HYB18T256324F-22 [INFINEON]

256-Mbit GDDR3 DRAM [600MHz]; 256兆GDDR3 DRAM [ 600MHz的]
HYB18T256324F-22
型号: HYB18T256324F-22
厂家: Infineon    Infineon
描述:

256-Mbit GDDR3 DRAM [600MHz]
256兆GDDR3 DRAM [ 600MHz的]

存储 内存集成电路 动态存储器 双倍数据速率
文件: 总80页 (文件大小:1951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.11, April 2005  
HYB18T256324F–16  
HYB18T256324F–20  
HYB18T256324F–22  
256-Mbit GDDR3 DRAM [600MHz]  
RoHS compliant  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 04-2005  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2005.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Under no circumstances may the Infineon Technologies product as referred to in this data sheet be used in  
1. Any applications that are intended for military usage (including but not limited to weaponry), or  
2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining,  
sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical  
Systems"), if  
a) A failure of the Infineon Technologies product can reasonable be expected to - directly or indirectly -  
(i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or  
(ii) Cause the failure of such Critical Systems; or  
b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly -  
(i) Endanger the health or the life of the user of such Critical Systems or any other person; or  
(ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant  
damages to property, whether tangible or intangible).  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
HYB18T256324F–16 HYB18T256324F–20 HYB18T256324F–22  
Revision History:  
Rev. 1.11  
04-2005  
Previous Revision:  
Rev. 1.0  
Page  
2
Subjects (major changes since last revision)  
added disclaimer  
30  
figure 11: note 1 changed  
75  
table 41: added currents for -16  
table 42-44: new values  
79  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Data Sheet  
3
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Table of Contents  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
2.1  
2.2  
2.3  
2.3.1  
2.3.2  
2.4  
2.4.1  
2.4.2  
2.4.3  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ball Definition and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Command Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
State Diagram and Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
State Diagram for One Activated Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Function Truth Table for more than one Activated Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Function Truth Table for CKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3
3.1  
3.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clocks, CKE, Commands and Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Programmable impedance output drivers and active terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
GDDR3 IO Driver and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Self Calibration for Driver and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Dynamic Switching of DQ terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Output impedance and Termination DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Extended Mode Register Set Command (EMRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DLL enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
WR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Termination Rtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Output Driver Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Vendor Code and Revision Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Mode Register Set Command (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Burst length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Burst type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DLL Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Bank / Row Activation (ACT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Writes (WR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Write Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Write - Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Write - Consecutive Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Gapless Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Write with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Write followed by Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Write followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Write with Autoprecharge followed by Read / Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . 44  
Write followed by Precharge on same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Reads (RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Read - Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Read - Basic Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Consecutive Read Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Gapless Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.6  
3.7  
3.7.1  
3.7.2  
3.7.3  
3.7.3.1  
3.7.3.2  
3.7.4  
3.7.5  
3.7.6  
3.7.7  
3.7.8  
3.8  
3.8.1  
3.8.2  
3.8.3  
3.8.3.1  
Data Sheet  
4
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
3.8.3.2  
3.8.3.3  
3.8.4  
3.8.5  
3.8.6  
3.9  
3.9.1  
3.9.2  
3.10  
3.11  
3.12  
3.12.1  
3.12.2  
3.13  
Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Read followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Read followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Read followed by Precharge on the same Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Data Termination Disable (DTERDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
DTERDIS followed by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
DTERDIS followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Precharge (PRE/PREALL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Auto Refresh Command (AREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Self-Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Self-Refresh Entry (SREFEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Self-Refresh Exit (SREFEX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
4
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.7.1  
4.8  
4.9  
4.10  
4.11  
4.11.1  
4.12  
4.13  
4.14  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Recommended Power & DC Operation Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
DC & AC Logic Input Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Differential Clock DC and AC Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Output Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Pin Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Driver current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Driver IV characteristics at 40 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Termination IV Characteristic at 60 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Termination IV Characteristic at 120 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Termination IV Characteristic at 240 Ohms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Operating Current Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Operating Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Summary of timing parameters for –1.6, –2.0 and –2.2 ns speed sorts in DLL on mode . . . . . . . . . 75  
AC Characteristics and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
5.1  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Data Sheet  
5
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Key Timing and Power Supply Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ball description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Command Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Minimum delay from RD/A and WR/A to any other command (to another bank) with concurrent  
Autoprecharge 18  
Table 7  
Table 8  
Table 9  
Function Truth Table I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Function Truth Table II (CKE Table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General Timing Parameters for –1.6, –2.0 and –2.2 speed sorts. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Range of external resistance ZQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Termination types and activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Termination update Keep Out time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Number of Legs used for Terminator and Driver Self Calibration . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
EMRS Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision ID and Vendor Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Vendor Code and Revision ID Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . 30  
MRS Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
ACT Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Mapping of WDQS and DM signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
WR Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
WL / CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
READ Timing Parameters for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
BA1, BA0 precharge bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Precharge Timing Parameters for –1.6, –2.0 and –2.2 speed sorts. . . . . . . . . . . . . . . . . . . . . . . 60  
Autorefresh Timing Parameters for –1.6, –2.0 and –2.2 speed sorts. . . . . . . . . . . . . . . . . . . . . . 61  
Self Refresh Exit Timing Parameter for –1.6, –2.0 and –2.2 speed sorts. . . . . . . . . . . . . . . . . . . 63  
Power Down Exit Timing Parameter for –1.6, –2.0 and –2.2 speed sorts . . . . . . . . . . . . . . . . . . 64  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Operation Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Power & DC Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Differential Clock DC and AC Input conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Capacitances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Programmed Driver IV Characteristics at 40 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Programmed Terminator Characterisitc at 60 Ohm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Programmed Terminator Characterisitics at 120 Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Programmed Terminator Characterisitc at 240 Ohm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Operating Current Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Operating Current Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Timing Parameters for –1.6, –2.0 and –2.2 speed sorts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
HYB18T256324F–16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
HYB18T256324F–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
HYB18T256324F–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
P-FBGA 144 Package Thermal Resitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Data Sheet  
6
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Standard Ballout 256-Mbit GDDR3 DRAM [600MHz]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
State diagram for one bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock, CKE and Command/Address Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Output Driver simplified schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Termination update keep out time after Autorefresh command . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Self Calibration of PMOS and NMOS Legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
ODT Disable Timing during a READ command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10 Extended Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11 Extended Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12 Extended Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 13 Timing of Vendor Code and Revision ID generation on DQ[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 14 Mode Register Set Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 15 Mode Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 16 Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 17 Activating a specific row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 18 Bank Activation timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 19 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 20 Basic Write Burst / DM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 21 Write Burst Basic Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 22 Gapless Write Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 23 Consecutive Write Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 24 Write with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 25 Write followed by Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 26 Write Command followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 27 Write with Autoprecharge followed by Read or Read with Autoprecharge on another bank . . . . . 44  
Figure 28 Write followed by Precharge on same Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 29 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 30 Basic Read Burst Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 31 Read Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 32 Gapless Consecutive Read Bursts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 33 Consecutive Read Bursts with Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 34 Read Command followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 35 Read with Autoprecharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 36 Read followed by Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 37 Read followed by Precharge on the same Bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 38 Data Termination Disable Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 39 DTERDIS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 40 DTERDIS followed by DTERDIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 41 DTERDIS Command followed by READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 42 DTERDIS Command followed by Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 43 Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 44 Precharge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 45 Auto Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 46 Auto Refresh Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 47 Self Refresh Entry Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 48 Self Refresh Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 49 Self Refresh Exit Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 50 Self Refresh Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 51 Power Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 52 Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 53 Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 54 40 Ohm Driver Pull-Down and Pull-Up characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 55 60 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Data Sheet  
7
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Figure 56 120 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 57 240 Ohm Active Termination Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 58 Package Outline FBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Data Sheet  
8
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
256-Mbit GDDR3 DRAM [600MHz]  
HYB18T256324F–16  
HYB18T256324F–20  
HYB18T256324F–22  
1
Overview  
1.1  
Features  
Maximum clock frequency of 600 MHz  
Organization: 2048K x 32 x 4 banks  
4096 rows and 512 columns (128 burst start  
locations) per bank  
Differential clock inputs (CLK and CLK)  
CAS latencies of 5, 6 and 7  
Write latencies of 2, 3, 4  
Fixed burst sequence with length of 4.  
4n prefetch  
Single ended READ strobe (RDQS) per byte.  
RDQS edge-aligned with READ data  
Single ended WRITE strobe (WDQS) per byte.  
WDQS center-aligned with WRITE data  
DLL aligns RDQS and DQ transitions with Clock  
Programmable IO interface including on chip  
termination (ODT)  
Autoprecharge option with concurrent  
autoprecharge support  
4K Refresh (32ms)  
Short RAS to CAS timing for Writes  
t
t
RAS Lockout support  
WR programmable for Writes with Auto-Precharge  
Autorefresh and Self Refresh  
P-TBGA 144 package (11mm × 11mm)  
VDD / VDDQ Voltage (according to Table 1)  
Calibrated output drive. Active termination support.  
Data mask for write commands  
Table 1  
Key Timing and Power Supply Parameters  
Speed Sort  
Power Supply  
CAS latency = 7  
–1.6  
- 2.0  
- 2.2  
2.0 ± 100 mV  
2.2  
Units  
V
V
DD / VDDQ  
2.0 ± 100 mV  
2.0 ± 100 mV  
tCK7 min  
fCK7 max  
tCK6 min  
fCK6 max  
tCK5 min  
fCK5 max  
tACmin  
1.6  
2.0  
ns  
600  
2.0  
500  
2.0  
455  
MHz  
ns  
CAS latency = 6  
CAS latency = 5  
Access Time  
2.2  
500  
500  
455  
MHz  
ns  
2.7  
370  
MHz  
ns  
–0.4  
0.4  
–0.4  
0.4  
–0.45  
0.45  
0.25  
tACmax  
ns  
RDQS-DQ Skew  
tDQSQ  
0.225  
0.225  
ns  
Data Sheet  
9
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Overview  
Table 2  
Ordering Information  
Part Number1)  
Organisation  
VDD / VDDQ (V)  
Clock (MHz) Package  
HYB18T256324F–16  
HYB18T256324F–20  
HYB18T256324F–22  
×32  
2.0  
2.0  
2.0  
600  
500  
455  
P-TBGA 144  
1) HYB: designator for memory components  
256: 256-Mbit density  
32: 32 bit interface  
4: Die Revision  
F: Green Product  
1.2  
General Description  
The Infineon 256-Mbit GDDR3 DRAM [600MHz]is a Read and write accesses to the HYB18T256324F–  
high speed memory device, designed for high [16/20/22] are burst oriented. The burst length is fixed  
bandwidth intensive applications like PC graphics to 4 and the two least significant bits of the burst  
systems. The chip’s quad bank architecture is address are ’Don’t Care’ and internally set to LOW.  
optimized for high speed and achieves a peak Accesses begin with the registration of an ACTIVATE  
bandwidth of 8 Gbyte/s using a 32 bit interface and a command, which is then followed by a READ or WRITE  
maximum system clock of 600 MHz.  
command. The address bits registered coincident with  
the ACTIVATE command are used to select the bank  
and the row to be accessed. The address bits  
registered coincident with the READ or WRITE  
command are used to select the bank and the column  
location for the burst access. Each of the 4 banks  
consists of 4096 row locations and 512 column  
locations. An AUTO PRECHARGE function can be  
combined with READ and WRITE to provide a self-  
timed row precharge that is initiated at the end of the  
burst access. The pipelined, multibank architecture of  
the HYB18T256324F–[16/20/22] allows for concurrent  
operation, thereby providing high effective bandwidth  
by hiding row precharge and activation time.  
HYB18T256324F–[16/20/22] uses a double data rate  
interface and a 4n-prefetch architecture. The GDDR3  
interface transfers two 32 bit wide data words per clock  
cycle to/from the I/O pins. Corresponding to the 4n-  
prefetch a single write or read access consists of a 128  
bit wide, one-clock-cycle data transfer at the internal  
memory core and four corresponding 32 bit wide, one-  
half-clock-cycle data transfers at the I/O pins.  
Single-ended unidirectional Read and Write Data  
strobes are transmitted simultaneously with Read and  
Write data respectively in order to capture data properly  
at the receivers of both the Graphics SDRAM and the  
controller. Data strobes are organized per byte of the  
32 bit wide interface. For read commands the RDQS  
are edge-aligned with data, and the WDQS are center-  
aligned with data for write commands.  
The device is supplied with 2.0 V for output drivers and  
core. (VDD / VDDQ voltages see Table 1)  
The “On Die Termination” interface (ODT) is optimized  
for high frequency digital data transfers and is internally  
controlled. The termination resistor value can be set  
using an external ZQ resistor or disabled through the  
Extended Mode Register.  
The HYB18T256324F–[16/20/22] operates from a  
differential clock (CLK and CLK). Commands  
(addresses and control signals) are registered at every  
positive edge of CLK. Input data is registered on both  
edges of WDQS, and output data is referenced to both The output driver impedance can be set using the  
edges of RDQS.  
Extended Mode Register. It can either be set to ZQ / 6  
(autocalibration) or to 35, 40 or 45 Ohms.  
In this document references to ’the positive edge of  
CLK’ imply the crossing of the positive edge of CLK and Auto Refresh and Power Down with Self Refresh  
the negative edge of CLK. Similarly, the ’negative edge operations are supported.  
of CLK’ refers to the crossing of the negative edge of  
A standard P-TBGA 144 package is used which  
CLK and the positive edge of CLK. References to  
enables ultra high speed data transfer rates and a  
RDQS are to be interpreted as any or all RDQS<3:0>.  
simple upgrade path from former DDR Graphics  
WDQS, DM and DQ should be interpreted in a similar  
SDRAM products.  
fashion.  
Data Sheet  
10  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2
Pin Configuration  
ꢀꢀ  
ꢀꢆ  
ꢀꢄ  
$1ꢅ  
$1ꢅꢀ  
$1ꢄ  
$1ꢀ  
$1ꢆ  
$1ꢄꢉ 6331  
6$$1 6$$1  
7$132$13ꢆ  
6331  
6$$1  
$1ꢄꢇ  
$1ꢅꢆ  
2$137$13ꢅ  
!
"
#
$
%
&
$1ꢁ  
$-ꢆ  
6$$1  
$-$1ꢄꢈ  
6$$1 6$$1  
$1ꢄꢋ  
$1ꢄꢁ  
$1ꢀꢁ  
$1$1ꢋ  
6331 6331 6331  
6$$  
633  
6$$  
633  
6331 6331 6331 $1ꢄꢊ  
$1ꢈ  
2&5  
6$$  
633  
6331  
6331  
633  
6$$  
2&5  
$1ꢀꢋ  
633  
THERM  
633  
THERM  
633  
THERM  
633  
THERM  
$1ꢀꢈ $1ꢀꢊ  
$1ꢀꢇ $1ꢀꢉ  
7$132$13ꢄ  
$1ꢄꢆ $-ꢄ  
$1ꢄꢀ $1ꢄꢄ  
6331  
6331  
6331  
6331  
6331  
633  
6331 6$$1  
6$$1  
6$$1  
6$$1  
6$$1  
6$$1  
6$$  
633  
THERM  
633  
THERM  
633  
THERM  
633  
THERM  
6331 6$$1 $1ꢀꢅ $1ꢀꢄ  
633  
THERM  
633  
THERM  
633  
THERM  
633  
THERM  
6$$1  
6331  
6$$1  
6331  
6331 6$$1  
2$137$13ꢀ  
$-$1ꢀꢀ  
$1$1ꢀꢆ  
'
(
*
633  
THERM  
633  
THERM  
633  
THERM  
633  
THERM  
633  
633  
6$$  
633  
6$$  
633  
2&5  
:1  
$1ꢄꢅ  
62%&  
!
!
!
633  
6$$  
!
!
!
$1ꢉ  
62%&  
2&5  
+
,
!
!
2%3%4  
2!3ꢌ  
"!ꢆ  
#+% 2&5  
#,+  
#3ꢌ  
"!ꢀ  
ꢀꢆ  
!
!
!
#,+ꢌ  
!ꢍ!0  
#!3ꢌ  
7%ꢌ  
ꢀꢀ  
-
ꢀꢁꢁ "!,, 0ꢂ4&"'!ꢃ 4/0 6)%7  
Standard Ballout 256-Mbit GDDR3 DRAM [600MHz]  
Figure 1  
Note:Figure shows top view  
Data Sheet  
11  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.1  
Ball Definition and Description  
Table 3  
Ball  
Ball description  
Type  
Detailed Function  
CLK, CLK  
Input  
Clock: CLK and CLK are differential clock inputs. Address and command inputs are  
latched on the positive edge of CLK. Graphics SDRAM outputs (RDQS, DQs) are  
referenced to CLK. CLK and CLK are not internally terminated.  
CKE  
Input  
Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock and  
input buffers. Taking CKE LOW provides Power Down. If all banks are precharged, this  
mode is called Precharge Power Down and Self Refresh mode is entered if a Autorefresh  
command is issued. If at least one bank is open, Active Power Down mode is entered and  
no Self Refresh allowed. All input receivers except CLK, CLK and CKE are disabled  
during Power Down. In Self Refresh mode the clock receivers are disabled too. Self  
Refresh Exit is performed by setting CKE asynchronously HIGH. Exit of Power Down  
without Self Refresh is accomplished by setting CKE HIGH with a positive edge of CLK.  
