / LO to drive the power mosfet stage  
through Rg (1A,1B,2A,2B) for low side mosfets Q4(A,B) and for high-side Q3 (A,B) mosfets.  
Theoretically, the switching time is reduced by such amount (hfe) as compared to that high-Qg  
design that uses the divided output current capacity of the driver IC. This buffering action is very  
necessary to speed-up the switching times of each mosfets in order not to exceed the OCP  
voltage monitor time. The IC commences drain-to-source voltage monitoring as soon as the HO /  
LO go to high state but after the leading edge blanking time.  
+B  
VB  
Q1n  
Cvcc1  
BJT buffer  
Hi-side  
Rg1A  
Q3A  
Rg1B Q3B  
HO  
Q1p  
Rgs3A  
Rgs3B  
Vout  
Vs  
L out filter  
VCC  
Cout filter  
R Load  
Cvcc2  
Q2n  
LO  
Rg2B  
Rg2A  
Q4A  
Q4B  
GND  
Q2p  
Rgs4A  
Rgs4B  
BJT buffer  
Low side  
-B  
Fig. 8 Simplified diagram for gate-buffering of 2 x IRFB4227 mosfets  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 11 of 39  
Power Supplies  
The IRAUDAMP9 has all the necessary housekeeping power supplies onboard and only requires  
a pair of symmetric power supplies ranging from ±38 V to ±82 V (+B, GND, -B) for operation. The  
internally-generated housekeeping power supplies include a ±5 V supply for analog signal  
processing (preamp, etc.), and a +12 V supply (Vcc), referenced to –B, to supply the Class D  
gate-driver stage.  
For the externally-applied power, a regulated power supply is preferable for performance  
measurements, but not always necessary. The bus capacitors, C45 ~ C48 on the motherboard,  
along with high-frequency bypass-capacitors C19 ~ C26 on daughter board, address the high-  
frequency ripple current that result from switching action. In designs involving unregulated power  
supplies, the designer should place a set of bus capacitors, having enough capacitance to handle  
the audio-ripple current, externally. Overall regulation and output voltage ripple for the power  
supply design are not critical when using the IRAUDAMP9 Class D amplifier as the power supply  
rejection ratio (PSRR) of the IRAUDAMP9 is excellent as shown in Figure 9 below.  
-75Vbus  
Fig. 9 IRAUDAMP9 Power Supply Rejection Ratio (PSRR)  
Bus Pumping  
Since the IRAUDAMP9 is a half-bridge configuration, bus pumping does occur. Under normal  
operation during the first half of the cycle, energy flows from one supply through the load and into  
the other supply, thus causing a voltage imbalance by pumping up the bus voltage of the receiving  
power supply. In the second half of the cycle, this condition is reversed, resulting in bus pumping  
of the other supply.  
The following conditions worsen bus pumping:  
– Lower frequencies (bus-pumping duration is longer per half cycle)  
– Higher power output voltage and/or lower load impedance (more energy transfers  
between supplies)  
– Smaller bus capacitors (the same energy will cause a larger voltage increase)  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 12 of 39  
The IRAUDAMP9 has protection features that will shutdown the switching operation if the bus  
voltage becomes too high (>82 V) or too low (<38 V). One brute countermeasure is to put a large  
electrolytic-capacitors between the power supply and the input terminals. Bus voltage detection is  
only done on the –B supply as the effect of the bus pumping on the supplies is assumed to be  
symmetrical in amplitude (although opposite in phase).  
House Keeping Power Supplies  
The internally-generated power supplies include ±5V for analog signal processing, and +12V  
supply (Vcc) referred to the negative supply rail -B for TO-220 gate drive. The gate driver section  
of the IRS2092S uses Vcc to drive gates of the TO-220s. Vcc is referenced to –B (negative power  
supply). The D6, R26 and C5 form a bootstrap floating supply for the HO gate driver.  
Input  
Input signal is an analog signal ranging from 20Hz to 20kHz with up to 2 VRMS amplitude with a  
source impedance of no more than 600 . Input signal with frequencies around 20kHz may cause  
LC resonance in the output LPF and may result to a large reactive current flow through the  
switching stage, especially if the amplifier is not connected to any load - this can activate OC  
protection.  
Output  
The IRAUDAMP9 has single output and therefore have terminals labeled (+) and (-) with the (-)  
terminal connected to power ground. Each channel is optimized for a 2 speaker load for a rated  
output power of 1200 W @ 1% THD+N.  
Figure 10 Output Low Pass Filter  
High Output Peak Shutdown (HOPS) circuit  
It is common in amplifier design to have a RC snubber called Zobel network that is used to damp  
the resonance and prevent peaking frequency response with high load impedance. Instead, the  
IRAUDAMP9 has a simple detection circuit in placed, which consist of a NPN transistor, blocking  
diode and a current limiting resistor to detect the output peak status from exceeding –B supply  
during resonance of the output LC filter. This circuit pulls the Cstart capacitor (C66) down to output  
(+) that sends a signal to IRS2092S to inhibit the power stage from switching. As the output  
returns to unclipped level, the base-to-emitter voltage is reduced and releases the CSD cap to  
start charging. This would allow the IRS2092S to resume driving operation of the power stage.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 13 of 39  
The HOPS function is not expected to be triggered in normal operating conditions. It is use to halt  
the output going too negative ( < -B rail) during the natural resonance of output LC filter. The  
