IRAUDPS1 [INFINEON]

12V System Scalable 250W to1000W Audio Power Supply;
IRAUDPS1
型号: IRAUDPS1
厂家: Infineon    Infineon
描述:

12V System Scalable 250W to1000W Audio Power Supply

文件: 总35页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
- 1 -  
IRAUDPS1  
12V System Scalable 250W to1000W Audio Power Supply  
For Class D Audio Power Amplifiers  
Using the IR2085 self oscillating gate driver  
And Direct FETS IRF6648  
By  
Manuel Rodríguez  
CAUTION:  
International Rectifier suggests the following guidelines for safe operation and handling of  
IRAUDPS1 Demo Board:  
Always wear safety glasses whenever operating Demo Board  
Avoid personal contact with exposed metal surfaces when operating Demo Board  
Turn off Demo Board when placing or removing measurement probes  
www.irf.com  
Page 1 of 35  
IRAUDPS1  
- 2 -  
Page  
Item  
1
Table of Contents  
Introduction  
3
2
System Specifications  
4
3
Functional Block Description  
IRAUDPS1 Block Diagram  
Schematic IR2085 module  
IRAUDPS1 mother board schematic  
IR2085 module PCB layout  
IRAUDPS1 mother PCB layout  
BOM of IR2085 module  
BOM of IRAUDPS1 mother board  
BOM of Mechanical parts  
Scalable IRAUDPS1 power table  
Performance and test procedure  
IRAUDPS1 Fabrication Drawings  
Transformer winding instructions  
Design example  
5
4
6
5
7
6
8
7
9
8
10-11  
12  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
25  
13-14  
14  
14  
15-21  
22-24  
25-27  
28  
Transformer design  
28-30  
30  
MOSFET selection  
Switching losses  
31  
Efficiency calculations  
32  
Frequency of oscillation  
Selecting dead time  
33  
33  
Over Temperature Protection  
Short circuit protection  
33  
33  
BJT gate driver option  
33  
Music Load  
34  
Revision Changes Descriptions  
35  
www.irf.com  
Page 2 of 35  
IRAUDPS1  
- 3 -  
Introduction  
The IRAUDPS1 reference design is a 12 volts systems Audio Power Supply for automotive applications  
designed to provide voltage rails (+B and –B) for Class D audio power amplifiers  
This reference design demonstrates how to use the IR2085 as PWM and gate driver for a Push-Pull DC to  
DC converter, along with IR’s Direct FETS IRF6648  
The resulting design uses a compact design with the Direct FETS and provides all the required protections.  
NOTE: The IRAUDPS1 is an scalable power output design, and unless otherwise noted,  
this user’s manual and the reference design board is the 500W  
Table 1 IRAUDPS1 scalable table  
IRAUDPS1  
250W  
500W  
1000W  
Nominal  
Voltage  
output  
Nominal  
Output  
+B, -B  
+B, -B  
±35V  
±35V  
±35V  
3.5A  
7A  
14A  
Current  
Stereo System  
100W x 2  
8 channel System  
100W x 4  
8 channel System  
100W x 8  
Application  
IR Class D Model  
IRAUDAMP7D  
IRAUDAMP8  
IRAUDAMP8 x 2  
Detailed output power versions that can be configured by replacing components given in  
the component selection of Table 7 on page 14  
.
www.irf.com  
Page 3 of 35  
IRAUDPS1  
- 4 -  
System Specification  
All specs and tests are based on a 14.4V battery voltage supplying an International Rectifier Class  
D reference design with all channels driven at 1 kHz and a resistive load.  
Table 2  
Specification  
IR Class D Load  
Input current with no load  
ACC Remote ON Level  
ACC input impedance  
Turn ON delay  
250W  
IRAUDAMP5  
0.35A +/- 10%  
4.5-6V  
10k+/- 10%  
1-1.5 Sec  
30A Max  
250W  
18A  
3.5A  
+/- 35V +/-10%  
+/- 10%  
IRAUDPS1  
IRAUAMP8  
0.35A +/- 10%  
4.5-6V  
10k+/- 10%  
1-1.5 Sec  
30A Max  
500W  
35.5A  
7A  
+/- 35V +/-10%  
+/- 10%  
1000W  
IRAUAMP8 x 2  
0.35A +/- 10%  
4.5-6V  
10k+/- 10%  
1-1.5 Sec  
30A Max  
1000W  
71A  
14A  
+/- 35V +/-10%  
+/- 15%  
In-Rush Current  
Output power full loaded  
Input current full loaded  
Output Current per supply  
Output voltage  
Regulation  
Ripple outputs, laded at  
400W audio 1khz  
1.5V P.P.  
1.8V P.P.  
2V P.P.  
Efficiency at ½ and full of  
rated power  
Isolation between Battery  
and Outputs Gnd  
Battery OVP  
90-85%  
1k Ohm  
92-87%  
1k Ohm  
90-80%  
1k Ohm  
18-18.5V  
8.0-8.5V  
10A  
18-18.5V  
8.0-8.5V  
20A  
18-18.5V  
8.0-8.5V  
40A  
Battery UVP  
Output SCP  
Outputs OVP  
40-45V  
40-45V  
40-45V  
Over temperature  
protection (OTP)  
OTP hysteresis  
Led Indicators  
Size  
90C +/- 5C  
90C +/- 5C  
90C +/- 5C  
10C  
10C  
10C  
Red LED= SCP, Blue LED= OK  
3” W x 5.3” L x 1.5” H  
Table 3  
+B, -B Voltage outputs vs. Battery voltage all models  
Voltage outputs at 16.0V battery input with  
no signal input at class D  
+/- 39.5V +/- 10%  
Voltage outputs at 12.0V  
+/- 28V +/- 10%  
Voltage outputs at 8.0V battery input with  
no signal input at class D  
+/- 19.2V +/- 10%  
www.irf.com  
Page 4 of 35  
IRAUDPS1  
- 5 -  
Functional Block Description  
Fig 1 below shows the functional block diagram which basically is an isolated DC-DC converter  
with a step-up push-pull transformer from a 12V system that converts it to +/- 35V using the  
IR2085 as a PWM and gate driver along with the Direct FETS IRF6648.  
The IR2085 Module contains all the housekeeping circuitry to protect the IRAUDPS1 against  
streamer conditions which are:  
1. Soft start circuit in order to control the inrush-current at the moment the IRAUDPS1 power  
is turned ON  
2. Short Circuit protection at outputs (SCP), which will shut down the IR2085 and remain in  
latch mode until the Remote ON /OFF switch is released  