The value of CKE is latched asynchronously by Reset during Power On to determine the  
value of the termination resistor of the address and command inputs.  
CKE is not allowed to go LOW during a RD, a RW or a snoop BURST.  
CS  
Input  
Chip Select: CS enables the command decoder when low and disables it when high.  
When the command decoder is disabled, new commands with the exeption of DETERNIS  
are ignored, but internal operations continue. CS is one of the four command balls.  
RAS, CAS,  
WE  
Input  
I/O  
Command Inputs: Sampled at the positive edge of CLK, CAS, RAS, and WE define  
(together with CS) the command to be executed.  
DQ<0:31>  
Data Input/Output: The DQ signals form the 32 bit data bus. During READs the balls are  
outputs and during WRITEs they are inputs. Data is transferred at both edges of RDQS.  
DM<0:3>  
Input  
Input Data Mask: The DM signals are input mask signals for WRITE data. Data is  
masked when DM is sampled HIGH with the WRITE data. DM is sampled on both edges  
of WDQS. DM0 is for DQ<0:7>, DM1 is for DQ<8:15>, DM2 is for DQ<16:23> and DM3  
is for DQ<24:31>. Although DM balls are input-only, their loading is designed to match  
the DQ and WDQS balls.  
RDQS<0:3> Output Read Data Strobes: RDQSx are unidirectional strobe signals. During READs the RDQSx  
are transmitted by the Graphics SDRAM and edge-aligned with data. RDQS have  
preamble and postamble requirements. RDQS0 is for DQ<0:7>, RDQS1 for DQ<8:15>,  
RDQS2 for DQ<16:23> and RDQS3 for DQ<24:31>.  
WDQS<0:3> Input  
Write Data Strobes: WDQS are unidirectional strobe signals. During WRITEs the WDQS  
are generated by the controller and center aligned with data. WDQS have preamble and  
postamble requirements. WDQS0 is for DQ<0:7>, WDQS1 for DQ<8:15>, WDQS2 for  
DQ<16:23> and WDQS3 for DQ<24:31>.  
BA<0:1>  
A<0:11>  
Input  
Input  
Bank Address Inputs: BA select to which internal bank an ACTIVATE, READ, WRITE  
or PRECHARGE command is being applied. BA are also used to distinguish between the  
MODE REGISTER SET and EXTENDED MODE REGISTER SET commands.  
Address Inputs: During ACTIVATE, A0-A11 defines the row address. For  
READ/WRITE, A2-A7 and A9 defines the column address, and A8 defines the auto  
precharge bit. If A8 is HIGH, the accessed bank is precharged after execution of the  
column access. If A8 is LOW, AUTO PRECHARGE is disabled and the bank remains  
active. Sampled with PRECHARGE, A8 determines whether one bank is precharged  
(selected by BA<0:1>, A8 LOW) or all 4 banks are precharged (A8 HIGH). During  
(EXTENDED) MODE REGISTER SET the address inputs define the register settings.  
A<0:11> are sampled with the positive edge of CLK.  
ZQ  
-
ODT Impedance Reference: The ZQ ball is used to control the ODT impedance.  
Data Sheet  
12  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
Table 3  
Ball  
Ball description  
Type  
Detailed Function  
RES  
Input  
Reset pin: The RES pin is a VDDQ CMOS input. RES is not internally terminated. The  
LOW to HIGH transition of the Reset signal is used to latch the CKE value during Power  
On in order to set the value of the termination resistors of the address and command  
inputs. When RES is LOW, all terminations are switched off. The LOW to HIGH transition  
of the RES signal must occur at the beginning of the power up sequence in order to insure  
functionnality.  
Vref  
Supply Voltage Reference: Vref is the reference voltage input.  
Supply Power Supply: Power and Ground for the internal logic.  
VDD, VSS  
V
DDQ, VSSQ  
Supply I/O Power Supply: Isolated Power and Ground for the output buffers to provide improved  
noise immunity.  
NC, RFU  
-
Please do not connect No Connect and Reserved for Future Use balls.  
Data Sheet  
13  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.2  
Functional Block Diagram  
A0-A7,A9, A8/AP, A10-A11  
BA0, BA1  
Address buffer  
A8/AP  
Row Addresses A0-A11, BA0-BA1  
Row Address Buffer  
Column Addresses A2-A7,A9  
Refresh  
Counter  
Column Address Buffer  
CS#  
RAS#  
CAS#  
WE#  
Row Decoder  
Row Decoder  
Row Decoder  
Row Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
RES  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 512  
x 32 bit  
4096 x 512  
x 32 bit  
4096 x 512  
x 32 bit  
4096 x 512  
x 32 bit  
ZQ  
CKE  
CLK  
DLL  
Output Buffers  
DQ8-DQ15  
Input Buffers  
CLK#  
DQ0-DQ7  
DQ16-DQ23  
DQ24-DQ31  
Figure 2  
Functional Block Diagram  
Data Sheet  
14  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.3  
Commands  
2.3.1  
Command Table  
In the following table CKEn refers to the positive edge of CLK corresponding to the clock cycle when the command  
is given to the Graphics SDRAM. CKEn-1 refers to the previous positive edge of CLK. For all command and  
address inputs CKEn is implied.  
All input states or sequences not shown are illegal or reserved.  
Table 4  
Command Overview  
Code  
Operation  
CKE CKE CS RAS CAS WE BA0 BA1 A8  
A2-7 Note  
A9-11  
n-1  
n
Device Deselect  
DESEL  
H
H
H
L
X
H
X
X
H
X
L
H
X
X
X
X
1
Data Terminator Disable DTERDIS H  
H
H
H
H
H
L
L
L
H
H
L
L
H
L
L
H
H
L
X
X
0
1
X
X
0
0
X
X
X
X
1,9  
No Operation  
NOP  
MRS  
H
H
H
Mode Register Set  
OPCODE  
OPCODE  
Extended Mode Register EMRS  
Set  
L
L
Bank Activate  
ACT  
H
H
L
L
H
H
BA BA Row  
Address  
Col.  
1,2  
Read  
RD  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
L
L
L
H
H
L
H
H
L
BA BA  
BA BA  
BA BA  
BA BA  
BA BA  
L
1,3  
1,3  
1,3  
1,3  
1
Read w/ Autoprecharge  
Write  
RD/A  
WR  
H
L
Col.  
Col.  
Col.  
X
Write w/ Autoprecharge  
Precharge  
WR/A  
PRE  
L
H
L
L
Precharge All  
Auto Refresh  
PREALL  
AREF  
L
L
X
X
X
X
X
X
H
X
X
X
1
L
H
X
1,4  
1,5  
Power Down Mode Entry PWDNEN H  
H
L
X
H
X
H
X
H
X
Power Down Mode Exit  
Self Refresh Entry  
Self Refresh Exit  
PWDNEX L  
H
L
X
L
X
L
X
L
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
1,6  
1,7  
1,8  
SREFEN  
SREFEX  
H
L
H
X
X
X
1. X represents “Don’t Care”.  
2. BA0 and BA1 provide bank address, A0 - A11  
provide the row address.  
7. Self Refresh is selected by issuing AREF at the first  
positive CLK edge following the HIGH to LOW  
transition of CKE.  
3. BA0 and BA1 provide bank address, A2- A7, A9 8. First possible valid command after tXSC. During tXSC  
provide the column address, A8/AP controls Auto  
Precharge.  
only NOP or DESEL commands are allowed.  
9. This command is invoked when a Read is issued on  
another DRAM rank placed on the same command  
bus. Cannot be in power-down or self-refresh state.  
The Read command will cause the data termination  
to be disabled. Refer to for timing.  
4. Auto Refresh and Self Refresh Entry differ only by  
the state of CKE  
5. PWDNEN is selected by issuing a DESEL or NOP  
at the first positive CLK edge following the HIGH to  
LOW transition of CKE.  
6. First possible valid command after tXPN. During tXPN  
only NOP or DESEL commands are allowed.  
Abbreviations:  
BA:Bank Address  
Col.:Column Address  
Data Sheet  
15  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.3.2  
Description of Commands  
Table 5  
Description of Commands  
Command Description  
DESEL  
The DESEL function prevents new commands from being executed by the Graphics SDRAM. The  
Graphics SDRAM is effectively deselected. Operations in progress are not affected.  
NOP  
The NOP command is used to perform a no operation to the Graphics SDRAM, which is selected  
(CS is LOW). This prevents unwanted commands from being registered during idle or wait states.  
Operations already in progress are not affected.  
MRS  
EMRS  
ACT  
The Mode Register is loaded via address inputs A0 - A11. For more details see sections  
Chapter 3.5. The MRS command can only be issued when all banks are idle and no bursts are in  
progress. A subsequent executable command cannot be issued until tMRD is met.  
The Extended Mode Register is loaded via address inputs A0 - A11. For more details see section  
Chapter 3.4. The EMRS command can only be issued when all banks are idle and no bursts are in  
progress. A subsequent executable command cannot be issued until tMRD is met.  
The ACT command is used to open (or activate) a row in a particular bank for a subsequent access.  
The value on the BA0 and BA1 inputs selects the bank, and the address provided in inputs A0 - A11  
selects the row. This row remains active (or open) for accesses until a precharge (PRE, RD/A, or  
WR/A command) is issued to that bank. A precharge must be issued before opening a different row  
in the same bank.  
RD  
The RD command is used to initiate a burst read access to an active row. The value on the BA0 and  
BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column  
location. The row will remain open for subsequent accesses. For RD commands the value on A8 is  
set LOW.  
RD/A  
The RD/A command is used to initiate a burst read access to an active row. The value on the BA0  
and BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column  
location. The value on input A8 is set HIGH. The row being accessed will be precharged at the end  
of the read burst. The same individual-bank precharge function is performed like it is described for  
the PRE command. Auto precharge ensures that the precharge is initiated at the earliest valid stage  
within the burst. The user must not issue a new ACT command to the same bank until the precharge  
time (tRP) is completed. This time is determined as if an explicit PRE command was issued at the  
earliest possible time as described in section Chapter 3.10.  
WR  
The WR command is used to initiate a burst write access to an active row. The value on the BA0  
and BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column  
location. The row will remain open for subsequent accesses. For WR commands the value on A8 is  
set LOW.  
Input data appearing on the DQs is written to the memory array depending on the value on the DM  
input appearing coincident with the data. If a given DM signal is registered LOW, the corresponding  
data will be written to the memory; if the DM signal is registered HIGH, the corresponding data inputs  
will be ignored, and a write will not be executed for that byte / column location.  
WR/A  
The WR/A command is used to initiate a burst write access to an active row. The value on the BA0  
and BA1 inputs selects the bank, and the address provided on inputs A2-A7, A9 selects the column  
location. The value on input A8 is set HIGH. The row being accessed will be precharged at the end  
of the write burst. The same individual-bank precharge function is performed which is described for  
the PRE command. Auto precharge ensures that the precharge is initiated at the earliest valid stage  
within the burst. The user is not allowed to issue a new ACT to the same bank until the precharge  
time (tRP) is completed. This time is determined as if an explicit PRE command was issued at the  
earliest possible time as described in section Chapter 3.7.  
Input data appearing on the DQs is written to the memory array depending on the DM input logic  
level appearing coincident with the data. If a given DM signal is registered LOW, the corresponding  
data will be written to the memory; if the DM signal is registered HIGH, the corresponding data inputs  
will be ignored, and a write will not be executed to that byte / column location.  
Data Sheet  
16  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
Table 5  
Description of Commands  
Command Description  
PRE  
The PRE command is used to deactivate the open row in a particular bank. The bank will be  
available for a subsequent row access a specified time (tRP) after the PRE command is issued.  
Inputs BA0 and BA1 select the bank to be precharged. A8/AP is set to LOW. Once a bank has been  
precharged, it is in the idle state and must be activated again prior to any RD or WR commands  
being issued to that bank. A PRE command will be treated as a NOP if there is no open row in that  
bank, or if the previously open row is already in the process of precharging.  
PREALL  
AREF  
The PREALL command is used to deactivate all open rows in the memory device. The banks will  
be available for a subsequent row access a specified time (tRP) after the PREALL command is  
issued. Once the banks have been precharged, they are in the idle state and must be activated prior  
to any read or write commands being issued. The PREALL command will be treated as a NOP for  
those banks where there is no open row, or if a previously open row is already in the process of  
precharging. PREALL is issued by a PRE command with A8/AP set to HIGH.  
The AREF is used during normal operation of the GDDR3 Graphics RAM to refresh the memory  
content. The refresh addressing is generated by the internal refresh controller. This makes the  
address bits “Don’t Care” during an AREF command. The HYB18T256324F–[16/20/22] requires  
AREF cycles at an average periodic interval of tREFI(max)=7.8µs. To improve efficiency a maximum  
number of eight AREF commands can be posted to one memory device (with tRFC from AREF to  
AREF) as described in section Chapter 3.11. This means that the maximum absolute interval  
between any AREF command is 8 x 7.8µs (62.4µs). This maximum absolute interval is to allow the  
GDDR3 Graphics RAM output drivers and internal terminators to recalibrate, compensating for  
voltage and temperature changes. All banks must be in the idle state before issuing the AREF  
command. They will be simultaneously refreshed and return to the idle state after AREF is  
completed. tRFC is the minimum required time between an AREF command and a following  
ACT/AREF command.  
SREFEN  
The Self Refresh function can be used to retain data in the GDDR3 Graphics RAM even if the rest  
of the system is powered down. When entering the self refresh mode by issuing the SREFEN  
command, the GDDR3 Graphics RAM retains data without external clocking. The SREFEN  
command is initiated like an AREF command except CKE is disabled (LOW). The DLL is  
automatically disabled upon entering Self Refresh mode and automatically enabled and reset upon  
exiting Self Refresh. (200 cycles must then occur before a RD command can be issued) The adress,  
command and data terminators remain on input signals except CKE are “Don’t Care”. If two GDDR3  
Graphics RAMs share the same cimmand and address bus, Self Refresh max be entered only for  
the two devices at the sme time.  
SREFEX  
The SREFEX command is used to exit the self refresh mode. The DLL is automatically enabled and  
resetted upon exiting. The procedure for exiting self refresh requires a sequence of commands. First  
CLK and CLK must be stable prior to CKE going from LOW to HIGH. Once CKE is HIGH, the  
GDDR3 Graphics RAM must receive only NOP/DESEL commands until tXSNR is satisfied. This time  
is required for the completion of any internal refresh in progress. A simple algorithm for meeting both  
refresh, DLL requirements and output calibration is to apply NOPs for 200 cycles before applying  
any other command to allow the DLL to lock and the output drivers to recalibrate.  
PWDNEN The PWDNEN command enables the power down mode. It is entered when CKE is set low together  
with a NOP/DESEL. The CKE signal is sampled at the rising edge of the clock. Once the power  
down mode is initiated, all of the receiver circuits except CLK and CKE are gated off to reduce power  
consumption. The DLL remains active (unless disabled before with EMRS). All banks can be set to  
idle state or stay active. During Power Down Mode, refresh operations cannot be performed;  
therefore the refresh conditions of the chip have to be considered and if necessary Power Down  
state has to be left to perform an Autorefresh cycle.  
Data Sheet  
17  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
Table 5  
Description of Commands  
Command Description  
PWDNEX  
DTERDIS  
A CKE HIGH value sampled at a low to high transition of CLK is required to exit power down mode.  
Once CKE is HIGH, the GDDR3 Graphics RAM must receive only NOP/DESEL commands until tXPN  
is satisfied. After tXPN any command can be issued, but it has to comply with the state in which the  
power down mode was entered.  
Data Termination Disable (Bus snooping for RD commands) : The Data Termination Disable  
Command is detected by the device by snooping the bus for RD commands excluding CS. The  
GDDR3 Graphics RAM will disable its Data terminators when a RD command is detected. The  
terminators are disabled starting at CL - 1 clocks after the RD command is detected and the duration  
is 4 clocks. In a two rank system, both DRAM devices will snoop the bus for RD commands to either  
device and both will disable their terminators if a RD command is detected. The command and  
address terminators are always enabled. See Figure 9 for an example of when the data terminators  
are disabled during a RD command.  
Table 6  
Minimum delay from RD/A and WR/A to any other command (to another bank) with concurrent  
Autoprecharge  
From Command  
To Command  
Minimum delay to another bank  
(with concurrent autoprecharge)  
Note  
WR/A  
RD or RD/A  
WR or WR/A  
PRE  
(WL + 2) . tCK + tWTR  
2 . tCK  
tCK  
ACT  
tCK  
RD/A  
RD or RD/A  
WR or WR/A  
PRE  
2 . tCK  
(CL + 4 - WL) . tCK  
tCK  
tCK  
ACT  
Data Sheet  
18  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.4  
State Diagram and Truth Tables  
2.4.1  
State Diagram for One Activated Bank  
The following diagram shows all possible states and transitions for one activated bank. The other three banks of  
the Graphics SDRAM are assumed to be in idle state.  
single bank  
WR  
RD  
ACTIVE  
ACT  
PRE  
WR/A  
RD/A  
PDEN  
PDEX  
MRS  
EMRS  
PDEN  
PDEX  
active  
IDLE  
AUTO  
POWER DOWN  
REFRESH  
precharge  
SREX  
SREN  
SELF  
REFRESH  
all banks  
Figure 3  
State diagram for one bank  
Note:MRS, EMRS, AUTO REFRESH, SELF REFRESH and precharge POWER DOWN are only allowed if all four  
banks are idle.  