HOPS circuit is intended for higher than nominal impedance or open load conditions.  
Fig. 11 Shutdown circuit diagram when output goes lower than negative rail.  
Gain Setting / Volume Control  
The IRAUDAMP9 has an internal volume control (potentiometer R130 labeled, “VOLUME”) for  
gain adjustment. Gain setting is tracked and controlled by the volume control IC (U_2) setting the  
gain from the microcontroller IC (U_3). The total gain is a product of the power-stage gain, which  
is constant (+33 dB), and the input-stage gain that is directly-controlled by the volume adjustment.  
The volume range is about 100 dB with minimum volume setting to mute the system with an  
overall gain of less than -60 dB. For best performance in testing, the internal volume control  
should be set to 1 Vrms which results in rated output power (1 kW into 2 Ω).  
Efficiency  
Figure 12 shows efficiency characteristics of the IRAUDAMP9. The high efficiency is achieved by  
the following major factors:  
1) Low conduction loss due to the low RDS(ON) of the IRFB4227 mosfets  
2) Low switching loss due to the high gate drive output for fast rise and fall times  
3) Secure dead-time provided by the IRS2092S, avoiding cross-conduction  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 14 of 39  
IRAUDAMP9 w/ 2-Pair of IRFB4227 @ +/-75Vdc 2-ohm Rload  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
Total System Efficiency  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
Total Output Power (W)  
Fig.12 Efficiency plots.  
Output Filter and Preamplifier  
Output filter:  
The amplified PWM output is reconstructed back to an analog signal by the output LC LPF.  
This LPF is formed by L4 and C34, provides pass band for the audio frequencies while filtering out  
the switching carrier signal. A single stage output filter can be used with switching frequencies of  
around 300 kHz ; a design with a lower switching frequency may require an additional stage of  
filtering.  
Since the output filter is not included in the control loop of the IRAUDAMP9, the reference design  
cannot compensate for performance deterioration due to the output filter. Therefore, it is important  
to select filter components with the following characteristics in mind.  
1) The DC resistance of the inductor should be minimized to 6 mΩ or less.  
2) The linearity of the output inductor and capacitor should be high with respect to load  
current and voltage.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 15 of 39  
Preamplifier  
The preamp allows partial gain of the input signal. It is possible to evaluate the performance  
without the preamp and volume control, by removing R154 and feeding the input signal directly  
through R46 resistors (IN-1). This effectively bypasses the preamp and connects the RCA inputs  
directly to the Class D power stage input. Improving the preamp noise performance and the output  
filter, will improve the overall system performance approaching that of the stand-alone Class D  
power stage.  
Self-Oscillating PWM Modulator  
The IRAUDAMP9 features a self-oscillating type PWM modulator for the lowest component count  
and robust design. This topology represents an analog version of a second-order sigma-delta  
modulation having a Class D switching stage inside the loop. The benefit of the sigma-delta  
modulation, in comparison to the carrier-signal based modulation, is that all the error in the audible  
frequency range is shifted to the inaudible upper-frequency range by nature of its operation. Also,  
sigma-delta modulation allows a designer to apply a sufficient amount of correction.  
The self-oscillating frequency is determined by the total delay time inside the control loop of the  
system. The delay of the logic circuits, propagation delay of IRS2092S gate-driver, delay caused  
by the external buffer, IRFB4227 (x 2 pairs) switching speed, time-constant of front-end integrator  
and variations in the supply voltages are critical factors of the self-oscillating frequency. Under  
normal conditions, the switching-frequency is around 300 kHz with no audio input signal and a  
+/-75 V supply.  
Adjustments of Self-Oscillating Frequency  
The PWM switching frequency in this type of self-oscillating switching scheme greatly impacts the  
audio performance, both in absolute frequency and frequency relative to the other channels. In  
absolute terms, at higher frequencies, distortion due to switching-time becomes significant, while  
at lower frequencies, the bandwidth of the amplifier suffers. Most importantly, higher switching  
frequency results in higher switching loss of the power stage, hence the thermal performance  
degrades, especially with those that having a limited-size heatsink design.  
Potentiometers for adjusting self-oscillating frequency  
P1 potentiometer + R21 Switching frequency for CH1*  
*Adjustments have to be done in idle condition with no input signal.  
Switches and Indicators  
There are two different indicators on the reference design:  
A red LED, signifying a fault / shutdown condition when lit.  
A green LED on the motherboard, signifying conditions are normal and no fault condition is  
present.  
There are three switches on the reference design:  
Switch S1 is an oscillator selector. This three-position switch is selectable for internal self-  
oscillator (middle position – “SELF”), or either internal (“INT”) or external (“EXT”) clock  
synchronization.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 16 of 39  