3. 12V system Over Voltage protection (OVP1). if Battery input voltage is greater than 18V..  
this could happen when the vehicle’s battery is disconnected or a vehicle’s alternator fails.  
4. Over voltage Output (OVP2) is greater than +/-45V at +B terminal if battery input is greater  
than 16V  
5. Over Temperature Protection (OTP), resistor Thermistor senses the chassis temperatures  
from Direct FETS  
Fig 2 is the complete schematic for the IR2085 Module  
Fig 3 is the complete schematic for the IRAUDPS1 with all scalable components required  
Figs 4 to Fig 10 are the respective PCB layouts for the IR2085 Module and the IRAUDPS1  
motherboard  
Tables 4 to Table 6 are the respective bills of materials  
Table 7 is the IRAUDPS1 detailed output power versions that can be configured by replacing  
components  
www.irf.com  
Page 5 of 35  
IRAUDPS1  
- 6 -  
IRAUDPS1 Block Diagram  
PUSH PULL  
+Current  
Sense  
+B Supply  
Rectifiers  
& filters  
FUSES  
+BATT.  
GND  
+B  
SGnd  
-B  
Battery  
terminal  
inputs  
+14.4V  
EMI  
Filter  
-B Supply  
Rectifiers  
& filters  
Chassis GND  
-Current  
Sense  
OVP1  
IR2085  
SD  
+Batt, OVP  
Soft Start  
Batt Gnd  
SGnd  
SCP  
OTP  
ON  
Rem ON/OFF  
and +12V  
Regulator  
Remote  
ON/OFF  
Rem  
Thermistor  
Thermally connected to heat spreader  
+B, OVP  
OVP2  
IR2085 Module  
Fig 1 Functional Block Diagram  
.
www.irf.com  
Page 6 of 35  
IRAUDPS1  
- 7 -  
10V  
V1  
R31  
470  
Red  
2
1
1
2
2
1
4.7k  
R22  
Turn_ON  
1
2
1
4
2
Turn_ON  
SCP+  
DZ4  
Q7  
LED1  
V1  
3
2
OVP2  
OTP  
1k  
R28  
U1B  
6
1
2
TH1  
1
2
7
LM393  
10k  
R6  
R17  
10k  
5
6
5
1
2
D1  
1Meg  
R4  
1
1
2
J6  
SCP-  
V1  
10k  
1
1
2
2
SCP+  
3
2
1
0.1uF  
R23  
10k  
SCP  
2
1
V1  
SCP  
SCP-  
Soft Start  
C7  
U1A  
R24  
3
2
1
1
12  
J2  
LM393  
22  
R18  
14.4V  
14.4V  
2
2
1
2
1
D2  
D7  
C6  
1
Header 2  
0.1uF  
V1  
OVP  
2
OVP2  
J3  
0.01uF  
0.0  
22  
2
1
2
1
2
1
2
1
IR2085  
R27  
R19  
C1  
R2  
CS  
VCC  
2
1
1
2
3
4
8
7
6
5
Header 2  
CS  
OSC  
GND  
LO  
VB1  
1k  
open  
HO1  
U2  
VS2 J4  
C2:  
C2  
4
47pF=80nS  
1
2
14.4V  
VS1  
14.4V  
3
2
1
100pF=110nS  
220pF=130nS  
470pF=170nS  
1nF1=200ns  
470pF  
VS1  
VCC  
LO1  
VCC  
J5  
0.0  
22  
R20  
R1@C2_470pF:  
15k=100khz  
2
1
2
2
1
1
2
1
R30  
30k=50khz  
Q2  
Turn_ON  
R11  
VCC  
CP2  
VCC  
1
1nF,15k=50kHz  
2
1
1
2
Header 2  
R25  
4.7k  
2
1
2.2R  
open  
10uF  
Q1  
DZ3  
1k  
R26  
BluLeED2  
3
14  
2
1
2
2
14.4V  
C8  
J1  
22  
1
2
12V  
10k  
R9  
6
5
4
3
2
1
2
0.1uF  
R21  
Remote ON  
Remote ON  
5
6
1
TH1  
1
Header 6H  
Drawing by: M.Rodriguez  
e-mail: mrodrig5@irf.com  
2085_Control Module_R3  
Fig 2 schematic of IR2085 Module  
www.irf.com  
Page 7 of 35  
IRAUDPS1  
- 8 -  
.
.
`
IRAUDPS1, 12V System SMPS, 500W Converter with Direct Fets  
And IR2085 PWM Module  
Optional  
(open) MUR1620CTG  
1
J6  
+B  
SW2  
VS2  
2
3
2
1
CR1  
+V_Rectified  
3
SCP+  
SCP-  
SW1  
(open) MUR1620CTRG  
3
Header 3  
J3  
Transformer:  
Core: Magnetics P/NZR42915TC  
P1,P2=4T#18x4,60uH,DCR3mOhms  
S1,S2=10T#20x3=470uH,DCR46mOhms  
LO1A  
SW1  
SW2  
D_FET2  
open  
D_FET6  
IRF6648  
D_FET10  
open  
D_FET14  
IRF6648  
2
1
1
1
1
1
1
CR2  
1
-V_Rectified  
2
1
2.2K  
R14  
2.2K  
R31  
Header 2  
2
2
10k  
R51  
1
2
TR1  
8
1
2
SCP+  
+CS  
J2  
LO1B  
6.2  
Q1  
+V  
10k  
R50  
1
2
2
1
SW1  
1
+V_Rectified  
MMBT5401  
2.2nF/100V  
P1  
S1  
2
1
2
2
1
R70  
R44  
L1  
Header 2  
2
3.3uH/10A  
6.2  
R73  
D1  
D4  
C34  
Z2  
C26  
1
3
1
3
+B  
2
R47  
L6  
L5  
+Battery  
Fuse1  
14.4V  
14.4V  
7
6
1
1
1
2
2
FB1  
FB2  
1
1
1
2 F1  
2 F2  
2 F3  
C28  
2
0.03R  
R49  
2
1
3
2
1
15A  
C7  
C8  
C9  
1uF  
SMAZ39-TP  
0.1uF/250V  
Fuse2  
J4  
1uF  
1uF  
3
1
3
1
4
3
2
1
VS2  
VS1  
0.03R  
Z1  
2
2
S2  
15A  
14.4V  
D2  
D3  
C29  
S2  
TB2  
TB1  
2
1
C21  
1
2
C23  
2
6.2  
Fuse3  
2
2
1
1
1
TB4  
SMAZ39-TP  
2.2nF/100V  
0.1uF/250V  
+V  
2
1
3
R72  
6.2  
1uF/100V  
C24  
C22  
Header 4  
4
5
15A  
SGnd  
-V  
C3  
2
1
1
2
VS1  
ZP42915TC  
SW2  
1
2
L2  
R71  
C33  
1uF  
1uF/100V  
-V_Rectified  
C35  
+B  
1
2
R54  
J5  
LO2A  
1
2
2
R60  
D_FET4  
open  
D_FET8  
IRF6648  
D_FET12  
open  
D_FET16  
IRF6648  
C25  
1uF/100V  
1
1
1
1
1
1
1
2
12  
2
2
1
1
2
+B  
0.03R  
R48  
22k  
R55  
Manual ON/OFF  
0.1uF  
2.2K  
R32  
2.2K  
R16  
14.4V  
Header 2  
2
2
LED1  
LED2  
1
2
3PSW  
-B  
R45  
TB3  
3
1
1
1
2
1
2
0.03R  
R53  
2
2.2k  
R61  
1
2
1
off  
1k  
S1  
C27  
J1  
LO2B  
2
Remote ON/OFF  
-B  
1
6
5
4
3
2
1
22k  
R56  
GND  
SGnd  
10k  
-B  
2
R52  
2
-V  
-CS  
C30  
1
2.2k  
SCP-  
1
1
2
2
10k  
TH1,thermallyconnectedtoheat-spreader  
0.01uF  
C32  
Chassis GND  
0.01uF  
SGnd  
Drawing by: M.Rodriguez Mrodrig5@irf.com  
Fig 3 IRAUPS1 Mother Board Schematic  
.
www.irf.com  
Page 8 of 35  
IRAUDPS1  
- 9 -  
Fig 4 IR2085 Module Top silk screen layout  
.
Fig 6 IR2085 Module Top side layout  
Fig 5 IR2085 Module bottom side layout  
.
www.irf.com  
Page 9 of 35  
IRAUDPS1  
10 -  
.
Fig 7 IRAUDPS1 Mother Board Top silk screen layout  
.
Fig 8 IRAUDPS1 Mother Board Top copper  
www.irf.com  
Page 10 of 35  
IRAUDPS1  
11 -  
.
Fig 9 IRAUDPS1 Mother Board Bottom silk screen layout  
.
.
Fig 10 IRAUDPS1 Mother Board Bottom layout  
www.irf.com  
Page 11 of 35  
IRAUDPS1  
12 -  
Bill of Materials  
Table 4  
IRS2085 Module  
Quantity  
Value  
Description  
Designator  
Digikey P/N  
PCC1784CT-ND  
Vendor  
Panasonic - ECG  
Murata  
3
1
1
3
2
7
1
1
1