Data Sheet  
19  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
2.4.2  
Function Truth Table for more than one Activated Bank  
If there is more than one bank activated in the Graphics submitted command. This table is based on the  
SDRAM, some commands can be performed in parallel assumption that there are no other actions ongoing on  
due to the chip’s multibank architecture. The following bank n or bank m. If there are any actions ongoing on a  
table defines for which commands such a scheme is third bank tRRD, tRTW and tWTR have to be taken always  
possible. All other transitions are illegal. Notes 1-11 into account.  
define the start and end of the actions belonging to a  
Table 7  
Function Truth Table I  
ongoing action on bank n  
Current  
State  
possible action in parallel on bank m  
ACTIVE  
ACTIVATE 1  
ACT, PRE, WRITE, WRITE/A, READ, READ/A 12  
WRITE 2  
ACT, PRE, WRITE, WRITE/A, READ, READ/A13  
WRITE/A 3  
ACT, PRE, WRITE, WRITE/A, READ 14  
READ 4  
ACT, PRE, WRITE, WRITE/A, READ, READ/A15  
READ/A 5  
ACT, PRE, WRITE, WRITE/A, READ, READ/A 15  
PRECHARGE 6  
ACT, PRE, WRITE, WRITE/A, READ, READ/A 12  
PRECHARGE ALL 6  
POWER DOWN ENTRY 7  
ACTIVATE 1  
-
-
IDLE  
ACT  
POWER DOWN ENTRY 7  
AUTO REFRESH 8  
SELF REFRESH ENTRY 7  
MODE REGISTER SET (MRS)9  
EXTENDED MRS 9  
POWER DOWN EXIT 10  
SELF REFRESH EXIT 11  
-
-
-
-
-
-
-
POWER DOWN  
SELF REFRESH  
1. Action ACTIVATE starts with issuing the command 7. During POWER DOWN and SELF REFRESH only  
and ends after tRCD the EXIT commands are allowed  
2. Action WRITE starts with issuing the command and 8. Action AUTO REFRESH starts with issuing the  
ends tWR after the first pos. edge of CLK following command and ends after tRFC  
the last falling WDQS edge; exept for READ, 9. Actions MODE REGISTER SET and EXTENDED  
READ/A. WRITE, WRITE/A ends tWTR after the first  
pos. edge of CLK following the last falling WDQS  
edge.  
MODE REGISTER SET start with issuing the  
command and ends after tMRD  
10. Action POWER DOWN EXIT starts with issuing the  
command and ends after tXPN  
3. Action WRITE/A starts with issuing the command  
and ends tWR after the first positive edge of CLK 11. Action SELF REFRESH EXIT starts with issuing the  
following the last falling WDQS edge; exept for command and ends after tXSC  
READ, READ/A. WRITE, WRITE/A ends tWTR after 12. During action ACTIVATE an ACT command on  
the first pos. edge of CLK following the last falling  
WDQS edge.  
4. Action READ starts with issuing the command and  
another bank is allowed considering tRRD, a PRE  
command on another bank is allowed any time.  
WR, WR/A, RD and RD/A are always allowed.  
ends with the first positive edge of CLK following the 13. During action WRITE an ACT or a PRE command  
last falling edge of RDQS  
on another bank is allowed any time. A new WR or  
WR/A command on another bank must be  
separated by at least one NOP from the ongoing  
WRITE. RD or RD/A are not allowed before tWTR is  
met.  
5. Action READ/A starts with issuing the command  
and ends with the first positive edge of CLK  
following the last falling edge of RDQS  
6. Action PRECHARGE and PRECHARGE ALL start  
with issuing the command and ends after tRP  
Data Sheet  
20  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Pin Configuration  
14. During action WRITE/A an ACT or a PRE command 15. During action READ and READ/A an ACT or a PRE  
on another bank is allowed any time. A new WR or  
WR/A command on another bank has to be  
separated by at least one NOP from the ongoing  
command. RD is not allowed before tWTR is met.  
RD/A is not allowed during an ongoing WRITE/A  
action.  
command on another bank is allowed any time. A  
new RD or RD/A command on another bank has to  
be separated by at least one NOP from the ongoing  
command. A WR or WR/A command on another  
bank has to meet tRTW  
.
2.4.3  
Function Truth Table for CKE  
Table 8  
Function Truth Table II (CKE Table)  
CKE  
n-1  
CKE  
n
CURRENT STATE  
COMMAND  
ACTION  
L
L
H
L
H
L
Power Down  
Self Refresh  
Power Down  
Self Refresh  
All Banks Idle  
Bank(s) Active  
All Banks Idle  
X
stay in Power Down  
stay in Self Refresh  
Exit Power Down  
X
DESEL or NOP  
DESEL or NOP  
DESEL or NOP  
DESEL or NOP  
Auto Refresh  
Exit Self Refresh 5  
Entry Precharge Power Down  
Entry Active Power Down  
Entry Self Refresh  
1. CKEn is the logic step at clock edge n; CKEn-1 was 4. All states and sequences not shown are illegal or  
the state of CKE at the previous clock edge. reserved.  
2. Current state is the state of the GDDR3 Graphics 5. DESEL or NOP commands should be issued on  
RAM immediatly prior to clock edge n.  
3. COMMAND is the command registered at clock  
edge n, and ACTION is a result of COMMAND.  
any clock edges occuring during the tXSR period. A  
minimum of 200 clock cycles is required before  
applying any other valid command.  
Data Sheet  
21  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3
Functional Description  
3.1  
Clocks, CKE, Commands and Addresses  
T#+  
T#(  
T#,  
#,+ꢀ  
#,+  
T)07  
#-$ꢁ  
!$$2ꢁ  
#+%  
6ALID  
6ALID  
6ALID  
$ONgT #ARE  
T)3 T)(  
Figure 4  
Clock, CKE and Command/Address Timings  
Setup and Hold Timing for CKE is equal to CMD and ADDR Setup and Hold Timing. The DLL ensures the  
alignment of DQs and CLK. Therefore the preferred operation mode for high frequencies is DLL on. The DLL  
frequency range is from 600 MHz down to 250 MHz.  
Table 9  
General Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
CAS  
latency  
Symbol  
Limit Values  
–2.0  
Unit  
–1.6  
max  
–2.2  
max  
min  
min  
max  
min  
Clock  
Clock Cycle Time  
7
6
5
7
6
5
tCK7  
tCK6  
tCK5  
fCK7  
fCK6  
fCK5  
tCH  
1.6  
2.0  
3.3  
3.3  
2.0  
2.0  
4.0  
4.0  
2.2  
4.0  
ns  
2.2  
4.0  
ns  
2.7  
4.0  
ns  
System frequency  
300  
300  
600  
500  
250  
250  
500  
500  
250  
250  
250  
0.45  
0.45  
455  
455  
370  
0.55  
0.55  
MHz  
MHz  
MHz  
tCK  
Clock high level width  
Clock low-level width  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCL  
tCK  
Command, CKE and Address Setup and Hold Times  
Address/Command/CKE input setup  
time  
tIS  
0.6  
0.75  
0.75  
ns  
Address/Command/CKE input hold time tIH  
0.6  
0.75  
0.85  
0.75  
0.85  
ns  
Address/Command/CKE input pulse  
width  
tIPW  
0.85  
tCK  
Data Sheet  
22  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.2  
Initialization  
The HYB18T256324F–[16/20/22] must be powered up and initialized in a predefined manner. Operational  
procedures other than those specified may result in undefined operation or permanent damage to the device.  
The following sequence is highly recommended for Power-Up:  
1. Apply power (VDD, VDDQ, VREF). Apply VDD before or at the same time as VDDQ, apply VDDQ before or at the same  
time as VREF. Maintain RES=L and CS=H to ensure that all the DQ ouputs will be in HiZ state, all active  
terminations off and the DLL off. All other pins may be undefined.  
2. Maintain stable conditions for 200 µs minimum for the GDDR3 Graphics RAM to power up.  
3. After clock is stable, set CKE to L. After tATS minimum set RES to high. On the rising edge of RES, the CKE  
value is latched to determine the address and command bus termination value. If CKE is sampled LOW the  
address termination value is set to ZQ / 2. If CKE is sampled HIGH, the address and command bus termination  
is set to ZQ.  
4. After tATH minimum, set CKE to high.  
5. Wait a minimum of 350 cycles to calibrate and update the address and command termination impedances.  
Issue DESELECT on the command bus during these 350 cycles.  
6. Apply a PRECHARGE ALL command, followed by an Extended Mode Register command after tRP is met and  
activate the DLL.  
7. Issue an Mode Register Set command after tMRD is met to reset the DLL and define the operating parameters.  
8. Wait 200 cycles of clock input to lock the DLL. No Read command can be applied during this time. Since the  
impedance calibration is already completed, the DLL mimic circuitry can use the actual programmed driver  
impedance value.  
9. Issue a PRECHARGE ALL command or issue 4 single bank PRECHARGE commands, one to each of the 4  
banks to place the chip in an idle state.  
10. Issue two or more AUTO REFRESH commands to update the driver impedance.  
6$$  
6$$1  
62%&  
T!43 T!4(  
2%3  
#+%  
#,+ꢀ  
#,+  
%-  
!2&  
!2&  
$%3  
0!  
-23  
!ꢁ#ꢁ  
$%3  
0!  
#OMꢁ  
2
T2&#  
MINꢁ ꢂꢃꢃ CYCLES  
T2&#  
T20  
T-2$  
T-2$  
T
MINꢁ ꢅꢆꢃ CYCLES  
MINꢁ ꢂꢃꢃ —S  
20  
6$$ AND  
#,+ STABLE  
-23ꢄ -23 COMMAND  
WITH $,, 2ESET  
0!ꢄ 02%!,, COMMAND  
!2&ꢄ !54/ 2%&2%3( COMMAND  
!ꢁ#ꢁꢄ !NY COMMAND  
%-2ꢄ %-23 COMMAND  
$%3 ꢄ $ESELECT  
$ONgT #ARE  
Figure 5  
Power Up Sequence  
Table 10  
Reset Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
RES to CKE setup time  
RES to CKE hold time  
tATS  
tATH  
10  
10  
10  
10  
10  
10  
ns  
ns  
Data Sheet  
23  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.3  
Programmable impedance output drivers and active terminations  
GDDR3 IO Driver and Termination  
3.3.1  
The GDDR3 SGRAM is equipped with programmable DM<0:3>. The two termination values that are  
impedance output buffers and active terminations. This selectable using EMRS[3:2] are ZQ / 4 and ZQ / 2.  
allows the user to match the driver impedance to the  
system impedance.  
The value of ZQ is also used to calibrate the internal  
address command termination resistors. The inputs  
To adjust the impedance of DQ<0:31> and terminated in this manner are A<0:11>, CKE, CS, RAS,  
RDQS<0:3> , an external precision resistor (ZQ) is CAS, WE. The two termination values that are  
connected between the ZQ pin and VSS. The value of selectable upon power up (CKE latched a the LOW to  
the resitor must be six times the value of the desired HIGH transition of RES) are ZQ/2 and ZQ.  
impedance. For example, a 240resistor is required  
for an output impedance of 40. The range of ZQ is  
The signals RES and CLK/CLK are not internally  
terminated.  
210to 270Ω, giving an output impedance range of  
If no resistance is connected to ZQ, an internal default  
35to 45(one sixth the value of ZQ within 10%).  
value of 240will be used. In this case, no calibration  
RES, CLK and CLK are not internally terminated.  
will be performed.  
The value of ZQ is used to calibrate the internal DQ  
termination resistors of DQ<0:31>, WDQS<0:3> and  
VDDQ  
ZQ/4 or ZQ/2  
Terminator when  
Read to  
receiving  
other Rank  
Output Data  
Read Data  
Enable  
DQ  
ZQ/6 Driver  
when transmitting  
VSSQ  
Figure 6  
Output Driver simplified schematic  
Table 11  
Range of external resistance ZQ  
Symbol  
Parameter  
min  
nom  
max  
Unit  
Notes  
External resistance value  
ZQ  
210  
240  
270  
Table 12  
Ball  
Termination types and activation  
Termination type  
No termination  
Add / CMDs  
DQ  
Termination activation  
CLK, CLK, RDQS<0:3>, ZQ, RES  
CKE, CS, RAS, CAS, WE, BA<0:1>, A<0:11>  
DM<0:3>, WDQS<0:3>,  
Always ON  
Always ON  
DQ<0:31>  
DQ  
CMD bus snooping  
Data Sheet  
24  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.3.2  
Self Calibration for Driver and Termination  
#,+ꢀ  
#,+  
#OMꢁ  
!DDꢁ  
$1  
!2&  
./0  
!2&ꢂ !UTOREFRESH  
$ONgT #ARE  
T+/  
+EEP /UT TIME  
Figure 7  
Table 13  
Parameter  
Termination update keep out time after Autorefresh command  
Termination update Keep Out time  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
10 10 10  
Termination update Keep Out time  
tKO  
ns  
To guarantee optimum driver impedance after power-up, the GDDR3 SGRAM needs 350 cycles after the clock is  
applied and stable to calibrate the impedance upon power-up. The user can operate the part with fewer than 350  
cycles, but optimal output impedance will not be guaranteed.  
The GDDR3 Graphics RAM proceeds in the following manner for Self Calibration :  
The PMOS device is calibrated against the external ZQ resistor value (Figure 8). First one PMOS leg is calibrated  
against ZQ. The number of legs used for the terminators ( DQ and ADD/CMD) and the PMOS driver is represented  
in Table 14. Next, one NMOS leg is calibrated against the already calibrated PMOS leg. The NMOS driver uses  
6 NMOS legs.  
Table 14  
Number of Legs used for Terminator and Driver Self Calibration  
Termination  
CKE (at RES)  
Number of Legs Notes  
Terminator  
ADD / CMD  
DQ  
0
ZQ/2  
ZQ  
2
1
1
EMRS[3:2]  
00  
10  
11  
Disabled  
ZQ/4  
0
4
2
6
6
1
ZQ/2  
Driver  
PMOS  
NMOS  
ZQ/6  
ZQ/6  
Note:EMRS[3:2] = 00 disables the ADD and CMD terminations as well.  
Data Sheet  
25  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
Figure 8 represents a simplified schematic of the calibration circuits. First, the strength control bits are adjusted  
in such a way that the VDDQ voltage is divided equaly between the PMOS device and the ZQ resistor. The best bit  
pattern will cause the comparator to switch the PMOS Match signal output value. In a second step, the NFET is  
calibrated against the already calibrated PFET. In the same manner, the best control bit combination will cause  
the comparator to switch the NMOS Match signal output value.  
VDDQ  
VDDQ  
NMOS  
Calibration  
Strength  
VSSQ  
Control [2:0]  
PMOS  
Calibration  
Match  
VDDQ / 2  
Strength  
Control [2:0]  
ZQ  
Match  
VDDQ / 2  
VSSQ  
VSSQ  
Figure 8  
Self Calibration of PMOS and NMOS Legs  
3.3.3  
Dynamic Switching of DQ terminations  
The GDDR3 Graphics RAM will disable its data terminators when a READ or DTERDIS command is detected. The  
terminators are disabled starting at CL - 1 Clocks after the READ / DTERDIS command is detected and the  
duration is 4 clocks. In a two rank system, both devices will snoop the bus for a READ / DTERDIS command to  
either device and both will disable their terminators if a READ / DTERDIS command is detected. The address and  
command terminators are always enabled.  
Data Sheet  
26  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
#,+ꢀ  
#,+  
#OM  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
!DDRꢂ  
" ꢁ #  
#!3 LATENCY ꢌ ꢈ  
2$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
$1  
4ERMINATION  
$ATA 4ERMINATIONS ARE DISABLED  
$Xꢍ  
$ATA FROM " ꢁ #  
" ꢁ #ꢍ "ANK ꢁ #OLUMN ADDRESS  
2$ꢍ 2%!$  
.ꢁ$ꢍ ./0 OR $ESELECT  
#OMꢂꢍ #OMMAND  
!DDRꢂꢍ !DDRESS " ꢁ #  
$ONgT #ARE  
Figure 9  
ODT Disable Timing during a READ command  
3.3.4  
Output impedance and Termination DC Electrical Characteristics  
The Driver and Termination impedances are determined by applying VDDQ/2 nominal (1.0 V) at the corresponding  
input / output and by measuring the current flowing into or out of the device. VDDQ is set to the nominal value of  
2.0 V. (see Table 1)  
I
OH is the current flowing out of DQ when the Pull-Up transistor is activated and the DQ termination disabled.  
IOLis the current flowing into DQ when the Pull-Down transistor is activated and the DQ termination disabled.  
TCAH(ZQ) is the current flowing out of the Termination of Commands and Addresses for a ZQ termination value.  