Switch S3 is a trip and reset push-button. Pushing this button has the same effect of a fault  
condition. The circuit will restart about three seconds after the shutdown button is released.  
Startup and Shutdown  
One of the most important aspects of any audio amplifier is the startup and shutdown procedures.  
Typically, transients occurring during these intervals can result in audible pop- or click-noise on the  
output speaker. Traditionally, these transients have been kept away from the speaker through the  
use of a series relay that connects the speaker to the audio amplifier only after the startup  
transients have passed and disconnects the speaker prior to shutting down the amplifier. It is  
interesting to note that the audible noise of the relay opening and closing is not considered “click  
noise”, although in some cases, it can be louder than the click noise of non-relay-based solutions.  
The IRAUDAMP9 does not use any series relay to disconnect the speaker from the audible  
transient noise, but rather depends on IRS2092S’s on-chip noise reduction circuit that yields  
audible noise levels that are far less than those generated by the relays they replace. This results  
in a more reliable, superior performance system.  
Startup and Shutdown Sequencing  
The IRAUDAMP9 sequencing is achieved through the charging and discharging of the CStart  
capacitor C66. This, coupled to the charging and discharging of the voltage of CSD (C10 on  
daughter board for CH1) of the IRS2092S, is all that is required for complete sequencing. The  
conceptual startup and shutdown timing diagrams are show in Figure 13.  
CStart Ref1  
CStart Ref2  
+B  
CSD= 2/3VDD  
CSD  
CStart  
+5 V  
-5 V  
Time  
VCC  
UVP@-38 V  
-B  
CH1_O  
Audio MUTE  
Class D startup  
Music startup  
Figure 13, Conceptual Startup Sequencing of Power Supplies and Audio Section Timing  
For startup sequencing, +/-B supplies startup at different intervals. As +/-B supplies reach +5 V  
(Vaa) and -5 V (Vss) respectively, the analog supplies (Vaa, Vss) start charging and, once +B  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 17 of 39  
reaches ~16 V, Vcc charges. Once –B reaches -38 V, the UVP is released and CSD and CStart  
start charging. As CSD reaches two-thirds Vaa, the Class D stage starts oscillating. The Class D  
amplifier is now operational, but the preamp output remains muted until CStart reaches Ref2. At this  
point, normal operation begins. The entire process takes less than three seconds.  
CStart Ref2  
CStart Ref1  
CSD= 2/3VDD  
+B  
CSD  
CStart  
+5 V  
-5 V  
Time  
VCC  
-B  
UVP@-38 V  
CH1_O  
Audio MUTE  
Class D shutdown  
Music shutdown  
Figure 14. Conceptual Shutdown Sequencing of Power Supplies and Audio Section Timing.  
Shutdown sequencing is initiated once UVP is activated. As long as the supplies do not discharge  
too quickly, the shutdown sequence can be completed before the IRS2092S trips UVP. Once UVP  
is activated, CSD and Cstart are discharged at different rates. In this case, threshold Ref2 is  
reached first and the preamp audio output is muted. Once CStart reaches threshold Ref1, the click-  
noise reduction circuit is activated. It is then possible to shutdown the Class D stage (CSD  
reaches two-thirds VDD). This process takes less than 200 ms.  
For any external fault condition (OTP, OVP, UVP or DCP – see “Protection”) that does not lead to  
power supply shutdown, the system will trip in a similar manner as described above. Once the  
fault is cleared, the system will reset (similar sequence as startup).  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 18 of 39  
CStart Ref2  
CStart Ref1  
CSD= 2/3VDD  
CStart Ref1  
CStart Ref2  
CSD  
CStart  
Time  
External trip  
Reset  
CH1_O  
Audio MUTE  
Class D shutdown  
Class D startup  
Music shutdown  
Music startup  
Figure 15. Conceptual Click Noise Reduction Sequencing at Trip and Reset  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 19 of 39  
Protection System Overview  
The IRS2092S integrates over current protection (OCP) inside the IC. The rest of the protections,  
such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature  
protection (OTP), are detected externally to the IRS2092S.  
.
IRS2092S  
D1  
R43  
CSH  
+B  
BAV19  
Q1n  
npn  
+
VB  
Q4A  
Q4B  
1.2V  
Rgate  
HO  
Hi-side buffer  
IRFB4227  
IRFB4227  
0V  
Rgate  
0V  
Q1p  
pnp  
Vo  
Vs  
VS  
.
CSD  
L-out  
LP Filter  
CSD  
VCC  
LO  
Cout  
npn  
Q2n  
Q3A  
Q3B  
Rgate  
GNDD  
OCREF  
Heatsink  
Lo-side buffer  
IRFB4227  
IRFB4227  
Rgate  
Q2  
R19  
R17  
pnp  
5.1V  
OCREF  
-B  
OCSET  
Trip  
COM  
.
TO-220  
(Case Temp.)  
OTP  
Green  
Yellow  
LEDs  
HOPS  
UVP / OVP  
DCP  
RESET  
Figure 16. Functional Block Diagram of Protection Circuit Implementation  
The external shutdown circuit will disable the output by pulling down CSD pins . If the fault  
condition persists, the protection circuit stays in shutdown until the fault is removed.  
Over-Current Protection (OCP)  
The OCP internal to the IRS2092S shuts down the IC if an OCP is sensed in either of the output  
MOSFETs. For a complete description of the OCP circuitry, please refer to the application note  
AN1138. Here is a brief description:  
Low-Side Current Sensing  
The low-side current sensing feature protects the low side MOSFET from an overload condition  
from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state.  
OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.  
An external resistive divider R17 and R19 on the daughter board are used to program the low-side  