1
1
1
1
2
1
2
2
1
1
0.01uF  
470pF  
100pF  
0.1uF  
10uF  
CAP 10000PF 50V CERM X7R 0603  
CAP CER 470PF 50V 5% C0G 0603  
CAP CERAMIC 100PF 50V NP0 0603  
C1, C4, C5  
C2  
C3  
490-1443-1-ND  
311-1069-1-ND  
Yageo  
CAP CERM .10UF 50V 20% 0805 SMD  
CAP TANTALUM 10UF 16V 10% SMD  
DIODE SWITCH 100V 150MW SOD-523  
SOD123_Z  
C6, C7, C8  
CP1, CP2  
478-3351-1-ND  
AVX Corporation  
Kemet  
495-2236-1-ND  
1N4148WT-7  
18V  
D1, D2, D3, D4, D5, D6, D7  
1N4148WTDICT-ND  
MMSZ5248BS-FDICT-ND  
UDZSTE-175.6BCT-ND  
BZT52C12S-TPMSCT-ND  
MMSZ5240BSDICT-ND  
929500E-01-01-ND  
160-1422-1-ND  
Diodes Inc  
Diodes Inc  
Rohm  
DZ1  
5.6V  
DIODE ZENER 5.6V 200MW SOD-323  
DIODE ZENER 200MW 12V SOD323  
DIODE ZENER 10V 200MW SOD-323  
Header, 6-Pin, Right Angle  
DZ2  
12V  
DZ3  
Micro Commercia  
Diodes Inc  
3M  
10V  
DZ4  
Header  
Red  
J1,J2,J3,J4,J5.J6  
LED1  
LED RED ORAN CLEAR THIN 0805 SMD  
LED 468NM BLUE CLEAR 0805 SMD  
Lite-On Inc  
Lite-On Inc  
Panasonic - SSG  
NXP  
Blue  
LED2  
160-1645-1-ND  
XN04311  
PBSS305NX  
open  
TRANS ARRAY PNP/NPN W/RES MINI6P Q1, Q7  
XN0431100LCT-ND  
568-4177-1-ND  
TRANS NPN 80V 4.6A SOT-89  
Q2  
(OPEN) TRANS NPN 80V 4.6A SOT-89  
(OPEN) TRANS PNP 80V 4A SOT-89  
RES 30K OHM 1/10W 5% 0603 SMD  
RES 1K OHM 1/10W 5% 0603 SMD  
Q3, Q4  
Q5, Q6  
R1  
568-4177-1-ND  
NXP  
open  
568-4178-1-ND  
NXP  
30K  
RHM30KGCT-ND  
RHM1.0KGCT-ND  
Rohm  
1k  
R2  
Rohm  
R3,R6,R9,R14, R15, R16, R17, R23, R24,  
R32,R33  
11  
1
4
1
1
4
2
2
1
1
1
1
10k  
RES 10K OHM 1/10W 5% 0603 SMD  
RES 1.0M OHM 1/10W 5% 0603 SMD  
RES 4.7K OHM 1/10W 5% 0603 SMD  
RES 470K OHM 1/10W 5% 0603 SMD  
RES 2.2 OHM 1/4W 1% 1206 SMD  
RES 22 OHM 1/8W 5% 0805 SMD  
RES 1.0K OHM 1/10W 5% 0603 SMD  
RES 0.0 OHM 1/8W 5% 0805 SMD  
RES 47K OHM 1/10W 5% 0603 SMD  
RES 470 OHM 1/8W 5% 0805 SMD  
IC COMP DUAL OFFSET LV 8SOIC  
Controller and Gate Driver  
RHM10KGCT-ND  
311-1.0MGRCT-ND  
RHM4.7KGCT-ND  
RHM470KGCT-ND  
P2.2RCT-ND  
Rohm  
1Meg  
4.7k  
R4  
Yageo  
R8, R13, R22, R25  
Rohm  
470k  
2.2  
R10  
Rohm  
R11  
Panasonic - ECG  
Rohm  
22  
R18, R19, R20, R21  
RHM22ARCT-ND  
RHM1.0KGCT-ND  
RHM0.0ARCT-ND  
RHM47KGCT-ND  
RHM470ARCT-ND  
LM393DR2GOSCT-ND  
IR2085  
1k  
R26, R28  
R27, R30  
R29  
Rohm  
0.0  
Rohm  
47k  
Rohm  
470  
R31  
Rohm  
LM393DR2G  
IR2085  
U1  
ON Semi  
International Rect  
U2  
www.irf.com  
Page 12 of 35  
IRAUDPS1  
13 -  
Table 5  
IRAUDPS1 Mother Board Bill of Materials  
Quantity  
Value  
Description  
Designator  
Digikey P/N  
490-3908-1-ND  
478-1505-1-ND  
478-1519-1-ND  
490-3909-1-ND  
PCC1784CT-ND  
399-4674-1-ND  
493-1842-ND  
Vendor  
Murata Electronics North  
AVX Corporation  
AVX Corporation  
Murata Electronics  
Panasonic - ECG  
Kemet  
4
1
3
4
4
3
3
4
1
1
4
4
4
3
2
3
1
2
1
1
1
1
4
1
1
1
4
4
2
2
4
1uF/50V  
CAP CER 1UF 50V X7R 1206  
C3, C7, C8, C9  
C21  
1000pF/200V  
2.2nF/100V  
1uF/100V  
0.01uF  
CAP CER 1000PF 10% 200V X7R 1206  
CAP CER 2200PF 10% 100V X7R 1206  
CAP CER 1UF 100V X7R 1206  
C22, C33, C34  
C23, C24, C31, C35  
C26, C27, C30, C32  
C28, C29,C25  
CP3, CP4, CP5  
CAP 10000PF 50V CERM X7R 0603  
CAP CERAMIC .1UF 250V X7R 1206  
CAP 3300UF 25V ELECT PW RADIAL  
CAP 1200UF 63V ELECT PW RADIAL  
DIODE Comm Cathode ULT FAST 16A 200V TO220  
DIODE Comm Anode ULT FAST 16A 200V TO220  
DIODE FAST 200V 10A D-PAK  
0.1uF/250V  
3300uF/25V  
1200uF/63V  
(open)  
Nichicon  
CP10, CP11, CP12, CP13  
493-1958-ND  
Nichicon  
CR1  
MUR1620CTGOS-ND  
MUR1620CTRGOS-ND  
497-3536-5-ND  
ON Semiconductor  
ON Semiconductor  
STMicroelectronics  
(open)  
CR2  
STTH1002CB  
open  
D1, D2, D3, D4  
FET2, FET4,FET10,FET12  
FET6, FET8, FET14,FET16  
F1, F2, F3  
Direct-FET MOSFET N-CH 60V 86A  
Direct-FET MOSFET N-CH 60V 86A  
FUSEHOLDR MINI VERT PCB MNT SNGL  
FERRITE 3 LINE 10A 342 OHMS  
FUSE BLADE 15A/32V MINI FAST-ACT  
Control Module  
IRF6648TR1PBFCT-ND International Rectifier  
IRF6648TR1PBFCT-ND International Rectifier  
IRF6648  
Fuse Holder  
FERRITE QUAD LINE 10A  
15A  
F065-ND  
Littelfuse Inc  
Stwart  
FB1, FB2  
240-2494-ND  
Fuse1, Fuse2, Fuse3  
J1,J2, J3, J4,J5,J6  
L1, L2  
F992-ND  
Littelfuse Inc  
IR Module_2085_R2 PCB  
Coiltronics  
Module_2085_R2  
3.3uH/10A  
Blue  
Custom  
INDUCTOR POWER 3.31UH 11.4A T/H  
LED 468NM BLUE CLEAR 0805 SMD  
LED 468NM BLUE CLEAR 0805 SMD  
TRANSISTOR PNP 150V SOT-23  
TRANSISTOR NPN 160V SOT-23  
RES 2.2K OHM 1/8W 5% 0805 SMD  
RES 100 OHM 1/4W 5% 1206 SMD  
RES 10 OHM 1/4W 5% 1206 SMD  
RES 1.0K OHM 1/4W 5% 1206 SMD  
RES .03 OHM 1W 1% 2512 SMD  
RES 10K OHM 1/10W 5% 0603 SMD  
RES 2.2K OHM 1W 5% 2512 SMD  
RES 22K OHM 1/4W 5% 1206 SMD  
RES 6.2 OHM 1/4W 5% 1206 SMD  
513-1522-ND  
LED1  
160-1645-1-ND  
160-1645-1-ND  
MMBT5401FSCT-ND  
MMBT5551FSCT-ND  
'RHM2.2KARCT-ND  
311-100ERCT-ND  
RHM10ERCT-ND  
RHM1.0KERCT-ND  
WSLG-.03CT-ND  
RHM10KGCT-ND  
PT2.2KXCT-ND  
RHM22KERCT-ND  
RHM6.2ERCT-ND  
Lite-On Inc  
Lite-On Inc  
Fairchild Semiconductor  
Fairchild Semiconductor  
Rohm  
Blue  
LED2  
MMBT5401  
MMBT5551  
2.2K  
Q1  
Q2  
R14, R16, R31, R32  
R43  
100R  
Yageo  
10  
R44  
Rohm  
1k  
R45  
Rohm  
0.03R  
R47, R48, R49, R54  
R50, R51, R52, R53  
R55, R56  
Vishay/Dale  
Rohm  
10k  
2.2k  
Panasonic - ECG  
Rohm  
22k  
R60, R61  
6.2  
R70, R71, R72, R73  
Rohm  
www.irf.com  
Page 13 of 35  
IRAUDPS1  
14 -  
1
2
1
1
1
1
2
Toggle SW 3Pos  
Gold terminal block  
TB 2 terminals  
1714984  
Toggle SW 3Pos  