I
Table 15  
DC Electrical Characteristics  
Parameter  
Nom.  
240  
Unit  
Notes  
ZQ Value  
min  
max  
25.0  
25.0  
4.2  
IOH  
ZQ/6  
ZQ/6  
ZQ  
20.5  
20.5  
3.4  
mA  
mA  
mA  
1
1
1
IOL  
ITCAH(ZQ)  
Note:1: Measurement performed with VDDQ =2.0 V (nominal see Table 1) and by applying VDDQ/2 (1.0 V) at the  
corresponding Input / Output.  
0°C TC 85°C.  
Data Sheet  
27  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.4  
Extended Mode Register Set Command (EMRS)  
The Extended Mode Register is used to set the output  
driver impedance value, the termination impedance  
value, the Write Recovery time value for Write with  
Autoprecharge. It is used as well to enable/disable the  
DLL, to issue the Vendor ID and to enable/disable the  
Low Power mode. There is no default value for the  
Extended Mode Register. Therefore it must be written  
after power up to operate the GDDR3 Graphics RAM.  
The Extended Mode Register can be programmed by  
performing a normal Mode Register Set operation and  
setting the BA0 bit to HIGH. All other bits of the EMR  
register are reserved and should be set to LOW.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
2!3ꢀ  
#!3ꢀ  
The Extended Mode Register must be loaded when all  
banks are idle and no burst are in progress. The  
controller must wait the specified time tMRD before  
initiating any subsequent operation).  
7%ꢀ  
!ꢁꢂ!ꢃꢃ  
"!ꢁ  
The timing of the EMRS command operation is  
equivalent to the timing of the MRS command  
operation.  
#/$  
#/$ꢄ #ODE TO BE LOADED INTO  
THE REGISTER  
$ONgT #ARE  
"!ꢃ  
Figure 10 Extended Mode Register Bitmap  
!ꢄ  
!ꢅ  
!ꢆ  
!ꢇ  
!ꢈ  
!ꢉ  
!ꢀ  
!ꢁ  
"!ꢀ  
"!ꢁ  
!ꢀꢀ  
,0  
!ꢀꢁ  
6
!ꢂ  
!ꢃ  
2&5  
$,,  
T72!  
2TT  
$ATA :  
/UTPUT $RIVER  
)MPEDANCE  
$,,  
%NABLE  
!ꢀꢀ  
,OW 0OWER  
!ꢀ  
!ꢁ  
!ꢅ  
!ꢆ  
!ꢇ  
T72!  
$ISABLE  
%NABLE  
!UTOCAL  
ꢈꢆ /HM ꢀꢌ  
ꢇꢁ /HM ꢀꢌ  
ꢇꢆ /HM ꢀꢌ  
%NABLE  
$ISABLE  
!ꢀꢁ 6ENDOR )$  
/FF  
/N  
!ꢈ !ꢉ  
4ERMINATION  
/$4 DISABLED  
2&5  
:1 ꢊ ꢇ  
:1 ꢊ ꢉ  
ꢋ$EFAULTꢌ ꢉꢌ  
Figure 11 Extended Mode Register Bitmap  
1. Autocalibration is not supported for these settings.  
2. Default termination values at Power Up.  
Data Sheet  
28  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3. The ODT disable function disables all terminators on th device.  
4. If the user activates bits in an extended mode register in an optional field, either the optional field is activated  
(if option implemented on the device) or no action is taken by the device (if ioption not implemented).  
5. WR (write recovery time for write with autoprecharge) in clock cycles is calculated by dividing tWR (in ns) and  
rounding up to the next integer (WR[cycles]=tWR[ns]/tCK[ns]). The mode register must be programmed to this  
value.  
#,+ꢀ  
#,+  
#OMMAND  
0!  
./0  
%-23  
./0  
./0  
!ꢁ#ꢁ  
T20  
T-2$  
!ꢁ#ꢁꢂ !NY COMMAND  
$ONgT #ARE  
%-23ꢂ %XTENDED -23 COMMAND  
0!ꢂ 02%!,, COMMAND  
Figure 12 Extended Mode Register Set Timing  
Table 16  
EMRS Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
min max min max min max  
Unit  
Notes  
–1.6  
–2.2  
Mode Register Set cycle time  
tMRD  
5
4
4
tCK  
3.4.1  
DLL enable  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization and upon  
returning to normal operation after having disabled the DLL. (When the device exits self-refresh mode, the DLL is  
enabled automatically). Anytime the DLL is enabled, 200 cycles must occur before a READ command can be  
issued.  
3.4.2  
WR  
The WR parameter is programmed using the register bits A4 and A5. This integer parameter defines as a number  
of clock cycles the Write Recovery time in a Write with Autoprecharge operation.  
The following inequality has to be complied with : WR * tCK tWR, where tCK is the clock cycle time as defined in  
Table 8 and tWR the Write Recovery time as defined in Table 23.  
Note:Refer to Figure 3.7.4 for more details.  
3.4.3  
Termination Rtt  
The data termination, Rtt , is used to set the value of the internal terminaton resistors. The GDDR III DRAM  
supports ZQ / 4 and ZQ / 2 termination values. The termination may also be disabled for testing and other  
purposes.  
3.4.4  
Output Driver Impedance  
The Output Driver Impedance extended mode register is used to set the value of the data output driver impedance.  
When the autocalibration is used, the output driver impedance is set nominally to ZQ / 6.  
Data Sheet  
29  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.4.5  
Low Power  
When the Low Power extended mode register is set, the device enters a low power mode of operation. This mode  
is not enabled for the HYB18T256324F–[16/20/22]. Setting this bit to HIGH will have no effect on the behavior of  
the GDDR3 DRAM.  
3.4.6  
Vendor Code and Revision Identification  
The Manufacturer Vendor Code is selected by issuing an Extended Mode Register Set command with bit A10 set  
to 1 and bits A0-A9 and A11 set to the desired value. When the Vendor Code function is enabled the GDDR3  
DRAM will provide the Infineon vendor code on DQ[3:0] and the revision identification on DQ[7:4]. The code will  
be driven onto the DQ bus after tRIDon following the EMRS command that sets A10 to 1. The Vendor Code and  
Revision ID will be driven on DQ[7:0] until a new EMRS command is issued with A10 set back to 0. After tRDoff  
following the second EMRS command, the data bus is driven back to HIGH. This second EMRS command must  
be issued before initiating any subsequent operation. Violating this requirement will result in unspecified operation.  
Table 17  
Revision ID and Vendor Code  
Revision Identification  
Infineon Vendor Code  
DQ[7:4]  
0001  
DQ[3:0]  
0010  
Note:Please refer to Revision Release Note for Revision ID value  
ꢄꢃ  
#,+ꢀ  
#,+  
%-23  
!DD  
%-23  
!DD  
#OMꢂ  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
!;ꢌꢍꢃ=ꢎ  
!ꢄꢄ  
!ꢄꢃ  
T
T
2)$ON  
2)$OFF  
2$13  
$1;ꢊꢍꢃ=  
6ENDOR #ODE AND 2EVISION )$  
%-23ꢍ %XTENDED -ODE 2EGISTER 3ET #OMMAND  
!DDꢍ  
.ꢁ$ꢍ  
!DDRESS  
./0 OR $ESELECT  
$ONgT #ARE  
Figure 13 Timing of Vendor Code and Revision ID generation on DQ[7:0]  
Table 18  
Vendor Code and Revision ID Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
EMRS to DQ on time  
EMRS to DQ off time  
tRIDon  
tRIDoff  
20  
20  
20  
20  
20  
20  
ns  
ns  
Data Sheet  
30  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.5  
Mode Register Set Command (MRS)  
The mode register stores the data for controlling the  
operating modes of the memory. It programs read  
latency, test mode, DLL Reset and the value of the  
write latency. There is no default value for the mode  
register; therefore it must be written after power up to  
operate the GDDR3 Graphics RAM. During a Mode  
Register Set command the address inputs are sampled  
and stored in the mode register.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
t
MRD must be met before any command can be issued  
to the Graphics SDRAM. The Mode Register contents  
can only be set or changed when the Graphics SDRAM  
is in idle state.  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢃ  
"!ꢁ  
#/$  
"!ꢃ  
#/$ꢄ #ODE TO BE LOADED INTO  
THE REGISTER  
$ONgT #ARE  
Figure 14 Mode Register Set Command  
!ꢄ  
!ꢅ !ꢆ  
!ꢇ  
!ꢈ  
"4  
!ꢉ  
!ꢁ  
",  
!ꢀ  
"!ꢁ "!ꢀ !ꢁꢁ !ꢁꢀ !ꢂ  
!ꢃ  
7,  
7,  
$,, 4-  
2EAD ,ATENCY  
"URST ,ENGTH  
!
7RITE ,ATENCY  
!ꢁꢁ !ꢁꢀ !ꢂ  
!ꢁ !ꢀ ",  
!ꢉ  
4ESTMODE  
!ꢄ  
MODE  
2&5  
.ORMAL  
ALL OTHERS  
4ESTMODE  
2EAD ,ATENCY  
!ꢅ !ꢆ !ꢇ ,ATENCY  
ALL OTHERS  
2&5  
"URST 4YPE  
"4  
$,, 2ESET  
!ꢄ  
!ꢃ  
2&5  
SEQUENTIAL  
2&5  
.O  
9ES  
ALL OTHERS  
2&5  
Figure 15 Mode Register Bitmap  
Note:The DLL Reset command is self-clearing  
Data Sheet  
31  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
#,+ꢀ  
#,+  
#OMꢁ  
0!  
./0  
-23  
./0  
./0  
!ꢁ#ꢁ  
./0  
2$  
T-2$  
T20  
T-2$2  
-23ꢂ -23 COMMAND  
0!ꢂ 02%!,, COMMAND  
!ꢁ#ꢁꢂ !NY OTHER COMMAND AS 2%!$  
2$ꢂ 2%!$ COMMAND  
$ONgT #ARE  
Figure 16 Mode Register Set Timing  
Table 19  
MRS Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
Mode Register Set cycle time  
tMRD  
5
4
4
tCK  
tCK  
1, 2  
1
Mode Register Set to READ timing  
tMRDR  
15  
12  
12  
1. This value of tMRD applies only to the case where the  
“DLL reset” bit is not activated.  
2. tMRD is defined from MRS to any other command as READ.  
3.5.1  
Burst length  
Read and Write accesses to the GDDR3 Graphics RAM are burst oriented with burst length 4. This value must be  
programmed using the Mode Register Set command (A0 .. A2). The burst length determines the number of column  
locations that can be accessed for a given READ or WRITE command.  
When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected.  
All accesses for that burst take place within this block if a boundary is reached. The block is uniquely selected by  
A2-Ai where Ai is the most significant bit for a given configuration. The starting location within this block is  
determined by the two least significant bits A0 and A1 which are set internally to the fixed value of zero each.  
Reserved states should not be used, as unknow operation or incompatibility with future versions may result.  
3.5.2  
Burst type  
Accesses within a given bank must be programmed to be sequential. This is done using the Mode Register Set  
command (A3) . This device does not support the burst interleave mode.  
Table 20  
Burst Type  
Burst Length  
Starting Column address  
Order of accesses within the burst  
Type = Sequential  
4
A1 A0  
x x  
0-1-2-3  
The value applied at the balls A0 and A1 for the column address is “Don’t care”.  
Data Sheet  
32  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.5.3  
CAS Latency  
The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability  
of the first bit of output data as shown on Figure 31. The latency can be set to 5 to 7 clocks as shown in Figure 15.  
If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available nominally  
concident with clock edge n+m. Refer to Appendix, Figure 42, for values of operating frequencies at which each  
CAS latency setting can be used.  
Reserved states should not be used as unknown operation or incompatibility with future versions may result.  
3.5.4  
Write Latency  
The WRITE latency, WL, is the delay, in clock cycles, between the registration of a WRITE command and the  
availability of the first bit of input data as shown in Figure 21. WL can be set from 2 to 4 clocks depending on the  
operating frequency. Setting the WRITE latency to 2 or 3 clocks will cause the device to enable the data input  
receivers on all ACT commands.  
3.5.5  
Test mode  
The normal operating mode is selected by issuing a Mode Register Set command with bit A7 set to zero and bits  
A0-A6 and A8-A11 set to the desired value.  
3.5.6  
DLL Reset  
The normal operating mode is selected by issuing a Mode Register Set command with bit A8 set to zero and bits  
A0-A7 and A9-A11 set to the desired values. A DLL Reset is initiated by issuing a Mode Register Set command  
with bit A8 set to one and bits A0-A7 and A9-A11 set to the desired values. The GDDR3 SGRAM returns  
automatically in the normal mode of operations once the DLL reset is completed.  
Data Sheet  
33  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.6  
Bank / Row Activation (ACT)  
Before a READ or WRITE command can be issued to  
a bank, a row in that bank must be opened. This is  
accomplished via the ACT command, which selects  
both the bank and the row to be activated.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
After opening a row by issuing an ACT command, a  
READ or WRITE command may be issued after tRCD to  
that row.  
A subsequent ACT command to a different row in the  
same bank can only be issued after the previous active  
row has been closed (precharged). The minimum time  
interval between successive ACT commands to the  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
same bank is defined by tRC  
.
A subsequent ACT command to another bank can be  
issued while the first bank is being accessed, which  
results in a reduction of total row-access overhead. The  
minimum time interval between successive ACT  
commands to different banks is defined by tRRD  
.
There is a minimum time tRAS between opening and  
closing a row.  
!ꢁꢂ!ꢃꢃ  
2!  
"!  
"!ꢁꢂ"!ꢃ  
2!ꢄ 2OW !DDRESS  
"!ꢄ "ANK !DDRESS  
$ONgT #ARE  
Figure 17 Activating a specific row  
#,+ꢀ  
#,+  
#OMꢂ  
!#4  
2OW  
"ꢂ9  
2ꢁ7  
#OL  
02%  
!ꢆ  
!#4  
2OW  
"ꢂ9  
!#4  
2OW  
"ꢂ8  
2OWꢈ 2OW !DDRESS  
!ꢃꢄ!ꢅꢅ  
#OLꢈ #OLUMN !DDRESS  
"ꢂ8ꢈ "ANK 8  
"!ꢃꢇ "!ꢅ  
"ꢂ9  
"ꢂ9  
"ꢂ9ꢈ "ANK 9  
2ꢁ7ꢈ 2%!$ OR 72)4% COMMAND  
02%ꢈ 02%#(!2'% COMMAND  
!#4ꢈ !#4)6!4% COMMAND  
T2#$  
T2!3  
T2#  
T22$  
$ONgT #ARE  
Figure 18 Bank Activation timing  
Data Sheet  
34  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
Table 21  
ACT Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit Notes  
–1.6  
–2.2  
min max  
min max  
min max  
Row Cycle Time  
Row Active Time  
tRC  
37.2  
37.2  
39.6  
ns  
tRAS  
tRRD  
24.0 8 x tREFI 24.0 8 x tREFI 26.2 8 x tREFI ns  
ACT(a) to ACT(b) Command  
period  
8.0  
8.0  
8.8  
ns  
ns  
ns  
Row to Column Delay Time for  
Reads  
tRCDRD  
tRCDWR  
16.0  
16.0  
17.5  
Row to Column Delay Time for  
Writes  
tRCDWR(min) = tRCDRD(min) - (WL + 1) x tCK(min)  
3.7  
Writes (WR)  
Write Basic Information  
3.7.1  
Write bursts are initiated with a WR command, as  
shown in Figure 19. The column and bank addresses  
are provided with the WR command, and Auto  
Precharge is either enabled or disabled for that access.  
The length of the burst initiated with a WR command is  
always four. There is no interruption of WR bursts. The  
two least significant address bits A0 and A1 are ’Don’t  
Care’.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
2!3ꢀ  
For WR commands with Autoprecharge the row being  
accessed is precharged tWR/A after the completion of  
the burst. If tRAS(min) is violated the begin of the internal  
Autoprecharge will be performed one cycle after  
t
RAS(min) is met. tWR/A can be programmed in the Mode  
#!3ꢀ  
Register. Choosing high values for tWR/A will prevent the  
chip to delay the internal Autoprecharge in order to  
meet tRAS(min).  
7%ꢀ  
During WR bursts data will be registered with the edges  
of WDQS. The write latency can be programmed during  
Extended Mode Register Set. The first valid data is  
registered with the first valid rising edge of WDQS  
following the WR command. The externally provided  
WDQS must switch from HIGH to LOW at the beginning  
of the preamble. There is also a postamble requirement  
before the WDQS returns to HIGH. The WDQS signal  
can only transition when data is applied at the chip input  
and during pre- and postambles.  
!ꢁꢂ!ꢃꢄ !ꢅ  
#!  
!ꢆꢄ !ꢇ  
!ꢇꢆꢂ!ꢇꢇ  
!ꢉ  
!0  
"!  
t
DQSS is the time between WR command and first valid  
"!ꢆꢂ"!ꢇ  
rising edge of WDQS. Nominal case is when WDQS  
edges are aligned with edges of external CLK.  
Minimum and maximum values of tDQSS define early  
and late WDQS operation. Any input data will be  
ignored before the first valid rising WDQS transition.  