OCP trip point.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 20 of 39  
The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing.  
When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the  
IRS2092S turns the outputs OFF and pulls CSD down to -VSS.  
High-Side Current Sensing  
The high-side current sensing protects the high side MOSFET from an overload condition from  
positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP  
shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.  
High-side over-current sensing monitors drain-to-source voltage of the high-side MOSFET during  
the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference  
to the VS pin, which is the source of the high-side MOSFET. In contrast to the low-side current  
sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An  
external resistive divider, R41 and R43 are used to program a hi-side OCP trip point. An external  
reverse blocking diode D8 is required to block high voltage feeding into the CSH pin during low-  
side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum threshold  
which can be set for the high-side is 0.6V across the drain-to-source.  
Input Bus Over-Voltage Protection (OVP)  
OVP is provided externally to the IRS2092S. OVP shuts down the amplifier if the bus voltage  
between GND and -B exceeds 82V. The threshold is determined by a Zener diode Z9. OVP  
protects the board from harmful excessive supply voltages, such as due to bus pumping at very  
low frequency-continuous output in stereo mode.  
Input Bus Under-Voltage Protection (UVP)  
UVP is provided externally to the IRS2092S. UVP prevents unwanted audible noise output from  
unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus  
voltage between GND and -B falls below a voltage set by Zener diode Z8.  
Speaker DC-offset Protection (DCP)  
DCP protects speakers against DC output current feeding to its voice coil. DC offset detection  
detects abnormal DC offset and shuts down PWM. If this abnormal condition is caused by a  
MOSFET failure because one of the high-side or low-side MOSFETs short circuited and remained  
in the on state, the power supply needs to be cut off in order to protect the speakers. Output DC  
offset greater than ±2.1V triggers DCP.  
Offset Null (DC Offset) Adjustment  
The IRAUDAMP9 is designed such that no output-offset nullification is required. DC offsets are  
tested to be less than ±50 mV.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 21 of 39  
Over-Temperature Protection (OTP)  
An external NTC resistor is placed in close proximity to the low-side Q5A IRFB4227 TO-220  
MOSFET. If the thermistor temperature rises above 100 °C, the OTP is activated. The OTP  
protection will shut down switching by pulling the CSD pin low and will recover once the  
temperature at the NTC has dropped sufficiently. This temperature protection limit yields a PCB  
temperature at the MOSFET of about 100 °C. This setting is limited by the PCB material and not  
by the operating range of the MOSFET.  
Thermal Considerations  
Due to limited heat sink size, the IRAUDAMP9 is designed for high efficiency to deliver 1 kW rated  
power for 1 minute at open-air room temperature ( starting w/ Tamb: ~22 - 25C)  
However, the IRAUDAMP9 requires larger heatsink design to handle one-eighth of the continuous  
rated power, which is generally considered to be a normal operating condition for safety  
standards. If the user decides to increase the size of the heatsink or have a minimum forced air-  
cooling, the daughter board can handle continuous rated power.  
Figure 17. Thermal image of the heatsink assembly during 1/8 rated power burn-in test.  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 22 of 39  
Short Circuit Protection Response  
Figures 18-19 show over current protection reaction time of the IRAUDAMP9 in a short circuit  
event. As soon as the IRS2092S detects an over current condition, it shuts down PWM. After one  
second, the IRS2092S tries to resume the PWM. If the short circuit persists, the IRS2092S repeats  
try and fail sequences until the short circuit is removed.  
Figure 18. Positive-side OCP waveforms during short circuit test at 10W load condition.  
High side OCP Calculation :  
Given:  
Vf = 0.7V, RdsON : 9.85 mohm : 2 // IRFB4227  
VdsON = Idtrip * RdsON = 0.985 V  
Let R43 = 2.2 kohm, R41 = 5.6 kohm  
Vth  
*(R41+ R43)  
R41  
OCH  
(
) Vf )  
Idtrip _ Hiside  
=
= Calculated OCP current limit: ~99 Apk  
RdsON  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 23 of 39  
Figure 19 Negative-side OCP waveforms during short circuit test at clipping condition.  
Lo- side OCP Calculation :  
Given: Vref = 5.1V  
RdsON ( for 2 // IRFB4227) : 9.85 mohm  
Let R19 = 8.2 kohm, R17 = 2.0 kohm  
VOCset = Vref * R17 / (R17+R19)  
I
dtrip_Lo-side * Rds  
= VOCset  
ON  
R17  
Vref *(  
)
(R17 + R19)  
RdsON  
Idtrip _ Loside  
=
= Calculated OCP current limit: ~101 Apk  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 24 of 39  
Schematic Diagrams  
U_AMP9_PROT_VOL  
IRAUDAMP9_PROT_VOL Rev_2.0.Schdoc  
U_AMP9_PWM_Ch1 only  
IRAUDAMP9_PWM_HOPS Rev_2.0.Schdoc  
GND  
POWERGND  
+5V  
GND  
POWER GND  
+5V  
-5V  
-5V  
-B  
-B  
+B  
+B  
SD  
SD  
CH1 O  
INLEFT  
INLEFT_1  
CH1 O  
INLEFT  
INLEFT_1  
Tri p Rest art  
Tri p Rest art  
VCC  
U_AMP9_SYNC_PS  
IRAUDAMP9_SYNC_PSRev_2.0.Schdoc  
GND  
POWERGND  
+5V  
-5V  
Figure 20 System Connection Diagram  
-B  
+B  
VCC  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 25 of 39  
opti onal f or A MP9  
R80  
U13  
1CLK  
+B  
+5V  
R81  
33K  
R82  
47R  
100R  
VCC  