S1  
EG2377-ND  
E-Switch  
Gold terminal Block #8 AWG  
CONN TERM BLOCK 2POS 5MM PCB  
CONN TERM BLOCK 3POS 9.52MM PCB  
THERMISTOR 100K OHM NTC 0805 SMD  
Power Transformer  
TB1, TB2  
TB3  
070-850  
Audio Express  
Phoenix Contact  
Phoenix Contact  
Murata Electronics  
Magnetics  
277-1022-ND  
TB4  
277-1272-ND  
100K  
TH1  
490-2451-1-ND  
Custom TR500-2085  
SMAZ39-TPMSCT-ND  
ZP42915TC  
SMAZ39-TP  
TR1  
DIODE ZENER 1W 39V SMA  
Z1, Z2  
Micro Commercial Co  
.
Table 6  
Mechanical BOM  
Quantity  
Description  
Value  
Digikey P/N  
Vendor  
1
1
1
1
2
4
6
6
Aluminum Bar heat spreader R2  
Aluminum Base heat sink R2  
Aluminum Bar 2085  
Aluminum Bar 2085  
PCB  
Custom  
China  
Custom 2085  
China  
Print Circuit Board IR2085_MB_R2 .PCB  
THERMAL PAD .080" 4X4" GAPPAD  
(Optional) THERMAL PAD .007" W/ADH  
SPACER ROUND 1" #4 SCRW .250" BR  
NUT HEX 4-40 STAINLESS STEEL  
SCREW MACHINE PHILLIPS 4-40X3/4  
WASHER LOCK INTERNAL #4 SS  
IR2085_MB_R1 PCB Assy  
Ber164-ND  
China  
THERMAL PAD .080" 4X4" GAPPAD  
(Optional) THERMAL PAD TO-220  
Stand off 0.250"  
Bergquist  
173-7-240A  
1454AK-ND  
H724-ND  
Wakefield  
Keystone Electronics  
Building Fasteners  
Building Fasteners  
Building Fasteners  
Nut 4-40  
Screw 4-40X3/4  
H350-ND  
12  
Washer #4 SS  
H729-ND  
.
Table 7  
Scalable IRAUDPS1 by changing the following components  
Component  
Notes  
250W  
IRAUDPS1  
1000W  
Power Transformer T1  
Direct FETs  
See winding instructions  
IR P/N TR-2085-250W  
IR P/N TR-2085-500W  
IR P/N TR-2085-1000W  
Populate the respective Direct FET D_FET6, D_FET16  
by IR6648 as shown on respective  
model  
D_FET6,D_FET8,  
D_FET16  
D_FET14, D_FET6,D_FET8,  
D_FET14,  
D_FET10,  
D_FET16  
D_FET2,D_FET4,  
D_FET12  
R47, R48, R47, R54  
Fuse F1, F2, F3  
D1, D2, D3, D4  
CP3, CP4, CP5  
Short circuit sensitivity  
Input Current  
0.06R  
0.03R  
15A  
0.015R  
25A  
5A  
Output Rectifiers  
Input Filters  
4A  
8A  
16A  
2200uF/25V  
3300uF/25V  
3900uF/25V  
.
www.irf.com  
Page 14 of 35  
IRAUDPS1  
15 -  
IRAUPS1 Application and connections  
Fig 11 test Setup  
www.irf.com  
Page 15 of 35  
IRAUDPS1  
- 16 -  
Connector Description  
Battery ( - )  
Battery ( + )  
+B output  
Analog GND  
-B output  
TB1  
TB2  
Terminal Board for Negative supply source  
Terminal Board for Positive supply source  
TB4-1 Positive output of +B (+Bus Rail)  
TB4-2 Output GND of +B and -B  
TB4-3 Negative output of –B (-Bus Rail)  
Switch Description  
Remote-OFF-Test  
Remote  
This position PS1 can be turned ON remotely by vehicle’s  
ACC (Accessory voltage) or vehicle’s amplifier  
OFF  
Test  
IRAUDPS1 is always OFF regardless of ACC input  
IRAUDPS1 can be turned ON manually or for test purpose  
LED Indicator Description  
LED1 Red  
LED2 Blue  
LED3 Blue  
LED4 Blue  
Indicate the presence of a short circuit condition on +B or -B  
Indicate the presence of PWM pulses from IR2085  
Indicate the presence of +B voltage  
Indicate the presence of –B voltage  
Power Source Requirements  
The power source shall be capable of delivering 80 Amps with current limited from 1A to  
80A during the test; the output voltage shall be variable from 8V to 19V during the test  
Test Procedure  
1. Pre-adjust the main source power supply to 14.4V and set current limit to 1A  
2. Turn on the main source power supply to standby mode  
3. On IRAUDPS1 (Unit Under Test) Set the Remote ON switch to OFF (center)  
4. Connect an oscilloscope probe on transformer terminals TR1 pin 1  
5. Do NOT Connect the Class D Amp IRAUDAMP8 (IR2093) to +B and –B yet  
6. Connect the resistive load to the class D Amp  
7. Set the Audio OSC to 1 kHz and output level to 0.0V  
Power up:  
8. Turn ON the main source power supply, the input current from the source power  
supply should be 0.0mA and all LEDS should be OFF  
9. Look at LED2 on the IR2085_Module, it should be OFF, then turn ON the  
Remote-OFF-Test to Test switch while you observe LED2; it will light slightly  
after turning ON said switch, then LED2 will come fully bright one second after  
the Remote switch was turned ON (Test position)  
10. In the mean time, the figure on the oscilloscope will start from narrow pulses, up  
to 50% duty cycle and the oscillation frequency shall be 50kHz as shown on Fig  
12 and Fig 13 below; This is the soft-start test  
IRAUDPS1  
www.irf.com  
Page 16 of 35  
- 17 -  
Fig 13, waveform from power  
transformer  
Fig 12, waveform from 2085 module  
11. The power consumption from the source power supply shall be 0.35A maximum  
typical is 0.30A and the +B and –B LEDs will turn ON as well  
12. Measure the voltage on +B and –B; it will be +/-35V ±1.5V respectively; This is  
the transformer’s windings turns ratio and full-wave rectifiers  
UVP Test  
13. Decrease the source power supply slowly until it reaches around 8 volts while  
you observe LED2 or the oscilloscope. LED2 will turn OFF or oscilloscope’s  
pulse will disappear at 8V ±1.5V. Typical is 8.02V  
OVP1 Test  
14. Increase the source power supply slowly until it reaches around 18V while you  
observe LED2 or the oscilloscope. LED2 will turn OFF or the oscilloscope’s pulse  
will disappear at 18V ±1.5V. Typical is 18.5V  
OVP2 Test  
15. Increase the source power supply slowly until it reaches around 16V while you  
observe LED2 or the oscilloscope;. LED2 will begin blinking or the oscilloscope’s  
pulse will decrease in duty cycle like Fig12 when +B reaches 45V ±2.5V.  