!0ꢈ !UTO0RECHARGE  
#!ꢈ #OLUMN !DDRESS  
"!ꢈ "ANK !DDRESS  
$ONgT #ARE  
t
DQSL and tDQSH define the width of low and high phase  
Figure 19 Write Command  
of WDQS. The sum of tDQSL and tDQSH has to be tCK.  
Data Sheet  
35  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
Back to back WR commands are possible and produce Setup and hold time for incoming DQs and DMs relative  
a continuous flow of input data. There must be one to the WDQS edges are specified as tDS and tDH. DQ  
NOP cycle between two back to back WR commands.  
and DM input pulse width for each input is defined as  
DIPW. The input data is masked if the corresponding DM  
signal is high.  
t
Any WR burst may be followed by a subsequent RD  
command. Figure 3.7.5 shows the timing requirements  
for a WR followed by a RD. A WR may also be followed All timing parameters are defined with graphics DRAM  
by a PRE command to the same bank. tWR has to be terminations on.  
met as shown in Figure 3.7.8.  
Table 22  
WDQS  
Mapping of WDQS and DM signals  
Data mask signal  
Controlled DQs  
DQ0 - DQ7  
WDQS0  
WDQS1  
WDQS2  
WDQS3  
DM0  
DM1  
DM2  
DM3  
DQ8 - DQ15  
DQ16 - DQ23  
DQ24 - DQ31  
#,+ꢅ  
#,+  
T$133  
NOMINAL 7$13  
T$13  
T$13  
T$13,  
T7034  
T702%  
(
(
T$3 T$(  
T$3 T$(  
0REAMBLE  
0OSTAMBLE  
7$13  
$1  
T$)07  
$ꢁ  
$ꢂ  
$ꢃ  
$ꢄ  
T$3  
T$(  
$-X  
T$)07  
$ATA MASKED  
$ATA MASKED  
MINꢆT$133  
EARLY 7$13  
7$13  
MAXꢆT$133ꢇ  
LATE 7$13  
7$13  
$ONgT #ARE  
$-Xꢀ 2EPRESENTS ONE $- LINE  
Figure 20 Basic Write Burst / DM Timing  
Note:: WDQS can only transition when data is applied at the chip input and during pre- and postambles  
Data Sheet  
36  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
Table 23  
WR Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
min max min max min max  
Unit  
Notes  
–1.6  
–2.2  
1)  
CAS(a) to CAS(b) Command period  
tCCD  
2
2
2
tCK  
Write Cycle Timing Parameters for Data and Data Strobe  
Write command to first WDQS latching tDQSS  
transition  
WL - WL  
0.25 +0.25 0.25 +0.25 0.25 +0.25  
WL - WL  
WL - WL  
tCK  
ns  
ns  
tCK  
2)  
2)  
Data-in and Data Mask to WDQS Setup tDS  
Time  
0.35  
0.35  
0.45  
0.375 —  
0.375 —  
0.375 —  
0.375 —  
Data-in and Data Mask to WDQS Hold tDH  
Time  
Data-in and DM input pulse width (each tDIPW  
0.45  
0.45  
input)  
3)  
3)  
WDQS input low pulse width  
WDQS input high pulse width  
WDQS Write Preamble Time  
WDQS Write Postamble Time  
Write to Read Command Delay  
Write Recovery Time  
tDQSL  
tDQSH  
tWPRE  
tWPST  
tWTR  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
tCK  
tCK  
0.75 1.25 0.75 1.25 0.75 1.25 tCK  
0.75 1.25 0.75 1.25 0.75 1.25 tCK  
2)4)  
2)4)  
6.0  
6.0  
6.6  
ns  
ns  
tWR  
11.0  
11.0  
11.0  
1) tCCD is either for gapless consecutive writes or gapless consecutive reads  
2) Timing parameters defined with Graphics DRAM terminations on.  
3) tDQSL. and tDQSH apply for the Write preamble and postamble as well.  
4) tWTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQSx  
signal  
Data Sheet  
37  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.2  
Write - Basic Sequence  
#,+ꢀ  
#,+  
#OM  
72  
"ꢂ#  
.ꢂ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
!DDRꢁ  
7, ꢌ ꢅ  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
7, ꢌ ꢇ  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
#OM  
72  
"ꢂ#  
.ꢂ$  
./0  
./0  
./0  
./0  
./0  
./0  
./0  
!DDRꢁ  
7, ꢌ ꢅ  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
7, ꢌ ꢇ  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
" ꢂ #ꢍ "ANK ꢂ #OLUMN ADDRESS  
72ꢍ 72)4%  
#OMꢁꢍ #OMMAND  
!DDRꢁꢍ !DDRESS " ꢂ #  
./0ꢍ .O /PERATION  
$%3ꢍ $ESELECT  
$ꢀꢍ  
$ATA TO " ꢂ #  
7RITE ,ATENCY  
7,ꢍ  
.ꢂ0ꢍ ./0 OR $%3  
$ONgT #ARE  
Figure 21 Write Burst Basic Sequence  
1. Shown with nominal value of tDQSS.  
2. WDQS can only transition when data is applied at the chip input and during pre- and postambles.  
3. When NOPs are applied on the command bus, the WDQS and the DQ busses remain stable High.  
4. When DESs are applied on the command bus, the status of the WDQS and DQ busses is unknown.  
Data Sheet  
38  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.3  
Write - Consecutive Bursts  
Gapless Bursts  
3.7.3.1  
#,+ꢂ  
#,+  
#OMꢄ  
!DDRꢄ  
72  
.ꢃ$  
72  
.ꢃ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
"ꢃ#X  
"ꢃ#Y  
7, ꢀ ꢁ  
7$13  
$1  
$Xꢅ $Xꢆ $Xꢁ $Xꢇ $Yꢅ $Yꢆ $Yꢁ $Yꢇ  
7, ꢀ ꢇ  
7$13  
$1  
$Xꢅ $Xꢆ $Xꢁ $Xꢇ $Yꢅ $Yꢆ $Yꢁ $Yꢇ  
7, ꢀ ꢈ  
7$13  
$1  
$Xꢅ $Xꢆ $Xꢁ $Xꢇ $Yꢅ $Yꢆ $Yꢁ $Yꢇ  
$Xꢂꢎ  
$Yꢂꢎ  
$ATA TO " ꢃ #X  
$ATA TO " ꢃ #Y  
72ꢎ  
72)4%  
" ꢃ #Xꢎ "ANK ꢃ #OLUMN ADDRESS X  
" ꢃ #Yꢎ "ANK ꢃ #OLUMN ADDRESS Y  
$%3ꢎ $ESELECT  
#OMꢄꢎ #OMMAND  
.ꢃ$ꢎ  
./0 ꢃ $ESELECT  
7,ꢎ  
7RITE ,ATENCY  
!DDRꢄꢎ !DDRESS " ꢃ #  
$ONgT #ARE  
Figure 22 Gapless Write Bursts  
1. Shown with nominal value of tDQSS  
2. The second WR command may be either for the same bank or another bank  
3. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
Data Sheet  
39  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.3.2  
Bursts with Gaps  
ꢄꢃ  
#,+ꢀ  
#,+  
#OM  
72  
.ꢁ$  
.ꢁ$  
72  
.ꢁ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
!DDRꢂ  
"ꢁ#X  
"ꢁ#Y  
7, ꢍ ꢅ  
7$13  
$1  
$Xꢃ $Xꢄ $Xꢅ $Xꢆ  
$Yꢃ $Yꢄ $Yꢅ $Yꢆ  
7, ꢍ ꢆ  
7$13  
$1  
$Xꢃ $Xꢄ $Xꢅ $Xꢆ  
$Yꢃ $Yꢄ $Yꢅ $Yꢆ  
7, ꢍ ꢇ  
7$13  
$1  
$Xꢃ $Xꢄ $Xꢅ $Xꢆ  
$Yꢃ $Yꢄ $Yꢅ $Yꢆ  
#OMꢂꢎ #OMMAND  
" ꢁ #Xꢎ "ANK ꢁ #OLUMN ADDRESS X  
" ꢁ #Yꢎ "ANK ꢁ #OLUMN ADDRESS Y  
!DDRꢂꢎ !DDRESS " ꢁ #  
7,ꢎ  
7RITE ,ATENCY  
72ꢎ  
$Xꢀꢎ  
$Yꢀꢎ  
72)4%  
$%3ꢎ $ESELECT  
$ATA TO " ꢁ #X  
$ATA TO " ꢁ #Y  
.ꢁ$ꢎ ./0 ꢁ $ESELECT  
$ONgT #ARE  
Figure 23 Consecutive Write Bursts with Gaps  
1. Shown with nominal value of tDQSS.  
2. The second WR command may be either for the same bank or another bank.  
3. WDQS can only transition when data is applied at the chip input and during pre- and postambles.  
Data Sheet  
40  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.4  
Write with Autoprecharge  
ꢁꢀ  
#,+ꢌ  
#,+  
#OMꢍ  
72ꢉ!  
"ꢉ#  
.ꢉ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
!ꢎꢏ  
!ꢇꢋ!ꢂ  
!ꢈ  
T
72ꢀ!ꢐꢃ  
7, ꢐ ꢂ  
7$13  
T20  
$1  
$ꢀ  
$ꢁ  
$ꢂ  
$ꢃ  
"EGIN OF  
!UTOPRECHARGE  
T2!3-).  
SATISFIED  
7, ꢐ ꢃ  
T72ꢀ!ꢐꢃ  
7$13  
$1  
T20  
$ꢀ  
$ꢁ  
$ꢂ  
$ꢃ  
"EGIN OF  
!UTOPRECHARGE  
T2!3-).  
SATISFIED  
7, ꢐ ꢄ  
T72ꢀ!ꢐꢃ  
7$13  
$1  
T20  
$ꢀ  
$ꢁ  
$ꢂ  
$ꢃ  
"EGIN OF  
!UTOPRECHARGE  
T2!3-).  
SATISFIED  
#OMꢍꢊ #OMMAND  
" ꢉ #ꢊ "ANK ꢉ #OLUMN ADDRESS  
!DDRꢍꢊ !DDRESS " ꢉ #  
72ꢉ!ꢊ 72)4% WITH AUTOꢋPRECHARGE  
7,ꢊ  
7RITE ,ATENCY  
$ONgT #ARE  
$ꢌꢊ  
$ATA TO " ꢉ #  
$%3ꢊ $ESELECT  
.ꢉ$ꢊ ./0 OR $ESELECT  
Figure 24 Write with Autoprecharge  
1. Shown with nominal value of tDQSS  
2. tWR/A starts at the first rising edge of CLK after the last valid edge of WDQS.  
3. tRP starts after tWR/A has been expired.  
4. when issuing a WR/A command please consider that the tRAS requirement also must be met at the beginning  
of tRP  
5. tWR/A * tCYC tWR  
6. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
Data Sheet  
41  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.5  
Write followed by Read  
#,+ꢃ  
#,+  
#OMꢌ  
!DDRꢌ  
72  
"ꢍ#  
.ꢍ$  
$%3  
$%3  
$%3  
$%3  
$%3  
2$  
$%3  
$%3  
"ꢍ#  
7, ꢀ ꢁ  
T742  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
72  
"ꢍ#  
.ꢍ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
2$  
.ꢍ$  
"ꢍ#  
7, ꢀ ꢂ  
T742  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
72  
"ꢍ#  
.ꢍ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
2$  
"ꢍ#  
7, ꢀ ꢆ  
T742  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
" ꢍ #ꢎ "ANK ꢍ #OLUMN ADDRESS  
$ꢃꢎ  
$ATA TO " ꢍ #X  
72ꢎ  
2$ꢎ  
72)4%  
2%!$  
#OMꢌꢎ #OMMAND  
!DDRꢌꢎ !DDRESS " ꢍ #  
$%3ꢎ $ESELECT  
7,ꢎ  
7RITE ,ATENCY  
$ONgT #ARE  
.ꢍ$ꢎ ./0 ꢍ $ESELECT  
Figure 25 Write followed by Read  
1. Shown with nominal value of tDQSS.  
2. The RD command may be either for the same bank or another bank.  
3. WDQS can only transition when data is applied at the chip input and during pre- and postambles.  
Data Sheet  
42  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.6  
Write followed by DTERDIS  
#,+ꢃ  
#,+  
#OMꢌ  
!DDRꢌ  
72  
"ꢍ#  
$4$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
#, ꢀ ꢇ  
7, ꢀ ꢁ  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
72  
"ꢍ#  
$4$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
#, ꢀ ꢈ  
7, ꢀ ꢂ  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
72  
"ꢍ#  
.ꢍ$  
$4$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
#, ꢀ ꢈ  
7, ꢀ ꢆ  
7$13  
$1  
$ꢄ  
$ꢅ  
$ꢁ  
$ꢂ  
" ꢍ #ꢎ "ANK ꢍ #OLUMN ADDRESS  
72ꢎ 72)4%  
$4$ꢎ $4%2$)3  
7,ꢎ  
#,ꢎ  
7RITE ,ATENCY  
#!3 ,ATENCY  
$ESELECT  
$%3ꢎ  
.ꢍ$ꢎ  
$ꢃꢎ  
$ATA TO " ꢍ #X  
./0 OR $ESELECT  
$ONgT #ARE  
$ATA 4ERMINATION /FF  
#OMꢌꢎ #OMMAND  
!DDRꢌꢎ !DDRESS " ꢍ #  
Figure 26 Write Command followed by DTERDIS  
1. Write shown with nominal value of tDQSS.  
2. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
3. A margin of one clock has been introduced in order to make sure that the data termination are still on when  
the last Write data reaches the memory.  
4. The minimum distance between Write and DTERDIS is (WL -CL + 4) clocks and always bigger than or equal  
to 1. For (CL=6 / WL=2) and (CL=7 / WL=3) as well as for (CL=7 / WL=2) the minimum distance between Write  
and DTERDIS is set to 1 clock. Please refer to table below:  
Table 24  
WL / CL  
WL \ CL  
5
1
2
3
6
1
1
2
7
1
1
1
2
3
4
Data Sheet  
43  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.7  
Write with Autoprecharge followed by Read / Read with Autoprecharge  
#,+ꢀ  
#,+  
2$  
2$ꢁ!  
#OMꢂ  
72ꢁ!  
"ꢁ#  
.ꢁ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
!ꢌꢍ  
!ꢅꢎ!ꢊ  
"ꢁ#  
!ꢋ  
T742  
T72ꢀ!  
T20  
7, ꢐ ꢅ  
7$13  
$1  
"EGIN OF !UTOPRECHARGE  
$%3  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
2$  
2$ꢁ!  
72ꢁ!  
"ꢁ#  
#OMꢂ  
.ꢁ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
!ꢌꢍ  
!ꢅꢎ!ꢊ  
"ꢁ#  
!ꢋ  
T742  
T72ꢀ!  
T20  
7, ꢐ ꢆ  
7$13  
$1  
"EGIN OF !UTOPRECHARGE  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
2$  
$%3  
72ꢁ!  
"ꢁ#  
#OMꢂ  
.ꢁ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
2$ꢁ!  
!ꢌꢍ  
!ꢅꢎ!ꢊ  
"ꢁ#  
!ꢋ  
T742  
T20  
T72ꢀ!  
7, ꢐ ꢇ  
7$13  
$1  
"EGIN OF !UTOPRECHARGE  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
#OMꢂꢏ #OMMAND  
!DDRꢂꢏ !DDRESS " ꢁ #  
7,ꢏ 7RITE ,ATENCY  
$ONgT #ARE  
" ꢁ #ꢏ "ANK ꢁ #OLUMN ADDRESS  
72ꢁ!ꢏ 72)4% WITH !UTOPRECHARGE  
2$ 2$ꢁ!ꢏ 2%!$ OR  
2%!$ WITH !UTOPRECHARGE  
$ꢀꢏ  
$ATA TO " ꢁ #X  
$%3ꢏ $ESELECT  
ꢃꢏ 2$ꢍ ꢄꢏ 2$ꢁ!  
.ꢁ$ꢏ ./0 OR $ESELECT  
Figure 27 Write with Autoprecharge followed by Read or Read with Autoprecharge on another bank  
1. Shown with nominal value of tDQSS.  
2. The RD command is only allowed for another activated bank  
3. tWR/A is set to 3 in this example  
4. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
Data Sheet  
44  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.7.8  
Write followed by Precharge on same Bank  
ꢄꢃ  
#,+ꢀ  
#,+  
#OMꢁ  
!DDRꢁ  
72  
"ꢂ#  
.ꢂ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
02%  
"
$%3  
$%3  
T20  
7, ꢍ ꢅ  
T72  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
72  
"ꢂ#  
.ꢂ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
02%  
"
$%3  
T20  
7, ꢍ ꢆ  
T72  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
72  
"ꢂ#  
.ꢂ$  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
$%3  
02%  
"
T20  
7, ꢍ ꢇ  
T72  
7$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
.ꢂ$ꢎ ./0 OR $ESELECT  
$%3ꢎ $ESELECT  
#OMꢁꢎ #OMMAND  
" ꢂ #ꢎ "ANK ꢂ #OLUMN ADDRESS  
72ꢎ  
02%ꢎ  
$Xꢀꢎ  
$Yꢀꢎ  
72)4%  
02%#(!2'%  
$ATA TO " ꢂ #X  
$ATA TO " ꢂ #Y  
!DDRꢁꢎ !DDRESS " ꢂ #  
7,ꢎ  
7RITE ,ATENCY  
$ONgT #ARE  
Figure 28 Write followed by Precharge on same Bank  
1. Shown with nominal value of tDQSS.  
2. WR and PRE commands are to same bank  
3. tRAS requirement must also be met before issuing PRE command  
4. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
Data Sheet  
45  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8  
Reads (RD)  
3.8.1  
Read - Basic Information  
During RD bursts the memory device drives the read  
data edge aligned with the RDQS signal which is also  
driven by the memory. After a programmable CAS  
latency of 5, 6 or 7 the data is driven to the controller.  