2CLK  
2CLR  
2QA  
2QB  
C62  
C64  
10uF, 16V  
C63  
C65  
10uF, 16V  
1CLR  
1QA  
1QB  
1QC  
1QD  
0.1uF, 16V  
SW  
U14  
OE  
0.1uF, 16V  
+5V  
R84  
10K  
VDD  
R85  
68k  
S1A  
R86  
47K  
Z7  
18V  
Z8  
R90  
100R  
D19  
1N4148  
GND OUT  
CSX750P  
36V  
R87  
D20  
R89  
4.7k  
100K  
Z9  
82V  
OT  
R91  
CStart  
1N4148  
100K  
SW-3WAY_A-B  
SW-3WAY_A-B  
2QC  
D21  
1N4148  
C66  
100uF, 16V  
+5V  
DCP  
R92  
10k  
GND  
2QD  
UVP  
R88  
47R  
S1B  
SW  
R94  
100R  
SN74LV393A  
Q8  
MMBT5551  
Q9  
MMBT5551  
U_1  
1A  
C67  
0.1uF, 100V  
S3  
SW-PB  
VCC  
R95  
47K  
R96  
47K  
R97  
68k  
1Y  
2A  
2Y  
3A  
3Y  
6A  
6Y  
5A  
5Y  
4A  
4Y  
R98  
100R  
R99  
10k  
OVP  
-B  
Trip and restart  
SYNC  
+B  
-B  
+B  
R100  
R101  
47R  
J6  
BNC  
5K POT  
R102  
C68  
C69  
-B  
R103  
82k  
10uF, 16V  
0.1uF, 16V  
-5V  
+5V  
-5V  
330R  
C70  
100pF, 50V  
EXT. CLK  
GND  
+5V  
74HC14  
POWERGND  
CLK1  
+5V  
+B  
R104  
1K  
GND  
S2A  
S
NORMAL1  
O
T
R105  
47K  
Q10  
MMBT5401  
R106  
1K  
R111  
SW-3WAY_A-B  
PROTECTION1  
R107  
47K  
CLK2  
R108  
100K  
MUTE  
47R  
R110  
5.76k  
Q12  
MMBT5551  
R132  
open  
J9  
1418-ND  
CH2  
R112  
100K  
R113  
5.76k  
DC protection  
GND  
unst uff f or A MP9  
DCP  
R116  
100K  
R120  
R117  
100K  
R118 R119  
100K 100K  
IRAUDAMP9_PROT_VOL Rev_2.0.Schdoc  
R131  
open  
C71  
330uF, 16V  
R156  
open  
R121  
1k  
U_3  
ZCEN  
CS  
5.76k  
R123  
47K  
Q13  
AINL  
INRIGHT_1  
MMBT5401  
R133 47R  
R134 47R  
CS  
CS  
AGNDL  
C77  
+5V  
R124  
5.76k  
SDATAI SDATAI  
+5V  
SDATAI AOUTL  
INRIGHT  
R126  
5.76k  
10uF, 50V  
-5V  
R115 10R  
R128 0R0  
R122 0R0  
C78  
C79  
0.1uF, 16V  
U_2  
R127  
VD+  
VA-  
VA+  
-5V  
C1  
Q14  
MMBT5551  
R153  
0R0  
10uF, 16V  
5.76k  
10uF, 50V  
R135  
P1  
DGRD  
SCLK  
+5V  
8
7
6
5
1
VSS  
VDD  
CS  
1
2
3
6
5
4
J8  
C75  
10uF, 50V  
+5V  
R130  
R129  
47K  
SCLK  
AOUTR  
INLEFT  
2 CS  
VR0  
CS  
2
1
CT2265  
47R  
SDATAI  
SDATAO AGNDR  
3
4
VR1  
SDATA  
SIMUL  
SDATAI  
C80  
10nF, 50V  
-B  
PVT412 Photorelay  
N/A  
MUTE  
MUTE  
AINR  
INLEFT_1  
R157  
CLK  
R114  
CS3310  
100R  
open  
3310IR02  
SCLK  
SCLK  
R109  
100K  
J7  
CH1  
1418-ND  
Figure 21 Mother Board Schematic Diagram  
Housekeeping Protection and Volume Control Circuit  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 26 of 39  
IRAUDAMP9_PWM_HOPS Rev_2.0.Schdoc  
R152 0R0  
IN1 for AMP9  
C32  
L4  
22uH  
150pF  
CH1 OUT  
C33  
J1  
R38 100K  
R39 1K  
R154  
1K  
R40  
CH1 IN  
INLEFT  
1
2
3.3K  
C37  
10uF, 50V  
C34  
2.2uF, 275V  
R43  
2.2k  
OPEN 277-1022  
C72  
2.2nF  
R45A  
47K  
Optional for AMP9  
+5V  
-B  
R41  
22k  
Q9A  
MMBT5551  
R46  
470R  
2.2uF, 16V  
D5A  
C39  
C40  
33pF  
High Output Peak Shutdown (HOPS) ckt.  
R56  
47R  
CLK1  
U8  
74AHC1G04  
IN1 for AMP9  
1
J2  
PWM1  
2
VSS  
SIGNAL GND1  
SIGNAL GND1  
SIGNAL GND1  
NC  
-5V  
VSS for AMP 9  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CH2 O  
CH2 O  
CH2O  
CH2 O  
-B  
-B  
-B  
3
+B  
4
C45  
C46  
5
1200uF, 100V  
1200uF, 100V  
-B  
R58  
R59  
6
VSS for AMP9  
-5V  
-B  
200K 200K  
CH1 O  
CH1 O  
CH1 O  
CH1 O  
+B  
+B  
+B  
+B  
D23  
7
VCC  
VCC  
C47  
C48  
RS1DB  
J3  
1200uF, 100V  
1200uF, 100V  
8
3
SIGNAL GND2  
SIGNAL GND2  
VAA  
2
1
-B  
9
VAA for AMP9  
+5V  
277-1272  
10  
11  
12  
J4  
SD  
SD  
PWM2  
J10  
Figure 22 Mother Board Schematic Diagram  
Input / Output Power Connection  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 27 of 39  
+B  
-B  
+B  
+B  
Q1  
FZT855TA  
R1  
10R  
-B  
For AMP9  
R2  
10K  
C
E
+B  
VCC  
-5V  
VCC  
-5V  
+5V  
SYNC  
+5V  
Z1  
15V  
R3  
10K  
SYNC  
POWERGND  
C3  
C4  
1uF, 100V  
R4  
10R  
For AMP9  
Z2  
56V  
4.7uF, 100V  
Q18  
PZT2222A  
R147  
10R  
Q2  
C
E
+5V  
R5  
10K  
GND  
For AMP9  
Q3  
FZT855TA  
MMBTA92  
SD3  
B
R6  
C2  
10uF, 16V  
+B  
20k  
Z10  
R7  
10K  
5.6V  
Z3  
56V  
Z4  
5V  
C6  
4.7uF, 100V  
C7  
1uF, 100V  
U3  
VCC  
BST  
C11  
0.022uF, 50V  
-B  
SD  
PRE  
SW  
IS  
L2  
R141  
0R0  
R146  
47.5k  
7V  
R15  
VIN  
SYNC3  
C10  
0.470uF, 16V  
U2  
470uH  
R12  
47R  
R14  
10R  
SYNC  
VCC  
BST  
PRE  
SW  
IS  
4.7k 1%  
D2  
B180  
SD3  
C9  
0.022uF, 50V  
COMP PGND  
SD  
C16  
4.7uF, 50V  
C86  
4.7uF, 100V  
L1  
12V  
R151  
0R0  
R150  
4.7R  
R17  
18.7k  
FB  
RT  
OUT  
SS  
VIN  
VCC  
SYNC1  
470uH  
R8  
R18  
1.00k 1%  
R144  
47.5k  
R9  
R10  
8.66k  
SYNC  
C13  
0.470uF, 16V  
10R  
D1  
B180  
47R  
RAMP AGND  
LM5574  
COMP PGND  
R19  
20.5k  
C19  
0.0082uF, 50V  
C20  
330pF, 100V  
R11  
18.7k  
C12  
C84  
C35  
C83  
FB  
RT  
OUT  
SS  
C21  
0.0068uF, 50V  
R13  
1.00k  
4.7uF, 50V 4.7uF, 100V 10uF, 16V 10uF, 16V  
C22  
0.0022uF, 100V  
RAMP AGND  
LM5574  
R16  
20.5k  
C14  
0.0082uF, 50V  
C15  
330pF, 100V  
C17  
0.0068uF, 50V  
C18  
0.0022uF, 100V  
-B  
D3  
B1100  
C23  
4.7uF, 100V  
C24  
1uF, 100V  
U4  
VCC  
BST  
PRE  
SW  
IS  
C25  
SD  
0.022uF, 50V  
L3  
R148  
0R0  
R145  
47.5k  
VIN  
SYNC2  
470uH  
R29  
47R  
R30  
10R  
R31  
4.7k 1%  
SYNC  
D4  
B180  
COMP PGND  
C27  
C85  
R32  
18.7k  
4.7uF, 50V  
4.7uF, 100V  
FB  
RT  
OUT  
SS  
R36  
1.00k 1%  
Q20  
PZT2907AT1  
R149  
C26  
0.470uF, 16V  
-5V  
10R  
RAMP AGND  
LM5574  
R37  
20.5k  
C28  
0.0082uF, 50V  
C29  
330pF, 100V  
For AMP9  
C30  
0.0068uF, 50V  
R142  
20k  
C31  
0.0022uF, 100V  
-B  
C82  
10uF, 16V  
Z12  
5.6V  
-7V -Vout_PS  
Figure 23 Mother Board Schematic Diagram  
DCDC converter for Vaa, Vss and Vcc power supplies  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 28 of 39  