Typical is 45.0V  
SCP Test  
16. Adjust the source power supply to 14.4V, then while IRAUPS1 is ON, apply a  
short circuit between +B and AGnd with external wires, (do not make the SC on  
the terminal board or it will burn said terminals) LED1 will turn ON and LED2 will  
be OFF and stay OFF until the Rem-OFF-Test Switch is turned to OFF then ON  
again; This is the latch of OCP  
17. Repeat the last step for –B and GND  
IRAUDPS1  
www.irf.com  
Page 17 of 35  
- 18 -  
Full Load Power Test  
18. Turn OFF the IRAUDPS1 and Connect +B and –B to the Class D Amp  
IRAUDAMP8 (IR2093)  
19. Turn ON the IRAUDPS1, the input current from the source power supply should  
be 0.85A ±0.5A; typical input current is 0.83A with the class D IRAUDAMP8  
loaded with no signal input  
20. Increase the current limit from the source power supply to 35A  
21. Increase slowly the output level from the Audio Oscillator until the Class D amp  
gets 100W RMS per channel; if resistive loads are 4 Ohms the outputs amplitude  
from amplifier will be 20V RMS  
22. Under these conditions the consumption current from the source power supply  
shall be 36.6A maximum; this correlates to a 10% loss for each channel and a  
20% loss of the IRAUDPS1; this is the power output and efficiency test  
23. The output voltages from +B and –B should be +/- 30V ±2.5V  
24. Monitor the transformer waveform; it should be like Fig 14 below  
25. The ripple current for +B or –B should be 3V P.P. maximum as shown on Fig 15  
below  
Fig 15 +B and –B Ripple voltage  
Fig 14 TR1 waveform loaded  
OTP Test  
26. Leave the class D amp running with 100W x 4 continuous power until IRAUDPS1  
gets hot and trips the shut down level while the temperature on the heat sink is  
monitored next to the Thermistor sensor. The temperature for shutdown will be  
90C +/-5C and the time required to make OTP will be around 30 minutes when  
tested at ambient temperature  
27. The thermal hysteresis shall be 10C and the time to recover it shall be one  
minute, the time to make shutdown again will be 10 minutes  
28. Load Regulation and Efficiency are shown in Fig 16-20 below  
IRAUDPS1  
www.irf.com  
Page 18 of 35  
- 19 -  
Typical Performance  
Regulation  
40  
35  
30  
25  
20  
15  
10  
5
0
1
2
3
4
5
6
7
8
IRAUDPS1-500W Load (Amps)  
Fig 16  
.
Effiency of IRAUDPS1-250W  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
7
14  
21  
28  
35  
42  
49  
56  
63  
70  
138 204 268  
Watts  
Fig 17  
.
IRAUDPS1  
www.irf.com  
Page 19 of 35  
- 20 -  
Efficiency of IRAUPS1-500W  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
7
14 21 28 35 42 49 56 63 69 137 204 267 333 393 457 512  
Watts  
Fig 18  
.
Efficiency of IRAUDPS1-1000W  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
7
14 21 28 35 42 49 56 63 69 137 267 393 512 626 732 833  
Watts  
Fig 19  
.
IRAUDPS1  
www.irf.com  
Page 20 of 35  
- 21 -  
+B, -B vs. Battery voltage outputs  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Battery voltage  
Fig 20  
.
.
IRAUDPS1  
www.irf.com  
Page 21 of 35  
- 22 -  
IRAUDPS1 Fabrication Drawings  
Mechanical assembly  
.
HEX NUT 4-40  
P/N H216-ND  
HEX NUT 4-40  
P/N H216-ND x 6  
Lock washer  
Lock washer  
PCB  
Stand off  
0.250"  
P/N 1454AK-ND x 4  
Lock washer  
Stand off  
0.250"  
Thermal Pad  
P/N 1454AK-ND  
Lock washer  
H729-ND x 12  
Aluminum  
Bracket  
Lock washer  
Screw  
H350-ND x 6  
Aluminum Base  
Lock washer  
Screw  
H350-ND  
Lock washer  
Lock washer  
Screw  
H350-ND  
Fig 22 Mechanical assembly  
.
DirectFETS Gap  
0.030"  
0.032"  
0.062"  
Lock washer  
PCB  
Lock washer  
Heat Spreader (Bar)  
Alumimum plate (Base)  
Lock washer  
Lock washer  
Fig 23 Direct FET thermal dissipation  
.
IRAUDPS1  
www.irf.com  
Page 22 of 35  
- 23 -  
.
Fig 24 Aluminum base  
Fig 25 Heat Spreader for DirectFETs  
.
IRAUDPS1  
www.irf.com  
Page 23 of 35  
- 24 -  
Fig 26 Thermal Pad  
.
.
Fig 27 Input Battery Terminals  
IRAUDPS1  
www.irf.com  
Page 24 of 35  
- 25 -  
IRAUDPS1 transformer winding instructions  
IR Assy P/N IR-TR500-2085-500W  
Schematic  
Materials required  
Start  
Start  
Core: Magnetics material “P” ZP42915TC  
P1  
S1  
Finish  
Start  
Finish  
Start  
P2  
S2  
Finish  
Finish  
Fig 29  
Fig 28  
.
Step No. 1  
Winding P1:  
1. Cut 30cm length of 1.0mm gage x  
4 wires of magnet wire (AWG 18)  
2. Start winding P1 at 0 degrees  
forward or Clock wise, as shown  
on Fig 30, start is the top side,  
and finish is the bottom side  
3. Wind 4 turns in parallel at the  
same time, evenly spaced around  
the core as shown on Fig 30  
4. Leave 4 cm of wire at both ends,  
spaced ½ inch between ends, as  
shown on Fig 30  
Fig No. 30  
.
Step No. 2  
Winding P2:  
5. Cut 30cm of 1.0mm gage x 4  
wires of magnet wire (AWG 18)  
6. Start winding P2 starting on the  
end of P1, as shown in Fig 31,  
start is the top side, and finish is  
the bottom side  
7. Wind the 4 at the same time  
between the spaces of P1 evenly  
spaced around the core, in the  
same direction as shown on Fig  
31  
8. Leave 4 cm of wire at both ends,  
spaced ½ inch between ends, as  
shown on Fig 31  
Fig No. 31  
.
IRAUDPS1  
www.irf.com  
Page 25 of 35  
- 26 -  
Step No. 3  
Winding S1:  
9. Cut 60cm of 20 AWG (0.86mm) x  
3 magnet wires  
10. Start winding of S1 at 90 degrees  
forward respect to the start point  
of P1, as shown on Fig 32, start is  