RDQS leaves HIGH state one cycle before its first rising  
edge (RD preamble tRPRE). After the last falling edge of  
RDQS a postamble of tRPST is performed.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
t
AC is the time between the positive edge of CLK and the  
appearance of the corresponding driven read data. The  
skew between RDQS and the crossing point of  
CLK/CLK is specified as tDQSCK. tAC and tDQSCK are  
defined relatively to the positive edge of CLK. tDQSQ is  
the skew between a RDQS edge and the last valid data  
edge belonging to the RDQS edge. tDQSQ is derived at  
each RDQS edge and begins with RDQS transition and  
ends with the last valid transition of DQs. tQHS is the  
data hold skew factor and tQH is the time from the first  
valid rising edge of RDQS to the first conforming DQ  
going non-valid and it depends on tHP and tQHS. tHP is  
the minimum of tCL and tCH. tQHS is effectively the time  
from the first data transition (before RDQS) to the  
RDQS transition. The data valid window is derived for  
each RDQS transition and is defined as tQH minus  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢄ !ꢅ  
#!  
!ꢆꢄ !ꢇ  
!ꢇꢆꢂ!ꢇꢇ  
tDQSQ  
.
!ꢉ  
!0  
"!  
After completion of a burst, assuming no other  
commands have been initiated, data will go High-Z and  
RDQS will go HIGH. Back to back RD commands are  
possible producing a continuous flow of output data.  
There has to be one NOP cycle between back to back  
RD commands.  
"!ꢆꢂ"!ꢇ  
!0ꢈ !UTO0RECHARGE  
#!ꢈ #OLUMN !DDRESS  
"!ꢈ "ANK !DDRESS  
Any RD burst may be followed by a subsequent WR  
command. The minimum required number of NOP  
commands between the RD command and the WR  
command (tRTW) depends on the programmed Read  
latency and the programmed Write latency  
$ONgT #ARE  
Figure 29 Read Command  
Read bursts are initiated with a RD command, as  
shown in Figure 29. The column and bank addresses  
are provided with the RD command and Autoprecharge  
is either enabled or disabled for that access. The length  
of the burst initiated with a RD command is always four.  
There is no interruption of RD bursts. The two least  
significant start address bits are ’Don’t Care’.  
t
RTW(min)= (CL+4-WL)  
Chapter 3.8.5 shows the timing requirements for RD  
followed by a WR with some combinations of CL and  
WL.  
A RD may also be followed by a PRE command. Since  
no interruption of bursts is allowed the minimum time  
between a RD command and a PRE is two clock cycles  
as shown in Chapter 3.8.6.  
If Autoprecharge is enabled, the row being accessed  
will start precharge at the completion of the burst. The  
begin of the internal Autoprecharge will always be one  
cycle after tRAS(min) is met.  
All timing parameters are defined with controller  
terminations on.  
Data Sheet  
46  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
T#(  
T#,  
T#+  
T(0  
#,+ꢀ  
#,+  
T$13#+  
2$13  
0REAMBLE  
T202%  
0OSTAMBLE  
T2034  
$1 ꢁFIRST DATA VALIDꢂ  
$1 ꢁLAST DATA VALIDꢂ  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
$ꢆ  
$ꢃ  
$ꢄ  
$ꢅ  
T!#  
!LL $1S COLLECTIVELY  
$ꢃ  
T$131  
T1(  
$ꢄ  
$ꢅ  
T$131  
$ꢆ  
DATA  
VALID  
WINDOW  
$ONgT #ARE  
(Iꢇ: ꢈ .OT DRIVEN  
BY $$2))) 3'2!-  
T1(3  
T,:  
T(:  
Figure 30 Basic Read Burst Timing  
1. The GDDR3 SGRAM switches off the DQ terminations one cycle before data appears on the busand drives  
the data bus HIGH.  
2. The GDDR3 SGRAM drives the data bus HIGH one cycle after the last data driven on the bus before switching  
the termination on again.  
Table 25  
READ Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit Note  
–1.6  
–2.2  
max min max  
min  
max min  
CAS (a) to CAS (b) Command period  
Read to Write command delay  
tCCD  
tRTW  
2
2
2
tCK  
tCK  
1
tRTW(min)= (CL+4-WL)  
2
Read Cycle Timing Parameters for Data and Data Strobe  
Data Access Time from Clock  
Read Preamble  
tAC  
–0.4  
0.75  
0.75  
0.4  
–0.4 0.4  
–0.45 0.45 ns  
4
tRPRE  
tRPST  
1.25 0.75  
1.25 0.75  
1.25 0.75  
1.25 0.75  
1.25 tCK  
1.25 tCK  
Read Postamble  
Data-out high impedance time from CLK tHZ  
Data-out low impedance time from CLK tLZ  
tACmin tACmax tACmin tACmax tACmin tACmax ns  
tACmin tACmax tACmin tACmax tACmin tACmax ns  
4
4
4
4
4
4
3
RDQS edge to Clock edge skew  
tDQSCK  
–0.4  
0.4  
–0.4  
0.4  
–0.45 0.45 ns  
RDQS edge to output data edge skew tDQSQ  
0.225 —  
0.225 0  
0.225 —  
0.225 0  
0.25 ns  
0.25 ns  
ns  
Data hold skew factor  
tQHS  
tQH  
tHP  
0
Data output hold time from RDQS  
Minimum clock half period  
tHPtQHS  
0.45  
tHPtQHS  
0.45  
tHPtQHS  
0.45  
tCK  
1. tCCD is either for gapless consecutive reads or gapless consecutive writes.  
2. Please round up tRTW to the next integer of tCK.  
3. tHP is the minimum of tCL and tCH  
4. Timing parameters defined with controller terminations on.  
Data Sheet  
47  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.2  
Read - Basic Sequence  
#,+ꢀ  
#,+  
#OM  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
!DDRꢂ  
" ꢁ #  
#!3 LATENCY ꢌ ꢈ  
2$13  
$1  
$ꢃ $ꢄ $ꢅ  
$ꢆ  
#!3 LATENCY ꢌ ꢉ  
2$13  
$1  
$ꢃ  
$ꢄ $ꢅ  
$ꢆ  
2$ꢎ  
2%!$  
" ꢁ #ꢎ "ANK ꢁ #OLUMN ADDRESS  
$Xꢎ $ATA FROM " ꢁ #  
.ꢁ$ꢎ .OP OR $ESELECT  
#OMꢂꢎ #OMMAND  
$ONgT #ARE  
!DDRꢂꢎ !DDRESS " ꢁ #  
$1S ꢎ 4ERMINATIONS OFF  
2$13 ꢎ .OT DRIVEN  
Figure 31 Read Burst  
1. Shown with nominal tAC and tDQSQ  
2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS  
3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last  
Read data  
Data Sheet  
48  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.3  
Consecutive Read Bursts  
Gapless Bursts  
3.8.3.1  
ꢌꢍ  
ꢌꢌ  
#,+ꢀ  
#,+  
#OMꢂ  
!DDRꢂ  
2$  
.ꢁ$  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
"ꢁ#X  
"ꢁ#Y  
#!3 LATENCY ꢋ ꢆ  
2$13  
$1  
$Xꢍ $Xꢌ $Xꢃ $Xꢄ $Yꢍ $Yꢌ $Yꢃ $Yꢄ  
#!3 LATENCY ꢋ ꢇ  
2$13  
$1  
$Xꢍ $Xꢌ $Xꢃ $Xꢄ $Yꢍ $Yꢌ $Yꢃ $Yꢄ  
" ꢁ #Xꢎ "ANK ꢁ #OLUMN ADDRESS X  
" ꢁ #Yꢎ "ANK ꢁ #OLUMN ADDRESS Y  
2$ꢎ  
2%!$  
.ꢁ$ꢎ ./0 OR $ESELECT  
$ONgT #ARE  
$Xꢀꢎ  
$Yꢀꢎ  
$ATA FROM " ꢁ #X  
$ATA FROM " ꢁ #Y  
$1S ꢎ 4ERMINATIONS OFF  
2$13 ꢎ .OT DRIVEN  
#OMꢂꢎ #OMMAND  
!DDRꢂꢎ !DDRESS " ꢁ #  
Figure 32 Gapless Consecutive Read Bursts  
1. The second RD command may be either for the same bank or another bank  
2. Shown with nominal tAC and tDQSQ  
3. Example applies only when READ commands are issued to same device  
4. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS  
5. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last  
Read data  
Data Sheet  
49  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.3.2  
Bursts with Gaps  
ꢄꢃ  
#,+ꢀ  
#,+  
#OMꢂ  
!DDRꢂ  
2$  
.ꢁ$  
.ꢁ$  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
"ꢁ#X  
"ꢁ#Y  
#!3 LATENCY ꢍ ꢈ  
2$13  
$1  
$Xꢃ $Xꢄ $Xꢅ $Xꢆ  
$Yꢃ $Yꢄ $Yꢅ $Yꢆ  
#!3 LATENCY ꢍ ꢉ  
2$13  
$1  
$Xꢃ $Xꢄ $Xꢅ $Xꢆ  
$Yꢃ $Yꢄ $Yꢅ  
" ꢁ #Xꢎ "ANK ꢁ #OLUMN ADDRESS X  
" ꢁ #Yꢎ "ANK ꢁ #OLUMN ADDRESS Y  
$ONgT #ARE  
$1S ꢎ 4ERMINATIONS OFF  
2$13 ꢎ .OT DRIVEN  
2$ꢎ  
2%!$  
$Xꢀꢎ  
$Yꢀꢎ  
$ATA FROM " ꢁ #X  
$ATA FROM " ꢁ #Y  
#OMꢂꢎ #OMMAND  
!DDRꢂꢎ !DDRESS " ꢁ #  
Figure 33 Consecutive Read Bursts with Gaps  
1. The second RD command may be either for the same bank or another bank  
2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS.  
3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last  
Read data  
Data Sheet  
50  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.3.3  
Read followed by DTERDIS  
ꢄ ꢃ  
ꢄ ꢄ  
ꢄꢅ  
ꢄ ꢆ  
#, + ꢀ  
# , +  
# OM ꢂ  
! D DRꢂ  
2 $  
. ꢁ$  
. ꢁ$  
.ꢁ$  
$4 $  
. ꢁ$  
. ꢁ$  
.ꢁ$  
. ꢁ$  
. ꢁ$  
. ꢁ$  
.ꢁ$  
. ꢁ$  
. ꢁ$  
" ꢁ# X  
#! 3 LA TE N CY  
ꢍ ꢈ  
2 $ 1 3  
$1  
$X ꢃ $ Xꢄ $ Xꢅ $ Xꢆ  
# OM ꢂ  
! D DRꢂ  
2 $  
. ꢁ$  
. ꢁ$  
.ꢁ$  
.ꢁ$  
$ 4$  
. ꢁ$  
.ꢁ$  
. ꢁ$  
. ꢁ$  
. ꢁ$  
.ꢁ$  
. ꢁ$  
. ꢁ$  
" ꢁ# X  
#! 3 LA TE N CY  
ꢍ ꢈ  
2 $ 1 3  
$1  
$X ꢃ $ Xꢄ $ Xꢅ $ Xꢆ  
"
$
#
# X ꢎ " A N K  
#O LU M  
N
A D D RE S S  
X
2
$
$
.
$ꢎ  
2% ! $  
4% 2 $) 3  
$ E S E LE CT  
. / 0 O R $ E S E LE CT  
$O N gT #A RE  
Xꢀ ꢎ  
$
A TA FRO M  
"
# X  
4$  
$
O M ꢂ ꢎ # O M M A N D  
$1  
S
4 E RM IN A T IO N S O FF  
O T D RIVE N  
% 3 ꢎ  
ꢁ$  
2$ 1 3  
.
! D D Rꢂ ꢎ ! D D RE SS  
" ꢁ #  
Figure 34 Read Command followed by DTERDIS  
1. At least 3 NOPs are required between a READ command and a DTERDIS command in order to avoid  
contention on the RDQS bus in a 2 rank system.  
2. CAS Latency 5 is used as an example.  
3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of  
(BL/2 + 2 ) clocks.  
4. The dashed lines (RDQS bus) describe the RDQS behavior in the case where the DTERDIS command  
corresponds to a Read command applied to the second Graphics DRAM in a 2 rank system. In this case,  
RDQS would be driven by the second Graphics DRAM.  
Data Sheet  
51  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.4  
Read with Autoprecharge  
#,+ꢀ  
#,+  
#OMꢂ  
2$ꢁ!  
" ꢁ #  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
!ꢌꢍ  
!ꢊꢎ!ꢅ  
!ꢋ  
#!3 LATENCY ꢏ ꢈ  
2$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
#!3 LATENCY ꢏ ꢉ  
2$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
", ꢁ ꢅ  
T
20  
" ꢁ #ꢐ "ANK ꢁ #OLUMN ADDRESS  
.ꢁ$ꢐ ./0 OR $ESELECT  
$ONgT #ARE  
2$ꢁ!ꢐ 2%!$ WITH AUTOꢎPRECHARGE  
"EGIN OF  
!UTOPRECHARGE  
$Xꢐ  
$ATA FROM " ꢁ #  
$1S ꢐ 4ERMINATIONS OFF  
2$13 ꢐ .OT DRIVEN  
#OMꢂꢐ #OMMAND  
!DDRꢂꢐ !DDRESS " ꢁ #  
Figure 35 Read with Autoprecharge  
1. When issuing a RD/A command , the tRAS requirement must be met at the beginning of Autoprecharge  
2. Shown with nominal tAC and tDQSQ  
3. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS  
4. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last  
Read data  
5. tRAS Lockout support  
Data Sheet  
52  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.5  
Read followed by Write  
ꢃꢂ  
ꢃꢃ  
#,+ꢀ  
#,+  
#OMꢁ  
!DDRꢁ  
2$  
$%3  
$%3  
$%3  
$%3  
$%3  
72  
$%3  
$%3  
$%3  
$%3  
$%3  
"ꢌ#R  
"ꢌ#W  
#!3 LATENCY ꢍ ꢇ  
7RITE LATENCY ꢍ ꢅ  
T247  
2$13  
7$13  
$1  
$ꢂR $ꢃR $ꢄR $ꢅR  
$ꢂW $ꢃW $ꢄW $ꢅW  
2$  
$%3  
$%3  
$%3  
$%3  
$%3  
72  
$%3  
$%3  
$%3  
$%3  
$%3  
"ꢌ#R  
"ꢌ#W  
#!3 LATENCY ꢍ ꢈ  
7RITE LATENCY ꢍ ꢆ  
T247  
2$13  
7$13  
$1  
$ꢂR $ꢃR $ꢄR $ꢅR  
$ꢂW $ꢃW $ꢄW  
$XRꢎ  
2%!$ $ATA FROM " ꢌ #  
" ꢌ #Rꢎ "ANK ꢌ #OLUMN ADDRESS FOR 2%!$  
" ꢌ #Wꢎ "ANK ꢌ #OLUMN ADDRESS FOR 72)4%  
$ONgT #ARE  
$XWꢎ 72)4% $ATA FROM " ꢌ #  
#OMꢁꢎ #OMMAND  
$1S ꢎ 4ERMINATIONS OFF  
2$13 ꢎ .OT DRIVEN  
2$ꢎ  
2%!$  
!DDRꢁꢎ !DDRESS " ꢌ #  
72ꢎ  
72)4%  
$%3ꢎ $ESELECT  
Figure 36 Read followed by Write  
1. Shown with nominal tAC, tDQSQ and tDQSS  
2. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS  
3. The DQ terminations are switched off 1 cycle before the first Read Data and on again 1 cycle after the last  
Read data  
4. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
5. The Write command may be either on the same bank or on another bank  
Data Sheet  
53  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.8.6  
Read followed by Precharge on the same Bank  
#,+ꢀ  
#,+  
#OMꢂ  
!DDRꢂ  
2$  
.ꢁ$  
02%  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
" ꢁ #  
#!3 LATENCY ꢌ ꢈ  
2$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
#!3 LATENCY ꢌ ꢉ  
2$13  
$1  
$ꢃ  
$ꢄ  
$ꢅ  
$ꢆ  
T20  
" ꢁ #ꢍ "ANK ꢁ #OLUMN ADDRESS  
2$ꢍ 2%!$  
02%ꢍ 02%#(!2'%  
$Xꢍ $ATA FROM " ꢁ #  
.ꢁ$ꢍ ./0 OR $ESELECT  
$ONgT #ARE  
#OMꢂꢍ #OMMAND  
$1S ꢍ 4ERMINATIONS OFF  
2$13 ꢍ .OT DRIVEN  
!DDRꢂꢍ !DDRESS " ꢁ #  
Figure 37 Read followed by Precharge on the same Bank  
1. tRAS requirement must also be met before issuing PRE command  
2. RD and PRE commands are applied to the same bank.  
3. Shown with nominal tAC and tDQSQ  
4. RDQS will start driving high 1/2 cycle prior to the first falling edge and stop 1/2 cycle after the last rising edge  
of RDQS  
Data Sheet  
54  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.9  
Data Termination Disable (DTERDIS)  
The Data Termination Disable command is detected by  
the device by snooping the bus for Read commands  
when CS is high. The terminators are disabled starting  
at CL - 1 clocks after the DTERDIS command is  
detected and the duration is 4 clocks. The command  
and address terminators are always enabled.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
DTERDIS may only be applied to the GDDR3 Graphics  
memory if it is not in the Power Down or in the Self  
Refresh state.  