IRAUDAMP9-1.7-kW Single Channel Daughter Board  
IRS2092S -TO220 Buffered Module Schematic Diagram  
MMBT5551  
Q100  
SD  
SCH_AMP9_DB_2092_BUF-TO220-Rev 2.0  
Drawn by: ISRAEL SERRANO 2012-0308  
VSS  
VSS  
ZXTP25100BFH  
R103  
715R  
+B  
+75VBus  
R107  
100R  
+75V Bus  
R52  
75k  
R104  
4.7k  
Q101  
C33  
OTP1  
0.47 uF250V  
C100  
TH1  
R45  
0R  
Rp1  
0 R  
ZXTN25100BFH  
Q9  
C34  
OPTIONAL-  
(Unst uff for  
1kW-AMP9)  
R40  
33k  
0.1uF  
R105 10k  
0.47 uF250V  
TH2.2k  
C18  
3.3uF  
CH1 Output  
to LPF  
R101 4.7k  
R43  
2.2k  
R102 10K  
C32  
2.2uF  
VSS  
+5V  
D1  
CH1 O  
C37  
1 nF  
J2-A  
+B  
R7  
10R  
R25  
10K  
1
2
3
4
5
6
7
8
16  
R41  
5.6k  
VAA  
VAA  
GND  
IN-  
CSH  
Q6A  
R23B Q6B  
4.7R  
R23C Q6C  
4.7R  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1K  
P1  
R23A  
4.7R  
VB  
Audio Gnd 1  
R21 470  
15  
14  
13  
12  
11  
10  
9
GND1  
VB  
HO  
VS  
Q8  
R37  
10R  
0R  
CH1- input  
IRFB4227  
R22A  
IRFB4227  
R22B  
IRFB4227  
R22C  
IN-1  
R46  
R32  
C5  
22uF  
C21 C23  
1nF 1nF  
C1  
1nF  
D6  
10K  
10K  
ZXTP25100BFH  
10K  
3.01k  
J1-A  
C30  
A26578-ND  
COMP  
CSD  
10nF  
Heatsink  
1
2
3
4
5
6
R1  
R26  
4.7R  
D4  
VCC  
LO  
VCC  
0R  
R44  
100R  
C36  
1 nF  
C10  
10uF  
ZXTN25100BFH  
Q3  
C31  
2.2uF  
-5V  
A26568-ND  
R3  
J2-B  
-B  
VSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
0R  
R21A  
4.7R  
R21B  
Q5B  
4.7R  
R21C  
Q5C  
4.7R  
Q5A  
R19  
10R  
VREF  
OCSET  
COM  
DT  
VSS  
R36  
10R  
8.2k  
R30  
-B  
C12  
3.3uF  
R9  
10R  
VCC  
VAA  
IRFB4227  
R20A  
IRFB4227  
R20B  
IRFB4227  
R20C  
C35  
R12  
4.7K  
U1 IRS2092S  
J1-B  
OCset  
0.1uF  
R5  
7
8
9
10  
11  
12  
R50  
75k  
A26578-ND  
10K  
open  
10K  
10K  
R35  
1R  
R17  
2k  
SD  
C3  
10uF  
A26568-ND  
GND2  
R13  
0 R  
Q2  
ZXTP25100BFH  
D7  
DS1  
-75VBus  
-B  
-75VBus  
Figure 24 IRAUDAMP9 Schematic Diagram for Daughter Board  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 29 of 39  
IRAUDAMP9 Fabrication Bill Of Materials (BOM)  
Table 1 IRAUDAMP9 Mother Board’s BOM  
Item  
PN  
Designator  
565-1106-ND  
Qty  
4
Description  
Vendor  
DigiKey  
DigiKey  
1
2
C1, C33, C75, C77  
CAP 10UF 50V ELECT SMG RAD  
CAP 10UF 16V CERAMIC X7R 1206  
C2, C82, C83  
C3, C6, C23, C84, C85,  
C86  
PCC13491CT-ND  
3
3
4
565-1147-ND  
6
3
3
3
3
3
3
3
3
1
CAP 4.7UF 100V ELECT SMG RAD  
CAP CER 1.0UF 100V 10% X7R 1210  
CAP CER 22000PF 50V 5% C0G 0805  
CAP CERM .47UF 10% 16V X7R 0805  
CAP CER 4.7UF 50V 10% X7R 1210  
CAP CER 8200PF 50V C0G 5% 0805  
CAP 330PF 100V CERAMIC X7R 0805  
CAP CERM 6800PF 5% 50V X7R 0805  
CAP CERM 2200PF 5% 100V X7R 0805  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
C4, C7, C24  
C9, C11, C25  
C10, C13, C26  
C12, C16, C27  
C14, C19, C28  
C15, C20, C29  
C17, C21, C30  
C18, C22, C31  
C32  
490-1857-1-ND  
490-1644-1-ND  
478-1403-1-ND  
490-1864-1-ND  
445-2685-1-ND  
PCC1982CT-ND  
478-3772-1-ND  
478-3746-1-ND  
445-2378-1-ND  
5
6
7
8
9
10  
11  
12  
CAP CER 150PF 3000V C0G 10% 1812  
CAP 2.2 uF 275/280VAC X2 METAL  
POLYPRO  
13  
14  
C34  
399-5432-ND  
1
5
DigiKey  
DigiKey  
C35, C64, C65, C69,  
C79  
PCE3101CT-ND  
CAP 10UF 16V ELECT FC SMD  
C37, R8, R12, R29,  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
R131, R132, R156, R157 open  
8
1
1
4
4
1
1
1
1
1
1
3
1
1
Bypass vol ctrl, open  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
C39  
PCC1931CT-ND  
CAP 2.2UF 16V CERAMIC X7R 1206  
CAP CERM 33PF 5% 100V NP0 0805  
CAP 1200UF 100V ELECT SMG RAD  
CAP .1UF 16V CERAMIC X7R 0805  
CAP 100UF 16V ELECT SMG RAD  
CAP CER .10UF 100V X7R 10% 0805  
CAP 100PF 50V CERM CHIP 0805 SMD  
CAP 330UF 16V ELECT VR RADIAL  
CAP CER 2200PF 100V C0G 5% 0805  
CAP 10000PF 50V CERM CHIP 0805  
DIODE SCHOTTKY 80V 1A SMA  
DIODE SCHOTTKY 100V 1A SMA  
DIODE SWITCH 100V 200MW SOD323  
C40  
478-1281-1-ND  
565-1161-ND  
C45, C46, C47, C48  
C62, C63, C68, C78  
PCC1812CT-ND  
565-1037-ND  
C66  
C67  
445-1418-1-ND  
PCC101CGCT-ND  
493-1042-ND  
C70  
C71  
C72  
445-2322-1-ND  
PCC103BNCT-ND  
B180DICT-ND  
B1100-FDICT-ND  
C80  
D1, D2, D4  
D3  
D5A  
BAV19WS-7-F  
1N4148WTPMSCT-  
ND  
29  
30  
D19, D20, D21  
D23  
3
1
DIODE SWITCH 100V 150MA SOD123  
DigiKey  
DigiKey  
RS1DB-FDICT-ND  
277-1271-ND  
A26453-ND  
DIODE FAST REC 200V 1A SMB  
CONN TERM BLOCK 2POS 9.52MM  
PCB  
CONN RECEPT 6POS .100 VERT  
DUAL  
CONN TERM BLOCK 3POS 9.52MM  
PCB  
31  
32  
33  
34  
J1  
J2  
J3  
J4  
1
1
1
1
DigiKey  
DigiKey  
DigiKey  
DigiKey  
277-1272-ND  
A26454-ND  
CONN RECEPT 8POS .100 VERT  
DUAL  
CONN JACK BNC R/A 50 OHM PCB  
TIN  
35  
36  
J6  
A32248-ND  
CP-1418-ND  
1
2
DigiKey  
DigiKey  
J7, J9  
CONN RCA JACK R/A BLACK PCB  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 30 of 39  
TERMINAL BLOCK 7.50MM VERT  
2POS  
CONN RECEPT 6POS .100 VERT  
DUAL  
ED1567  
37  
38  
J8  
1
1
DigiKey  
DigiKey  
J10  
A26453-ND  
39  
40  
L1, L2, L3  
513-1051-1-ND  
3
1
INDUCTOR SHIELD PWR 470UH SMD  
DigiKey  
Sagami  
L4  
7G31A-220M-R  
160-1140-ND,  
160-1143-ND  
22uH Power ferrite inductor  
LED 3MM GREEN TRANSPARENT,  
LED 3MM HI-EFF RED TRANSPARENT  
NORMAL1,  
PROTECTION1  
41  
42  
43  
44  
2
1
2
1
DigiKey  
DigiKey  
DigiKey  
DigiKey  
P1  
PVT412LPBF-ND  
FZT855CT-ND  
Power MOSFET Photovoltaic Relay  
TRANS NPN 150V 4000MA SOT-223  
Q1, Q3  
Q2  
MMBTA92DICT-ND  
MMBT5551-7DICT-  
ND  
TRANSISTOR PNP -300V SOT-23  
TRANS 160V 350MW NPN SMD SOT-  
23  
45  
Q8, Q9, Q9A, Q12, Q14  
5
DigiKey  