the top side, and finish is the  
bottom side  
11. Wind 10 turns whit the three  
parallel wires at the same time,  
evenly spaced around the core on  
same direction as shown on Fig  
32  
12. Leave 4 cm of wire at both ends.  
Fig No. 32  
.
Winding S2:  
13. Cut 60cm of 20 AWG (0.86mm) x  
3 magnet wires  
14. Start winding of S1 at 90 the end  
pf S1 forward respect to the start  
point of S1, as shown on Fig 33  
15. Wind 10 turns whit the three  
parallel wires at the same time,  
evenly spaced around the core on  
same direction as shown on Fig  
33  
16. Leave 4 cm of wire at both ends.  
Fig No. 33  
.
Step No. 5  
Performing “Start and Finish wires”  
Mounting holes; using an IR2085_MB_R2 PCB, perform the next instruction:  
17. Perform “P1 Start” to fit into Pad 1 as  
shown Fig 6.  
4
18. Perform “P1 finish” and “P2 Sstart” to  
be fitted into pad 2 as shown on Fig  
No. 34, this is the center tap of the  
Primary side  
19. Perform “P2 finish”, to be fitted into  
mounting hole 3 as shown in fig No. 6.  
20. Perform “S1 start” (top winding) to be  
connected on Pad 4 as shown on Fig  
34  
1
2
5
3
6
21. Perform “S1 finish” wire (bottom  
winding) to be connected at Pad 5,  
this is the center tap of the secondary  
side  
Fig No. 34  
22. Perform “S2 start (top winding) to the  
IRAUDPS1  
www.irf.com  
Page 26 of 35  
- 27 -  
center tap on Pad 5  
23. Perform “S2 finish” of (bottom  
winding) to be connected to hole 6 as  
shown on fig 35  
24. Cut and strip magnet wires for ½  
inches long to be performed as  
surface mounting as shown on Fig 35  
25. Thin the transformer terminals as  
shown on Fig 36  
26. Before mounting on PCB measure  
inductance according to next Table 8  
Fig 35  
Fig 36  
Fig. 37  
.
Table 8  
Transformer’s Electrical Characteristics  
Inductance at P1 and P2 on terminals 1,2 and 2,4 65uH-75uH  
Inductance difference between windings P1 and P2 1uH maximum  
Inductance at S1 and S2 on terminals 5,7 and 7,8 470uH minimum  
Inductance difference between windings S1 and S2 2uH maximum  
DCR at P1 winding 1,2 and P2 winding 2,4  
DCR at S1 terminals 5,6 and S2 terminals 7,8  
Number of turns for P1 and P2  
Number of turns for S2 and S2  
Leakage Inductance, with S1 and S2 shorted  
Resistance between Primary and Secondary (P and  
S windings)  
3.0mOhms max  
46mOhms max  
4 Turns 18 AWG x 4  
10 Turns 20 AWG x 3  
1uH max  
Infinite  
Resistance between any winding and core  
High-Pot between primary and secondary windings  
High-Pot between any winding and core  
Dimensions  
Infinite  
500VAC  
500VAC  
1.4” OD x 0.80” Height  
See Fig 37  
Mounting  
.
IRAUDPS1  
www.irf.com  
Page 27 of 35  
- 28 -  
Design Example  
Assume the following customer specifications are required:  
A 12V system automotive power supply to drive a stereo class D amplifier 300 Watts per  
channel into 4 ohms, and the maximum standby power consumption of the power supply  
should be 5 watts at 14V battery voltage with no load; also efficiency should be greater  
than 80%, compact design size 3 inches wide, 5 ½ long and 1 ½ high  
Voltages outputs required  
The first step is to calculate the output voltages and the input and output currents; the  
control circuits in the IRAUDPS1 are a good reference design to design the whole  
control system  
+B and –B are calculated as following:  
AUDIO signal VRMS = Sqrt (300W X 4 Ohms) = 34.6VRMS  
Thus, +B = 34.6 x 1.4142 = +50VDC and –B = -50VDC  
Input Current required from Battery  
Input Current Loaded = 300W x 2 = 600W  
If efficiency of the Class D amp is 90% then 600 x 1.1 = 660W  
If the efficiency of the power supply is 80% then 660W x 1.2 = 792W = 800W  
Thus, I loaded = 800W / 14V = 57A  
Output Current provided  
Total output current = 660W / 50V = 13.2A  
Thus +B = 13.2 / 2 = 6.6A and –B = -6.6A  
Transformer Design Example  
The transformer design is a trade-off between size, operating frequency, physical  
windings to achieve low leakage inductance, form factor, primary turns ratio to meet  
standby input current, and type of core material  
Core Selection  
Core must be selected as power material composite and it can be chosen from any  
major manufacturers which are Magnetics Inc, TDK, Ferroxcube, Siemens or Thomson.  
Each manufacturer has a number of different powder core mixes of various materials to  
achieve different advantages, so in this case Magnetics Inc core ZP42915TC is selected  
according the estimated size required to fit the power required  
Notice on IRADUPS1 Fig 30 and Fig 31 the primary windings are 4 turns and they are  
distributed equally and spaced around the core in order to provide uniform magnetic flux  
density therefore low leakage inductance, so 4 turns on primary side is a good practice  
for now because it fits most of the requirements mentioned above, of which the most  
important factor here is size and physical windings to achieve low leakage inductance  
and core material  
IRAUDPS1  
www.irf.com  
Page 28 of 35  
- 29 -  
Primary inductance  
Primary Inductance called here as Lp is 65uH that belongs to 4 turns according to  
Magnetics ZP42915TC permeability data sheet  
Magnetizing current  
The standby current with no load depends on the magnetizing idle of the power  
transformer called here as IM and it depends on the operating switching frequency  
called here as Fs  
Magnetizing current = IM = 5W of standby current / 14V = 0.35A  