The timing relationship between DTERDIS and other  
commands is defined by the constraint to avoid  
contention on the RDQS bus (i.e Read to DTERDIS  
transistion) or the necessity to have a defined  
termination on the data bus during Write (i.e. Write to  
DTERDIS transition). ACT and PRE/PREALL may be  
applied at any time before or after a DTERDIS  
command.  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢄ !ꢅ  
!ꢆꢄ !ꢇ  
!ꢇꢆꢂ!ꢇꢇ  
!ꢈ  
"!ꢆꢂ"!ꢇ  
!0ꢉ !UTO0RECHARGE  
$ONgT #ARE  
Figure 38 Data Termination Disable Command  
#,+ꢀ  
#,+  
#OM  
$4$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
!DDRꢂ  
#!3 LATENCY ꢌ ꢈ  
$1  
4ERMINATION  
$ATA 4ERMINATIONS ARE DISABLED  
$4$ꢍ  
#OMꢂꢍ #OMMAND  
$4%2$)3  
$ONgT #ARE  
.ꢁ$ ꢍ ./0 OR $ESELECT  
!DDRꢂꢍ !DDRESS " ꢁ #  
Figure 39 DTERDIS Timing  
Data Sheet  
55  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
!DDRꢀ  
#!3 LATENCY ꢁ ꢂ  
2$13  
$1  
#OMꢀ  
!DDRꢀ  
.ꢃ$  
$4$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
#!3 LATENCY ꢁ ꢂ  
2$13  
$1  
#OMꢀ  
!DDRꢀ  
.ꢃ$  
.ꢃ$  
$4$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
.ꢃ$  
#!3 LATENCY ꢁ ꢂ  
2$13  
$1  
#OMꢀꢄ #OMMAND  
!DDRꢀꢄ !DDRESS " ꢃ #  
" ꢃ #Xꢄ "ANK ꢃ #OLUMN ADDRESS X  
2$ꢄ 2%!$  
$4$ꢄ $4%2$)3  
$ONgT #ARE  
$1S ꢄ 4ERMINATIONS OFF  
2$13 ꢄ .OT DRIVEN  
.ꢃ$ ꢄ  
$Xꢅꢄ  
./0 OR $ESELECT  
$ATA FROM " ꢃ #X  
Figure 40 DTERDIS followed by DTERDIS  
1. At least 1NOP is required between 2 DTERDIS commands. This correspond to a Read to Read transistion on  
the other memory in a 2 rank system.  
2. CAS Latency 5 is used as an example.  
3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of (BL/2  
+ 2 ) clocks  
4. The dashed lines (RDQS bus) describe the RDQS behavior in the case where the DTERDIS command  
corresponds to a Read command applied to the second Graphics DRAM in a 2 rank system. In this case,  
RDQS would be driven by the second Graphics DRAM.  
Data Sheet  
56  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.9.1  
DTERDIS followed by READ  
ꢌꢃ  
ꢌꢌ  
ꢌꢎ  
ꢌꢄ  
#,+ꢀ  
#,+  
#OMꢂ  
!DDRꢂ  
.ꢁ$  
.ꢁ$  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
"ꢁ#X  
#!3 LATENCY ꢋ ꢆ  
2$13  
$1  
$Xꢃ $Xꢌ $Xꢎ $Xꢄ  
#OMꢂ  
!DDRꢂ  
.ꢁ$  
.ꢁ$  
.ꢁ$  
2$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
.ꢁ$  
"ꢁ#X  
#!3 LATENCY ꢋ ꢆ  
2$13  
$1  
$Xꢃ $Xꢌ $Xꢎ $Xꢄ  
#OMꢂꢍ #OMMAND  
!DDRꢂꢍ !DDRESS " ꢁ #  
" ꢁ #Xꢍ "ANK ꢁ #OLUMN ADDRESS X  
2$ꢍ 2%!$  
$4$ꢍ $4%2$)3  
$ONgT #ARE  
$1S ꢍ 4ERMINATIONS OFF  
2$13 ꢍ .OT DRIVEN  
.ꢁ$ꢍ  
$Xꢀꢍ  
./0 OR $ESELECT  
$ATA FROM " ꢁ #X  
Figure 41 DTERDIS Command followed by READ  
1. At least 3 NOPs are required between a DTERDIS command and a READ command in order to avoid  
contention on the RDQS bus in a 2 rank system.  
2. CAS Latency 5 is used as an example.  
3. The DQ terminations are switched off (CL-1) clock periods after the DTERDIS command for a duration of 4  
clocks.  
Data Sheet  
57  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.9.2  
DTERDIS followed by Write  
ꢃꢂ  
ꢃꢃ  
#,+ꢀ  
#,+  
#OMꢁ  
!DDRꢁ  
$4$  
$%3  
$%3  
$%3  
$%3  
$%3  
72  
$%3  
$%3  
$%3  
$%3  
$%3  
"ꢍ#W  
#!3 LATENCY ꢌ ꢇ  
7RITE LATENCY ꢌ ꢅ  
7$13  
$1  
$ꢂW $ꢃW $ꢄW $ꢅW  
$4$  
$%3  
$%3  
$%3  
$%3  
$%3  
72  
$%3  
$%3  
$%3  
$%3  
$%3  
"ꢍ#W  
7RITE LATENCY ꢌ ꢆ  
#!3 LATENCY ꢌ ꢈ  
7$13  
$1  
$ꢂW $ꢃW $ꢄW  
" ꢍ #Wꢎ "ANK ꢍ #OLUMN ADDRESS FOR 72)4%  
72ꢎ 72)4%  
$XWꢎ 72)4% $ATA FROM " ꢍ #  
#OMꢁꢎ #OMMAND  
$ONgT #ARE  
$1S ꢎ 4ERMINATIONS OFF  
$4$ꢎ $4%2$)3  
$%3ꢎ $ESELECT  
!DDRꢁꢎ !DDRESS " ꢍ #  
Figure 42 DTERDIS Command followed by Write  
1. Write shown with nominal value of tDQSS  
2. WDQS can only transition when data is applied at the chip input and during pre- and postambles  
3. The minimum distance between DTERDIS and Write is (CL -WL + 4) clocks.  
Data Sheet  
58  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.10  
Precharge (PRE/PREALL)  
The Precharge command is used to deactivate the  
open row in a particular bank (PRE) or the open rows in  
all banks (PREALL). The bank(s) will enter the idle  
state and be available again for a new row access after  
the time tRP. A8/AP sampled with the PRE command  
determines whether one or all banks are to be  
precharged. For PRE commands BA0 and BA1 select  
the bank. For PREALL inputs BA0 and BA1 are “Don’t  
Care”. The PRE/PREALL command may not be given  
unless the tRAS requirement is met for the selected bank  
(PRE), or for all banks (PREALL).  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
!ꢁꢂꢃꢄꢅꢂꢆꢆ  
!ꢈ  
!,,  
"!  
"!ꢁꢂ"!ꢆ  
!,,ꢇ (IGH SELECTS ALL BANKS  
,OW SELECTS "ANK "!  
"!ꢇ "ANK !DDRESS  
$ONgT #ARE  
Figure 43 Precharge Command  
Table 26  
BA1, BA0 precharge bank selection  
A8 / AP  
BA1  
BA0  
precharged bank(s)  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
All banks  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Data Sheet  
59  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
#,+ꢀ  
#,+  
#OMMAND  
!#4  
2OW  
"ꢁ8  
./0  
02%  
"ꢁ8  
./0  
./0  
!#4  
2OW  
"ꢁ8  
!ꢂ ꢃ !ꢄꢄ  
"!ꢂꢅ "!ꢄ  
T2!3  
T2#  
T20  
02%ꢆ 0RECHARGE  
!#4ꢆ !CTIVATE  
2OWꢆ 2OW !DDRESS  
"ꢁ8ꢆ "ANK 8  
$ONgT #ARE  
Figure 44 Precharge Timing  
Table 27  
Precharge Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
13.2 13.2 13.2  
Row Precharge Time  
tRP  
ns  
Data Sheet  
60  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.11  
Auto Refresh Command (AREF)  
AREF is used to do a refresh cycle on one row in each  
bank. The addresses are generated by an internal  
refresh controller; external address pins are “DON’T  
CARE”. All banks must be idle before the AREF  
command can be applied. The delay between the  
AREF command and the next ACT or subsequent  
AREF must be at least tRFC(min). The refresh period  
starts when the AREF command is entered and ends  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
t
RFC later at which time all banks will be in the idle state.  
Within a period of tREF=32ms the whole memory has to  
be refreshed. The average periodic interval time from  
AREF to AREF is then tREFI(max)=7.8µs.  
2!3ꢀ  
To improve efficiency bursts of AREF commands can  
be used. Such bursts may consist of maximum 8 AREF  
commands. tRFC(min) is the minimum required time  
between two AREF commands inside one AREF burst.  
According to the number of AREF commands in one  
burst the average required time from one AREF burst  
to the next can be increased. Example: If the AREF  
bursts consists of 4 AREF commands, the average  
time from one AREF burst to the next is 4 * 7.8µs =  
31.2µs.  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢃ  
"!ꢁꢂ"!ꢃ  
The AREF command generates an update of the OCD  
output impedance and of the addresses, commands  
and DQ terminations. The timing parameter tKO ( see  
section 2.3.2 ) must be complied with.  
"!ꢄ "ANK !DDRESS  
$ONgT #ARE  
Figure 45 Auto Refresh Command  
#,+ꢀ  
#,+  
#OMMAND  
#+%  
02%  
!2&  
./0  
!ꢁ#ꢁ  
./0  
!2&  
./0  
T20  
T2&#  
!ꢁ#ꢁꢂ !2%& OR !#4 #OMMAND  
!2&ꢂ !UTO 2EFRESH  
T2%&)  
$ONgT #ARE  
Figure 46 Auto Refresh Cycle  
Table 28  
Autorefresh Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
Refresh Period (4096 cycles)  
tREF  
32  
7.8  
32  
7.8  
32  
7.8  
ms  
µs  
ns  
Average periodic Auto Refresh interval tREFI  
Delay from AREF to next ACT/ AREF tRFC  
54  
54  
54  
Data Sheet  
61  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.12  
Self-Refresh  
3.12.1  
Self-Refresh Entry (SREFEN)  
The Self-Refresh mode can be used to retain data in  
the GDDR3 Graphics RAM even if the rest of the  
system is powered down. When in the Self-Refresh  
mode, the GDDR3 Graphics RAM retains data without  
external clocking. The Self-Refresh command is  
initiated like an Auto-Refresh command except CKE is  
disabled (LOW). Self Refresh Entry is only possible if all  
banks are precharged and tRP is met.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
2!3ꢀ  
#!3ꢀ  
7%ꢀ  
The GDDR3 Graphics RAM has a build-in timer to  
accomodate Self-Refresh operation. The Self-Refresh  
command is defined by having CS, RAS, CAS and CKE  
held low with WE high at the rising edge of the clock.  
Once the command is registered, CKE must be held  
LOW to keep the device in Self-Refresh mode. When  
the GDDR3 Graphics RAM has entered the Self-  
Refresh mode, all external control signals, except CKE  
are disabled. The address, command and data  
terminators remain on. The DLL and the clock are  
internally disabled to save power. The user may halt the  
external clock while the device is in Self-Refresh mode  
the next clock after Self-Refresh entry, however the  
clock must be restarted before the device can exit Self-  
Refresh operation.  
!ꢁꢂ!ꢃ  
!ꢅꢂ!ꢄꢄ  
!ꢆ  
"!ꢁꢂ"!ꢄ  
$ONgT #ARE  
Figure 47 Self Refresh Entry Command  
#,+ꢀ  
#,+  
#OMMAND  
#+%  
0!  
32&  
ꢆ #LOCK  
T20  
#,+ꢅ#,+ꢀ  
MAY BE HALTED  
0!ꢁꢂ 0RECHARGE !,, #OMMAND  
ꢃOR LAST OF 02%S TO EACH BANKꢄ  
32&ꢂ 3ELF 2EFRESH #OMMAND  
$ONgT #ARE  
Figure 48 Self Refresh Entry  
Data Sheet  
62  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.12.2  
Self-Refresh Exit (SREFEX)  
To exit the Self Refresh Mode, a stable external clock  
is needed before setting CKE high asynchronously.  
Once the Self-Refresh Exit command is registered, a  
delay equal or longer than tXSC (minimum 200 Clock  
Cycles) must be satisfied before any command can be  
applied. During this time, the DLL is automatically  
enabled, reset and calibrated.  
#,+ꢀ  
#,+  
#+%  
#3ꢀ  
2!3ꢀ  
CKE must remain HIGH for the entire Self-Refresh exit  
period and commands must be gated off with CS held  
HIGH. Alternately, NOP commands may be registered  
on each positive clock edge during the Self Refresh exit  
interval.  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢃ  
!ꢄꢂ!ꢃꢃ  
$ONgT #ARE  
Figure 49 Self Refresh Exit Command  
#,+ꢀ  
#,+  
#OMMAND  
#+%  
. ꢁ $  
. ꢁ $  
. ꢁ $  
!ꢂ#ꢂ  
T83#  
#,+ꢄ #,+ꢀ MUST  
BE STABLE  
!ꢂ#ꢂꢃ !NY #OMMAND  
. ꢁ $ꢃ ./0 OR $%3%, #OMMAND  
$ONgT #ARE  
Figure 50 Self Refresh Exit  
Table 29  
Self Refresh Exit Timing Parameter for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Units Notes  
–1.6  
–2.2  
min max min max min max  
200 200 200  
Self Refresh Exit time  
Data Sheet  
tXSC  
tCK  
63  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Functional Description  
3.13  
Power-Down  
burst completion is defined after the rising edge of the  
Read Postamble. For Writes, a burst completion is  
defined one clock after the rising edge of the Write  
Postamble.  
#,+ꢀ  
#,+  
#+%  
For Read with Autoprecharge and Write with  
Autoprecharge, the internal Autoprecharge must be  
completed before entering Power-Down.  
#3ꢀ  
2!3ꢀ  
Power-Down is entered when CKE is registered LOW  
(no access can be in progress). If Power-Down occurs  
when all banks are idle, this mode is referred to as  
Precharge Power-Down; if Power-Down occurs when  
there is a row active in any bank, this mode is referred  
to as Active Power-Down. Entering power-down  
deactivates the input and output buffers, excluding  
CLK, CLK and CKE. For maximum power saving, the  
user has the option of disabling the DLL prior to  
entering power-down. In that case the DLL must be  
enabled and reset after exiting power-down, and 200  
cycles must occur before a READ command can be  
issued.  
#!3ꢀ  
7%ꢀ  
!ꢁꢂ!ꢃꢃ  
"!ꢁꢂ"!ꢃ  
In Power-Down mode, CKE low and a stable clock  
signal must be maintained at the inputs of the GDDR3  
Graphics RAM, all the other input signals are “Don’t  
Care”. Power down duration is limited by the refresh  
requirements of the device.  
ꢃꢅ $%3%,ꢆ ꢄꢅ ./0  
$ONgT #ARE  
Figure 51 Power Down Command  
The Power-Down state is synchronously exited when  
CKE is registered HIGH (along with a NOP or DESEL  
command). A valid executable command may be  
applied tXPN later.  
Unlike SDR SDRAMs, the GDDR3 Graphics RAM  
requires CKE to be active at all times an access is in  
progress : From the issuing of a READ or WRITE  
command until completion of the burst. For READs, a  
#,+ꢀ  
#,+  
. ꢁ $  
. ꢁ $  
. ꢁ $  
. ꢁ $  
!ꢃ#ꢃ  
!ꢃ#ꢃ  
#OMMꢃ  
#+%  
T)3  
T80.  
. ꢁ $ꢂ ./0 OR $%3%,%#4  
#OMMAND  
0OWERꢄ$OWN  
-ODE %NTRY  
0OWERꢄ$OWN  
-ODE %XIT  
!ꢃ#ꢃꢂ  
!NY #OMMAND  
$ONgT #ARE  
Figure 52 Power-Down Mode  
Table 30  
Power Down Exit Timing Parameter for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Symbol  
Limit Values  
–2.0  
Unit  
Notes  
–1.6  
–2.2  
min max min max min max  
Precharge power-down exit timing  
Data Sheet  
tXPN  
5
4
4
tCK  
64  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4
Electrical Characteristics  
4.1  
Absolute Maximum Ratings  
Table 31  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
min.  