TRANS 150V 350MW PNP SMD SOT-  
23  
46  
47  
Q10, Q13  
Q18  
MMBT5401DICT-ND  
2
1
DigiKey  
DigiKey  
PZT2222ACT-ND  
PZT2907AT1GOSCT  
-ND  
TRANS AMP NPN GP 40V .5A SOT-223  
TRANS SS SW PNP 600MA 60V  
SOT223  
48  
49  
Q20  
1
5
DigiKey  
DigiKey  
R1, R4, R9, R14, R30  
R2, R3, R5, R7, R84,  
R92, R99  
PT10XCT-ND  
RES 10 OHM 1W 5% 2512 SMD  
50  
51  
52  
53  
54  
55  
56  
57  
P10KACT-ND  
7
2
1
3
1
2
3
2
RES 10K OHM 1/8W 5% 0805 SMD  
RES 20K OHM 1/8W 5% 0805 SMD  
RES 8.66K OHM 1/8W 1% 0805 SMD  
RES 18.7K OHM 1/8W 1% 0805 SMD  
RES 1.00K OHM 1/8W 1% 0805 SMD  
RES 4.70K OHM 1/8W 1% 0805 SMD  
RES 20.5K OHM 1/8W 1% 0805 SMD  
RES 1.00K OHM 1/8W 1% 0805 SMD  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
R6, R142  
R10  
P20KACT-ND  
RHM8.66KCRCT-ND  
P18.7KCCT-ND  
P1.00KCCT-ND  
P4.7KCCT-ND  
P20.5KCCT-ND  
R11, R17, R32  
R13  
R15, R31  
R16, R19, R37  
R18, R36  
P1.00KCCT-ND  
PPC100KW-3JCT-  
ND  
58  
59  
60  
61  
62  
R38  
R39  
R40  
R41  
1
1
1
1
1
RES 100K OHM METAL FILM 3W 5%  
RES 1.0K OHM 1/4W 5% 1206 SMD  
RES 3.3K OHM 1/10W .1% 0805 SMD  
RES 22K OHM 1/8W 5% 0805 SMD  
RES 2.2K OHM 1W 5% 2512 SMD  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
P1.0KECT-ND  
P3.3KZCT-ND  
P22KACT-ND  
PT2.2KXCT-ND  
R43  
R45A, R86, R95, R96,  
63  
64  
R105, R111, R123, R129 P47KACT-ND  
8
1
RES 47K OHM 1/8W 5% 0805 SMD  
RES 470 OHM 1/8W 5% 0805 SMD  
DigiKey  
DigiKey  
R46  
311-470ARCT-ND  
R56, R82, R88, R101,  
65  
66  
67  
68  
69  
R107, R133, R134, R135 P47ACT-ND  
8
2
3
1
2
RES 47 OHM 1/8W 5% 0805 SMD  
RES 200K OHM 1/8W 5% 0805 SMD  
RES 100 OHM 1/4W 5% 1206 SMD  
RES 33K OHM 1/8W 5% 0805 SMD  
RES 68K OHM 1/8W 5% 0805 SMD  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
R58, R59  
R80, R90, R94  
R81  
P200KACT-ND  
P100ECT-ND  
P33KACT-ND  
P68KACT-ND  
R85, R97  
R87, R91, R108, R109,  
R112,  
R116,  
R117,  
70  
71  
72  
73  
74  
75  
76  
R118, R119  
P100KACT-ND  
P4.7KACT-ND  
P100ACT-ND  
3362H-502LF-ND  
P330ACT-ND  
P82KACT-ND  
9
1
2
1
1
1
4
RES 100K OHM 1/8W 5% 0805 SMD  
RES 4.7K OHM 1/8W 5% 0805 SMD  
RES 100 OHM 1/8W 5% 0805 SMD  
POT 5.0K OHM 1/4" SQ CERM SL ST  
RES 330 OHM 1/8W 5% 0805 SMD  
RES 82K OHM 1/8W 5% 0805 SMD  
RES 1.0K OHM 1/8W 5% 0805 SMD  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
R89  
R98, R114  
R100  
R102  
R103  
R104, R106, R121, R154 311-1.0KARCT-ND,  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 31 of 39  
R110,  
R113,  
R120,  
77  
78  
79  
R124, R126, R127  
P5.76KFCT-ND  
P10ECT-ND  
6
1
4
RES 5.76K OHM 1/4W 1% 1206 SMD  
RES 10 OHM 1/4W 5% 1206 SMD  
DigiKey  
DigiKey  
DigiKey  
R115  
R122, R128, R152, R153 P0.0ECT-ND  
RES ZERO OHM 1/4W 5% 1206 SMD  
POT 10K OHM 9MM VERT MET  
BUSHING  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
R130  
P3G7103-ND  
RMCF1/100RCT-ND  
P47.5KCCT-ND  
PT10XCT-ND  
PT4.7XCT-ND  
EG1944-ND  
1
3
3
2
1
2
1
3
1
1
1
1
1
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
Tachyonix  
R141, R148, R151  
RES 0.0 OHM 1/8W 0805 SMD  
R144, R145, R146  
RES 47.5K OHM 1/8W 1% 0805 SMD  
RES 10 OHM 1W 5% 2512 SMD  
RES 4.7 OHM 1W 5% 2512 SMD  
SWITCH SLIDE DP3T .2A L=6MM  
6MM LIGHT TOUCH SW H=5  
R147, R149  
R150  
S1, S2  
S3  
P8010S-ND  
U2, U3, U4  
U8  
LM5574MT-ND  
296-1089-1-ND  
296-11643-1-ND  
300-8001-1-ND  
296-1194-1-ND  
3310IR02  
IC REG BUCK 75V 0.5A 16-TSSOP  
IC SINGLE INVERTER GATE SOT23-5  
DUAL 4-BIT BINARY COUNTERS  
OSCILLATOR 1.5440 MHZ SMT  
IC HEX SCHMITT-TRIG INV 14-SOIC  
U13  
U14  
U_1  
U_2  
3310SO6S Digital IC  
Amplifiers - Audio Stereo Digital Volume  
Control  
93  
94  
95  
96  
97  
98  
99  
100  
U_3  
Z1  
598-1599-ND  
BZT52C15-7DICT-  
ND  
MMSZ5263BT1OSCT  
-ND  
BZT52C5V1-7DICT-  
ND  
BZT52C18-FDICT-  
ND  
BZT52C36-7DICT-  
ND  
MMSZ5268BT1GOS  
CT-ND  
1
1
2
1
1
1
1
2
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DigiKey  
DIODE ZENER 15V 500MW SOD-123  
DIODE ZENER 500MW 56V SOD123  
DIODE ZENER 5.1V 500MW SOD-123  
DIODE ZENER 500MW 18V SOD123  
DIODE ZENER 36V 500MW SOD-123  
DIODE ZENER 82V 500mW SOD-123  
DIODE ZENER 5.6V 500MW SOD123  
Z2, Z3  
Z4  
Z7  
Z8  
Z9  
BZT52C5V6-FDICT-  
ND  
Z10, Z12  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 32 of 39  
Table 2 IRAUDAMP9 Daughter Board’s Bill of Materials  
Item  
1
Digikey / Mouser PN  
445-2325-1-ND  
490-1867-1-ND  
T491A226K025AT  
490-1867-1-ND  
445-1432-1-ND  
PCC103BNCT-ND  
490-3368-1-ND  
478-3988-1-ND  
399-4678-1-ND  
478-5552-1-ND  
445-2686-1-ND  
Designator  
C1, C21, C23  
Description  
Qty  
3
CAP CER 1000PF 250V C0G 5% 0805  
CAP CER 10UF 25V 10% X7R 1210  
CAP TANTALUM 22UF 25V 10% SMD  
CAP CER 10UF 25V 10% X7R 1210  
CAP CER 3.3UF 50V X7R 20% 1210  
CAP 10000PF 50V CERM CHIP 0805  
CAP CER 2.2UF 25V X7R 10% 1210  
CAP CER 0.47UF 250V X7R 1812  
CAP CER 0.1UF 250V X7R 1206  
CAP CER 1000PF 250V X7R 1206  
2
C3  
1
3
C5  
1
4
C10  
1
5
C12, C18  
C30  
2
6
1
7
C31, C32  
C33, C34  
C35  
2
8
2
9
1
10  
11  
C36, C37  
C100  
2
CAP CER 0.1UF 10V SL 5% 0805  
DIODE SWITCH 100V 200MW  
SOD323  
1
12  
13  
14  
BAV19WS-FDICT-ND  
1N4148WS-FDICT-ND  
D1  
D4  
1
1
1
DIODE SWITCH 75V 200MW SOD323  
MURA120T3GOSCT-ND D6  
DIODE ULTRA FAST 1A 200V SMA  
DIODE ULTRAFAST 200V 1A DO-  
214AC  
15  
16  
ES1DFSCT-ND  
160-1645-1-ND  
D7  
1
1
DS1  
LED 468NM BLUE CLEAR 0805 SMD  
CONN HEADER VERT 6POS .100  
17  
18  
A26568-ND  
A26578-ND  
J1-A, J1-B  
J2-A, J2-B  
30AU  
2
2
CONN HEADER VERT .100 16POS  
30AU  
POT 1.0K OHM 3MM CERM SQ TOP  
SMD  
19  
20  
21  
ST32ETB102CT-ND  
ZXTP25100BFHCT-ND  
ZXTN25100BFHCT-ND  
P1  
1
3
2