Therefore this is the transformer’s primary windings impedance current  
Thus, Transformer magnetizing impedance = ZM = 14V / 0.35A = 40 ohms  
Then we assume that ZM is the same impedance of XL where XL = 6.28 x Lp x Fs  
Therefore switching frequency = Fs = XL / (Lp x 6.28)  
Operating switching frequency calculation  
Because this is a push-pull DC-DC converter, switching frequency is calculated as  
follows:  
Operating switching frequency = Fs = ½ (XL / (Lp x 6.28) = 1 / 2 (6.28 x 65uH) / 40 ohms  
= 48.9 kHz  
Therefore we will use 50 kHz  
Verification of the computations:  
Transformer primary windings Impedance = XL = 6.28 x 65uH x 50 kHz = 20.41 ohms  
IM = ½ (V / XL) = ½ (14V / 20.41) = 0.34A  
Thus, the standby current will be 0.34A at 14V = 4.9W which will meet the customer’s  
specifications  
Turns ratio calculations  
If the primary windings are 4 turns and they are distributed equally spaced around the  
core as shown on Fig 30 and Fig 31  
Thus, Volts per turn ratio = 14V / 4 turns = 3.5V per turn  
Turns required on secondary = 50V / 3.5V = 14 turns  
Number of wires and gauge required  
Primary Windings  
Because the input current will be 57A, the wire’s gauge will be the biggest possible to fit  
into the core with the lowest DCR possible for a maximum efficiency and lower  
temperature dissipation  
Assuming 5 watts DC power dissipation on the primary side, then Primary DCR  
maximum required = 5W / (57)2 = 5 / 3249 = 0.0015 ohms  
IRAUDPS1  
www.irf.com  
Page 29 of 35  
- 30 -  
Wire length required is 6 inches for 4 turns in this case in particular for Magnetics Core  
ZP42915TC, Then considering copper DC resistance according to gauge table 9 below  
Thus, a single # 14 AWG magnet wire is required considering only the DC resistance  
(DCR), but considering the skin effect of the high frequency of operation which in this  
case will be 50 kHz, therefore 5 wires in parallel # 18 are required in order to minimize  
the skin effect and therefore minimize the AC resistance at 50 kHz  
.
Table 9  
Round copper magnet wire DCR and AC/DC Resistance ratio due to skin effect  
versus frequency  
25kHz  
50 kHz  
100kHz  
AWG  
#
Diameter DCR per 1ft  
Skin  
depth  
ratio  
Rac /  
Rdc  
Skin  
depth  
ratio  
Rac /  
Rdc  
Skin  
depth  
ratio  
Rac  
/
Rdc  
mils  
m  
12  
14  
16  
18  
20  
22  
24  
26  
81.6  
64.7  
51.3  
40.7  
32.3  
25.6  
20.3  
16.1  
1.59  
2.52  
4.02  
6.39  
10.1  
16.2  
25.7  
41.0  
4.56  
3.61  
2.87  
2.27  
1.80  
1.48  
1.13  
0.90  
1.45  
1.30  
1.10  
1.05  
1.00  
1.00  
1.00  
1.00  
6.43  
5.09  
4.04  
3.20  
2.54  
2.02  
1.60  
1.27  
1.85  
1.54  
1.25  
1.15  
1.05  
1.00  
1.00  
1.00  
9.10 2.55  
7.21 2.00  
4.54 1.40  
4.54 1.40  
3.6  
1.25  
2.85 1.10  
2.26 1.04  
1.79 1.00  
.
Secondary Windings  
Because the secondary current is only 6.6A, lets assume a power dissipation of 2W on  
the secondary windings  
Secondary DCR maximum rewired = 2 / (6.6) 2 = 0.045 ohms  
Thus, 3 wires # 20 required from table 9  
MOSFTS Selection  
Because part of the customer specification has to be a compact design, the Direct FET  
IRF6648 is selected due to small package, high current capability, 60VDS, low RDSON  
and low Qg feature  
Quantity of MOSFETS required  
Since the input current at full load will be 57 amperes, and operating frequency is 50 kHz  
with 50% duty cycle (10us turn ON) and according to IRF6648 data sheet the safe  
operating area (Fig 12 from data sheet)  
Therefore, 15A will be the adequate current to be into the SOA  
Number of devices = 57A / 15A = 3.8 devices  
Thus, 4 devices required per each side of the Push-Pull transformer  
IRAUDPS1  
www.irf.com  
Page 30 of 35  
- 31 -  
Gate Drive Current required  
The Peak Gate drive current from IRS2085 = (VCC / RGATE ) x 2 outputs = (10V/ 22 ohms)  
x 2 = 0.9A  
The average current required to drive each gate depends on the switching frequency  
and Qg of the selected MOSFET, which in this case Qg is 50nC (nano-coulombs) from  
data sheet, there are two FETS in parallel per gate drive.  
Average Gate Current = IGATE = 2Qg x Fs = 2 x 50E-9 x 50kHz = 5mA  
Total Average Gate Current required = 0.005A x 4 devices = 0.02A  
MOFETS Power Dissipation losses  
The power dissipation at DC can be calculated as following:  
57A / 4 devices = 14.25A  
DC Power dissipation per device = I2 x RDSON / 2  
Note RDSON at 100C from Data sheet Fig 5, is divided by 2 because it is 50% duty cycle  
Power dissipation per device = (14.25)2 x 7.5mOhms / 2 = 0.76W  
Total power dissipation = (57)2 x ¼ 7.5 mOhms = 3249 x 1.875 = 6.091 watts  
MOSFET Switching loses  
The MOSFETS switching losses can be calculated as following:  
Switching losses = Turn ONLOSSES + Turn OFFLOSSES + Gate Drive LOSSES  
From IRF6648 data sheet T(RISE TIME) = 29nS and T(FALL TIME) = 13nS and QGD = 14nC  
Losses contributed by the size of the gate series resistor  
Gate drive series resistors actually slowdown the turn ON and turn OFF timing  
(See Fig 2, R18-R21)  
Delay losses contributed by the gate series resistor = GRES Delay = QGD / ((VCC – VML )/  
RGATE )). VML is the miller effect plateau voltage of gate charge curve. It is 5.5V for  
IRF6648.  
GRES Delay = 14E-9 / ((10V-5.5V) / 22 ohms) = 14E-9 / 0.2A = 70nS  
The delay time that caused by large gate resistor is much longer than the rise time that  
defined in IRF6648 datasheet. Thus gate resistor delay time will be used to calculate  
MOSFET switching losses.  
Turn ONLOSSES = FOSC x ½ x (GRES Delay) x I x 2VDS = 50kHz x 0.5 x 70nS x 14.25A x 28V  
= 0.7 watts per device  
IRAUDPS1  
www.irf.com  
Page 31 of 35  
- 32 -  
Total Turn ON losses = 0.7 x 8 = 5.6W  
Note: VDS is multiplied by 2 because VDS occurs twice in Push-Pull converters  
Turn OFFLOSSES = FOSC x ½ (GRES Delay) x I x 2VDS = 50kHz x 0.5 x 70nS x 14.25A x 28V =  
0.70 watts per device  
Total Turn ON losses = 0.70 x 8 = 5.6W  
Gate losses = Qg x VGATE x FOSC  
Qg from IRF6648 data sheet is 36nC typical  
Gate losses = 36E-9 x 10 x 50khz = 0.018W per FET  
Total Gate losses = 0.018W x 8 = 0.144W  
Total switching losses = 5.6 + 5.6 + 0.144 = 11.34W  
Output Rectifiers Losses  
+DC rectifier losses = V(DIODE) x I(OUT) = 0.7V x 6.6A = 4.62W per diode  
Total Diode rectifiers for +B and –B = 4.62 x 4 = 18.48 watts  
Efficiency  
Total losses then will be; Transformer losses + MOSFETS losses + switching losses +  
output rectifiers losses + core losses  
Core losses according to material P from Magnetics-Inc data sheet is 2 watts at 50 kHz  
Total transformer losses = Primary winding loses + Secondary winding losses + Core  
Losses 5W +2W + 2W +2 W = 11 watts  
Total MOSFET losses = RDSON losses + Switching losses = 6.09W + 11.34W = 17.43W  
Overall Losses = 11W + 17.43W + 18.48W = 46.91W  
Efficiency = 600 / 600+ 46.91 = 92.74% Therefore meet the efficiency specification  
IRAUDPS1  
www.irf.com  
Page 32 of 35  
- 33 -  
Frequency of oscillation  
From Fig 2, the frequency of oscillation is managed by R1 and C2 values and it shall be  
calculated by the equation below  
FOSC = 1 / R1 x C2 = 50 kHz  
Thus, at 50Khz if R1 is 30k, then C2 will be 470pF, said values as shown on schematic  
Fig 2 (See IR2085 data sheet for more details)  
Selecting Dead-time  
Dead time selection depends on the turn ON and OFF delay of the power MOSFETS  
selected, in this case IRF6648 data sheet shows 16nS for turn ON delay and 28nS for  
turn OFF delay, rise time 29nS and fall time 13nS,  
Therefore dead time required = 16nS + 28nS + 29nS + 13nS = 86nS per phase  
Because this is a push-pull then 86nS are multiplied by two giving 172nS  
Thus, dead time can be programmed according to the 2085 datasheet where dead time  
values are the relationship weight of C versus R.  
Therefore, Fig 2 30K ohms and 470pF gives 170nS of dead time  
Over-Temperature Protection (OTP)  
Thermistor is selected to get 8.2 k ohms at 90OC, it can be readjusted changing R16 or  
R15 and R17 for any other temperature  
Over Current Protection (OCP)  
From Fig3; R47, R48, R49 and R54 can be calculated at any current protection desired  
by the following equation:  
OCP resistor = 0.6V / OCP current  
Example: If OCP desired is 20A  
Then ROCP = 0.6V / 20A = 0.03 ohms  
Thus, R47, R48, R49 and R54 will be 0.06 ohms each one because two of them are in  
parallel  
IRAUDPS1  
www.irf.com  
Page 33 of 35  
- 34 -  
BJT gate driver option  
Notice on schematic Fig 2 and their PCB layout that it is prepared for extra BJT drivers  
Q3-Q6 that in this case they are not populated, this is in case that the customer wants  
more than 4 MOSFETS in parallel for large power outputs applications  
Music Load  
NOTE, All previous calculations were made for continuous sine wave load for the safe  
and reliable design; the average currents and power dissipations actually will be 1/8 of  
power for soft music, ¼ of power for heavy rock music and 3/8 of power with dead metal  
music, and ½ of rated power for subwoofer amplifiers  
Music load Input current calculations  
RMS Input current with constant sine wave outputs at 1 kHz all channels driven:  
IRMS SINE WAVE = 14V/800W = 57A  
I PEAK MUSIC = 57 x 1.4142 = 80A  
ISOFT MUSIC = 57A x 1/8 = 7.1A  
I
ROCK MUSIC = 57 x ¼ = 14.2A  
I HEAVY METAL MUSIC = 57A x 5/8 = 21.3A  
I Subwoofer = 57A x ½ =28A  
IRAUDPS1  
www.irf.com  
Page 34 of 35  
- 35 -  
Revision changes descriptions  
Revision  
Changes description  
Released  
Date  
IRAUDPS1_R3  
IRAUDPS1_R3.1  
IRAUDPS1_R3.2  
IRAUDPS1_R3.3  
January 23, 2009  
March 24, 2009  
April 22, 2009  
Feb 21, 2013  
Reviewed  
Tables 1, 2, 5, 7 Revised for 500W  
Page 30, 50 khz with 50% duty cycle (10us  
turn ON)  
Page 30, number of devices 57A/15A  
Page 31-32, corrected gate drive current  
calculation. Corrected power dissipation  
loss calculation numbers. Corrected  
MOSFET switching loss calculation.  
Corrected efficiency number according to  
new power losses data.  
Page 33, corrected typo of dead-time, ns  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications are subject to change without notice.  
IRAUDPS1  
www.irf.com  
Page 35 of 35  

相关型号:

IRAUDPS1_15

12V System Scalable 250W to1000W Audio Power Supply
INFINEON

IRAUDPS3

Class-D Audio Amplifier
INFINEON

IRAUDPS3_15

Class-D Audio Amplifier
INFINEON

IRB02ABH300X300X1

Data Line Filter, 1 Function(s),
TDK

IRB02ABH300X300X3

Data Line Filter, 1 Function(s),
TDK

IRB02ABH300X300X6

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X1

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X2

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X3

Data Line Filter, 1 Function(s),
TDK

IRB02AH300X300X6

Data Line Filter, 1 Function(s),
TDK

IRB0406

THRU-HOLE INDUCTORS IR Series: Radial Leaded, Low to Medium Current
RFE

IRB0507

THRU-HOLE INDUCTORS IR Series: Radial Leaded, Low to Medium Current
RFE