Q2, Q8, Q101  
Q3, Q9  
TRANSISTOR PNP 100V 2A SOT23-3  
TRANSISTOR NPN 100V 3A SOT23-  
TRANS 160V 350MW NPN SMD  
SOT23-3  
22  
MMBT5551-7DICT-ND  
Q100  
200V 65A N-Channel MOSFET  
TO 220  
23  
24  
25  
26  
27  
28  
29  
IRFB4227PBF  
P100ACT-ND  
P10ACT-ND  
open  
Q5A, Q5C, Q6A, Q6C  
4
2
1
1
1
1
1
R1, R107  
R3  
RES 100 OHM 1/8W 5% 0805 SMD  
RES 10 OHM 1/8W 5% 0805 SMD  
open  
R5  
P10ECT-ND  
P10ACT-ND  
P4.7KACT-ND  
R7  
RES 10 OHM 1/4W 5% 1206 SMD  
RES 10 OHM 1/8W 5% 0805 SMD  
RES 4.7K OHM 1/8W 5% 0805 SMD  
R9  
R12  
R13, R30, R32, R44,  
R45, Rp1  
30  
31  
32  
P0.0ACT-ND  
P2.0KACT-ND  
P8.2KACT-ND  
RES 0 OHM 1/8W 5% 0805 SMD  
RES 2.0K OHM 1/8W 5% 0805 SMD  
RES 8.2K OHM 1/8W 5% 0805 SMD  
6
1
1
R17  
R19  
R20A, R20B, R20C,  
R22A, R22B, R22C, R25  
33  
P10KACT-ND  
RES 10K OHM 1/8W 5% 0805 SMD  
7
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 33 of 39  
34  
RHM470CRCT-ND  
R21  
RES 470 OHM 1/8W 1% 0805 SMD  
1
R21A, R21B, R21C,  
R23A, R23B, R23C, R26  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
P4.7ACT-ND  
RESISTOR 4.7 OHM 1/8W 5% 0805  
RESISTOR 1.0 OHM 1/8W 5% 0805  
RES 10 OHM 1W 5% 2512 SMD  
RES 33K OHM 1/8W 5% 0805 SMD  
RES 5.6K OHM 1/8W 5% 0805 SMD  
RES 2.2K OHM 1/8W 5% 0805 SMD  
RES 3.01K OHM 1/8W 1% 0805 SMD  
RES 75.0K OHM 1/8W 1% SMD 1206  
RES 4.7K OHM 1/8W 5% 0805 SMD  
RES 10K OHM 1/8W 5% 0805 SMD  
RES 715 OHM 1/8W .5% SMD 1206  
High and Low Side Driver  
7
1
2
1
1
1
1
2
2
2
1
1
P1.0ACT-ND  
R35  
PT10XCT-ND  
R36, R37  
R40  
RHM33KARCT-ND  
P5.6KACT-ND  
R41  
P2.2KACT-ND  
R43  
RHM3.01KCCT-ND  
RT1206FRE0775KL-ND  
RHM4.7KARCT-ND  
RHM10KARCT-ND  
R46  
R50, R52  
R101, R104  
R102, R105  
RT1206FRE07715RL-ND R103  
IRS2092S  
U1  
Table 3 IRAUDAMP9 Mechanical Bill of Materials  
No  
1
2
P/N  
7-342-2PP-BA  
Description  
To220 Heatsink 15W HTSNK assy 1  
Silpad insulator pad  
Quantity  
Vendor  
Digi-Key  
2
4
3
Lock Washer  
4
4
5
6
7
mounting screws / nuts  
plastic TO220-bushing  
Standoff  
IRAUDAMP9 Main Board  
IRAUDAMP9 Daughter Board  
4 sets  
4
6
1
1
AMP9 PCB MB  
AMP9 PCB DB  
8
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 34 of 39  
IRAUDAMP9 PCB Specifications:  
1. Two Layers SMT PCB with through holes  
2. 1/16 thickness  
3. 2/0 OZ Cu  
4. FR4 material  
5. 10 mil lines and spaces  
6. Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate DSR-  
3241or equivalent.  
7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard.  
8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick.  
9. Tolerance of PCB size shall be 0.010 –0.000 inches  
10. Tolerance of all Holes is -.000 + 0.003”  
11. PCB acceptance criteria as defined for class II PCB’S standards.  
Gerber Files Apertures Description:  
All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer Altium  
Designer 6.  
1. .gtl  
2. .gbl  
3. .gto  
Top copper, top side  
Bottom copper, bottom side  
Top silk screen  
4. .gbo Bottom silk screen  
5. .gts Top Solder Mask  
6. .gbs Bottom Solder Mask  
7. .gko Keep Out,  
8. .gm1 Mechanical1  
9. .gd1 Drill Drawing  
10. .gg1 Drill locations  
11. .txt  
CNC data  
12. .apr  
Apertures data  
Additional files for assembly that may not be related with Gerber files:  
13. .pcb PCB file  
14. .bom Bill of materials  
15. .cpl Components locations  
16. .sch Schematic  
17. .csv Pick and Place Components  
18. .net Net List  
19. .bak Back up files  
20. .lib  
PCB libraries  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 35 of 39  
Figure 25 IRAUDAMP9 Mother board PCB Top Overlay (Top View)  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 36 of 39  
Figure 26 IRAUDAMP9 Mother board PCB Bottom Layer (Top View)  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 37 of 39  
Figure 27 IRAUDAMP9 Daughter board PCB Top Overlay (Top View)  
Figure 28 IRAUDAMP9 Daughter board PCB Bottom Layer (Top View)  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 38 of 39  
Revision changes descriptions  
Revision  
Rev D2  
Rev E3  
Rev 1.0  
Rev 2.A  
Changes description  
Date  
Release for pre-production.  
Release for pre-production.  
Release for production.  
1.Preliminary update on Figures 18-24  
(pages 23-29).  
Aug, 18 2011  
Mar. 18, 2011  
Mar. 25, 2011  
Feb. 08, 2012  
2.Preliminary updates on Mother board  
BOM and Daughter board Schematic  
diagrams & BOM.  
Rev 2.0  
1. Update Figures 18-28 (pages 23-39)  
and add text for OCP calculation.  
Mar. 18, 2012  
2.1 Change values in Daughter Board  
Schematic Diagram and BOM (DT :R5,  
R13, Hi-OCP R43/R41, Lo-OCP R17).  
2.2. Add R107 on Daughter Board’s OTP  
circuit.  
2.3 Updates on Mother board BOM and  
Daughter board Schematic diagrams &  
BOM.  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245  
Data and specifications subject to change without notice.  
Tel: (310) 252-7105  
03/25/2011  
www.irf.com  
IRAUDAMP9 REV 2.0  
Page 39 of 39  

相关型号:

IRAUDAMP9_15

Class D Audio Power Amplifier
INFINEON

IRAUDPS1

12V System Scalable 250W to1000W Audio Power Supply
INFINEON

IRAUDPS1_15

12V System Scalable 250W to1000W Audio Power Supply
INFINEON

IRAUDPS3

Class-D Audio Amplifier
INFINEON

IRAUDPS3_15

Class-D Audio Amplifier
INFINEON

IRB02ABH300X300X1

Data Line Filter, 1 Function(s),
TDK

IRB02ABH300X300X3

Data Line Filter, 1 Function(s),
TDK

IRB02ABH300X300X6

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X1

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X2

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X3

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X6

Data Line Filter, 1 Function(s),
TDK