-0.5  
-0.5  
-0.5  
-0.5  
-55  
Unit  
max.  
Power Supply Voltage  
Power Supply Voltage for Output Buffer  
Input Voltage  
VDD  
2.5  
2.5  
V
VDDQ  
VIN  
V
V
V
DDQ+0.5  
DDQ+0.5  
V
Output Voltage  
VOUT  
TSTG  
IOUT  
V
Storage Temperature  
Short Circuit Output Current  
+150  
50  
°C  
mA  
Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage of the  
device. This is a stress rating only, and functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Table 32  
Operation Conditions  
Parameter  
Symbol  
Range  
Unit  
min.  
0
max.  
+90  
+85  
3.2  
Operation Temperature (Junction)  
Operation Temperature (Case)  
Power Dissipation  
TJ  
°C  
°C  
W
TC  
PD  
0
Data Sheet  
65  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.2  
Recommended Power & DC Operation Conditions.  
All values are recommended operating conditions unless otherwise noted. Tc = 0 to 85 °C.  
(0°C TC +85°C, VDD = +2.0 V ± 0.10 V, VDDQ = +2.0 V ± 0.10 V, see Table 1)  
Table 33  
Power & DC Operation Conditions  
Symbol Speed Limit Values  
Parameter  
Unit Notes  
sort  
min.  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
typ.  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
max.  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
1)  
Power Supply Voltage  
VDD  
–1.6  
–2.0  
–2.2  
–1.6  
–2.0  
–2.2  
–1.6  
–2.0  
–2.2  
V
1)  
V
1)  
V
1)  
Power Supply Voltage for I/O Buffer  
Reference Voltage  
VDDQ  
V
1)  
V
1)  
V
2)  
VREF  
0.72*VDDQ 0.73*VDDQ 0.74*VDDQ  
0.72*VDDQ 0.73*VDDQ 0.74*VDDQ  
0.72*VDDQ 0.73*VDDQ 0.74*VDDQ  
0.4*VDDQ  
V
2)3)  
2)3)  
Output Low Voltage  
VOL(DC)  
IIL  
V
4)  
Input leakage current  
CLK Input leakage current  
Output leakage current  
–5  
–5  
–5  
+5  
+5  
+5  
µA  
IILC  
µA  
4)  
IOL  
µA  
1) VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
2) VREF is allowed ± 19mV for DC error and an additionnal ± 28mV for AC noise.  
3) VREF is expected to equal 73% of VDDQ for the transmitting device and to track variations in the DC level of the  
same. Peak-to-peak noise on VREF may not exceed ±2% VREF (DC). Thus, from 73% of VDDQ.  
4) IIL and IOL are measured with ODT disabled.  
Data Sheet  
66  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.3  
DC & AC Logic Input Levels.  
(0°C TC +85°C, VDD = +2.0 V ± 0.10 V, VDDQ = +2.0 V ± 0.10 V, see Table 1)  
Table 34  
DC & AC Logic Input Levels  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
Input logic high voltage, DC  
Input logic low voltage, DC  
Input logic high voltage, AC  
Input logic low voltage, AC  
Input logic high, DC, RESET pin  
Input logoc low, DC, RESET pin  
VIH(DC)  
VIL(DC)  
VIH (AC)  
VIL(AC)  
0.7 *VDDQ + 0.15  
V
V
V
V
V
V
1
0.7 *VDDQ -0.15  
1
0.7 *VDDQ +0.4  
2,3  
2,3  
0.7 *VDDQ - 0.4  
VIHR(DC)  
VILR(DC)  
0.8 *VDDQ  
-0.3  
VDDQ + 0.3  
0.2 *VDDQ  
1. The DC values define where the input slew rate requirements are imposed, and the input signal must not  
violate these levels in order to maintain a valid level.  
2. Input slew rate = 2 V/ns. If the input slew rate is less than 2 V/ns, input timing may be compromised. All slew  
rates are measured between VIL(DC) and VIH(DC)  
.
3. VIH overshoot : VIH(MAX) = VDDQ+0.5 V for a pulse width 500ps and the pulse width cannot be greater than 1/3  
of the cycle rate. VIL undershoot: VIL(MIN) = 0 V for a pulse width 500ps and the pulse width cannot be greater  
than 1/3 of the cycle rate.  
4.4  
Differential Clock DC and AC Levels  
(0°C TC +85°C, VDD = +2.0 V ± 0.10 V, VDDQ = +2.0 V ± 0.10 V, see Table 1)  
Table 35  
Differential Clock DC and AC Input conditions  
Symbol Limit Values  
min.  
Parameter  
Unit Note  
s
max.  
Clock Input Mid-Point Voltage, CLK and CLK VMP(DC)  
V
REF - 0.1  
V
V
REF + 0.1  
DDQ + 0.3  
V
V
V
1
1
1
Clock Input Voltage Level, CLK and CLK  
VIN(DC)  
0.42  
0.3  
Clock DC Input Differential Voltage, CLK and VID(DC)  
VDDQ  
CLK  
Clock AC Input Differential Voltage, CLK and VID(AC)  
CLK  
0.5  
V
V
DDQ + 0.5  
REF + 0.15  
V
V
1, 2  
1, 3  
AC Differential Crossing Point Input Voltage VIX(AC)  
VREF - 0.15  
1. All voltages referenced to VSS  
2. VID is the magnitude of the difference between the input level on CLK and the input level on CLK.  
3. The value of VIX is expected to equal 0.7 x VDDQ of the transmitting device and must track variations in the DC  
level of the same.  
Data Sheet  
67  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.5  
Output Test Conditions  
VDDQ  
60 Ohm  
Test point  
DQ  
DQS  
Figure 53 Output Test Circuit  
Note:VDDQ=2.0 ±0.1 V, Tc=0 °C to 85 °C, see Table 1  
4.6  
Pin Capacitances  
Table 36  
Capacitances  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Input capacitance:  
CLK, CLK  
CCK  
CDCK  
CI  
2.0  
4.0  
pF  
Input capacitance delta:  
CLK, CLK  
0.1  
4.0  
0.6  
4.5  
pF  
pF  
pF  
pF  
1
Input capacitance:  
A0-A11, BA0-1,CKE, CS, CAS, RAS, WE, CKE, RES  
2.0  
2.5  
Input capacitance delta:  
A0-A11, BA0-1,CKE, CS, CAS, RAS, WE, CKE, RES  
DCI  
CIO  
1
2
Input capacitance:  
DQ0-DQ31, RDQS0-RDQS3, WDQS0-WDQS3, DM0-  
DM3  
Input capacitance delta:  
DCIO  
0.6  
pF  
DQ0-DQ31, RDQS0-RDQS3, WDQS0-WDQS3, DM0-  
DM3  
1. The input capcitance per pin group will not differ by more than this maximum amount for any given device.  
2. The IO capacitance per RDQS and DQ byte / group will not differ by more than this maximum amount for any  
given device.  
Data Sheet  
68  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.7  
Driver current characteristics  
4.7.1  
Driver IV characteristics at 40 Ohms  
Figure 54 represents the driver Pull-Down and Pull-Up IV characteristics under process, voltage and temperature  
best and worst case conditions. The actual Driver Pull-Down and Pull-Up current must lie between these two  
bounding curves. The value of the external ZQ resistor is 240Ω, setting the nominal driver output impedance to  
40.  
0ULLꢀ5P #HARACTERSTICS  
0ULLꢀ$OWN #HARACTERSTICS  
ꢂꢇꢂ  
ꢂꢇꢁ  
ꢆꢇꢂ  
ꢆꢇꢁ  
ꢅꢇꢂ  
ꢁꢀ  
ꢅꢁ  
ꢅꢀ  
ꢄꢁ  
ꢄꢀ  
ꢃꢁ  
ꢃꢀ  
ꢂꢁ  
ꢂꢀ  
ꢀꢁ  
ꢀꢆꢂ  
ꢀꢆꢁ  
ꢀꢅꢂ  
ꢀꢅꢁ  
ꢀꢄꢂ  
ꢀꢄꢁ  
ꢀꢃꢂ  
ꢀꢃꢁ  
ꢀꢁꢂ  
ꢀꢆꢀ  
ꢀꢆꢁ  
ꢂꢆꢀ  
ꢂꢆꢁ  
ꢃꢆꢀ  
6$$1 ꢀ 6OUT ꢁ6ꢂ  
6OUT ꢁ6ꢂ  
Figure 54 40 Ohm Driver Pull-Down and Pull-Up characteristics  
Table 37 lists the numerical values of the minimum and maximum allowed values of the output driver Pull-Down  
and Pull-Up IV characteristics.  
Table 37  
Programmed Driver IV Characteristics at 40 Ohm  
Pull-Down Current (mA)  
Voltage (V)  
Pull-Up Current (mA)  
Minimum  
-2.44  
Minimum  
2.32  
Maximum  
3.04  
Maximum  
-3.27  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
4.56  
5.98  
-4.79  
-6.42  
6.69  
8.82  
-7.03  
-9.45  
8.74  
11.56  
14.19  
16.72  
19.14  
21.44  
23.61  
26.10  
28.45  
30.45  
32.73  
34.95  
37.10  
39.15  
41.01  
42.53  
43.71  
-9.18  
-12.37  
-15.17  
-17.83  
-20.37  
-22.78  
-25.04  
-27.17  
-29.17  
-31.25  
-33.00  
-35.00  
-37.00  
-39.14  
-41.25  
-43.29  
-45.23  
10.70  
12.56  
14.34  
16.01  
17.61  
19.11  
20.53  
21.92  
23.29  
24.65  
26.00  
27.35  
28.70  
-
-11.23  
-13.17  
-15.01  
-16.74  
-18.37  
-19.90  
.21.34  
-22.72  
-24.07  
-25.40  
-26.73  
-28.06  
-29.37  
-
-
-
Data Sheet  
69  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.8  
Termination IV Characteristic at 60 Ohms  
Figure 55 represents the DQ termination Pull-Up IV characteristic under process, voltage and temperature best  
and worst case conditions. The actual DQ termination Pull-Up current must lie between these two bounding  
curves. The value of the external ZQ resistor is 240Ω, setting the nominal DQ termination impedance to 60.  
(Extended Mode Register programmed to ZQ/4).  
ꢀꢁ /HM 4ERMINATION #HARACTERSTICS  
ꢃꢆꢃ  
ꢃꢆꢂ  
ꢅꢆꢃ  
ꢅꢆꢂ  
ꢄꢆꢃ  
ꢀꢂ  
ꢀꢅꢃ  
ꢀꢅꢂ  
ꢀꢄꢃ  
ꢀꢄꢂ  
ꢀꢁꢃ  
ꢀꢁꢂ  
6$$1 ꢂ 6OUT ꢃ6ꢄ  
Figure 55 60 Ohm Active Termination Characteristic  
Table 38 lists the numerical values of the minimum and maximum allowed values of the output driver termination  
IV characteristic.  
Table 38  
Programmed Terminator Characterisitc at 60 Ohm  
Voltage (V)  
Terminator Pull-Up Current  
(mA)  
Voltage (V)  
Terminator Pull-Up Current  
(mA)  
Minimum  
Maximum  
Minimum  
-13.27  
-14.23  
-15.14  
-16.04  
-16.94  
-17.82  
-18.70  
-19.58  
-
Maximum  
-18.11  
-19.45  
-20.83  
-22.00  
-23.33  
-24.67  
-26.09  
-27.50  
-28.86  
-30.15  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
-1.63  
-3.19  
-4.69  
-6.12  
-7.49  
-8.78  
-10.01  
-11.16  
-12.25  
-2.18  
-4.28  
-6.30  
-8.25  
-10.11  
-11.89  
-13.58  
-15.19  
-16.69  
-
Data Sheet  
70  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.9  
Termination IV Characteristic at 120 Ohms  
Figure 56 represents the DQ or ADD/CMD termination Pull-Up IV characteristic under process, voltage and  
temperature best and worst case conditions. The actual termination Pull-Up current must lie between these two  
bounding curves. The value of the external ZQ resistor is 240Ω, setting the nominal termination impedance to  
120. (Extended Mode Register programmed to ZQ/2 for DQ terminations or CKE = 0 at the RES transition during  
Power-Up for ADD/CMD terminations).  
ꢀꢁꢂ /HM 4ERMINATION #HARACTERSTICS  
ꢅꢇꢅ  
ꢅꢇꢈ  
ꢁꢇꢅ  
ꢁꢇꢈ  
ꢄꢇꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
ꢀꢆ  
ꢀꢁꢅ  
ꢀꢁꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
6$$1 ꢃ 6OUT ꢄ6ꢅ  
Figure 56 120 Ohm Active Termination Characteristic  
Table 39 lists the numerical values of the minimum and maximum allowed values of the termination IV  
characteristic.  
Table 39  
Programmed Terminator Characterisitics at 120 Ohm  
Voltage(V)  
Terminator Pull-Up Current  
(mA)  
Voltage (V)  
Terminator Pull-Up Current  
(mA)  
Minimum  
Maximum  
Minimum  
-6.63  
-7.11  
-7.57  
-8.02  
-8.47  
-8.91  
-9.35  
-9.79  
-
Maximum  
-9.06  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
-0.81  
-1.60  
-2.34  
-3.06  
-3.74  
-4.39  
-5.00  
-5.58  
-6.12  
-1.09  
-2.14  
-3.15  
-4.12  
-5.06  
-5.94  
-6.79  
-7.59  
-8.35  
-9.72  
-10.42  
-11.00  
-11.67  
-12.33  
-13.05  
-13.75  
-14.43  
-15.08  
-
Data Sheet  
71  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.10  
Termination IV Characteristic at 240 Ohms  
Figure 57 represents the ADD/CMD termination Pull-Up IV characteristic under process, voltage and temperature  
best and worst case conditions. The actual ADD/CMD termination Pull-Up current must lie between these two  
bounding curves. The value of the external ZQ resistor is 240Ω, setting the nominal termination impedance to  
240. (CKE = 1at the RES transition during Power-Up for ADD/CMD terminations).  
ꢀꢁꢂ /HM 4ERMINATION #HARACTERSTICS  
ꢃꢂꢃ  
ꢃꢂꢆ  
ꢊꢂꢃ  
ꢊꢂꢆ  
ꢉꢂꢃ  
ꢃꢂꢃ  
ꢀꢊꢂꢃ  
ꢀꢉꢂꢃ  
ꢀꢈꢂꢃ  
ꢀꢇꢂꢃ  
ꢀꢆꢂꢃ  
ꢀꢅꢂꢃ  
ꢀꢄꢂꢃ  
ꢀꢁꢂꢃ  
6$$1 ꢃ 6OUT ꢄ6ꢅ  
Figure 57 240 Ohm Active Termination Characteristic  
Table 40 lists the numerical values of the minimum and maximum allowed values of the ADD/CMD termination IV  
characteristic.  
Table 40  
Programmed Terminator Characterisitc at 240 Ohm  
Voltage (V)  
Terminator Pull-Up Current  
(mA)  
Voltage (V)  
Terminator Pull-Up Current  
(mA)  
Minimum  
Maximum  
Minimum  
-3.32  
-3.56  
-3.79  
-4.01  
-4.23  
-4.46  
-4.68  
-4.90  
-
Maximum  
-4.53  
-4.86  
-5.21  
-5.50  
-5.83  
-6.17  
-6.52  
-6.88  
-7.21  
-7.54  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
-0.41  
-0.80  
-1.17  
-1.53  
-1.87  
-2.20  
-2.50  
-2.79  
-3.06  
-0.55  
-1.07  
-1.58  
-2.06  
-2.53  
-2.97  
-3.40  
-3.80  
-4.17  
-
Data Sheet  
72  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.11  
Operating Currents  
4.11.1  
Operating Current Ratings  
(0°C TC +85°C, VDD = +2.0 V ± 0.10 V, VDDQ = +2.0 V ± 0.10 V, see Table 1)  
Table 41  
Operating Current Ratings  
Parameter  
Symbol –1.6  
typ.  
–2.0  
typ.  
238  
258  
86  
–2.2  
typ.  
222  
241  
81  
Unit  
Notes  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)  
1)2)3)4)  
1)2)3)  
Operating Current  
IDD0  
274  
297  
99  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current  
IDD1  
Precharge Power-Down Standby Current  
Precharge Floating Standby Current  
Precharge Quiet Standby Current  
Active Power-Down Standy Current  
Active Standby Current  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD5D  
IDD6  
156  
113  
99  
136  
98  
127  
92  
86  
81  
182  
474  
320  
430  
101  
11  
158  
412  
278  
374  
88  
148  
385  
265  
348  
83  
Operating Current Burst Read  
Operating Current Burst Write  
Auto-Refresh Current (tRC=min(tRFC))  
Auto-Refresh Current at tREFI  
Self Refresh Current  
11  
11  
Operating Current  
IDD7  
630  
548  
509  
1) IDD specifications are tested after the device is properly initialized.  
2) Input slew rate = 2 V/ns.  
3) Mesured with Output open and On Die termination off.  
4) Enables on-chip refresh and address counter.  
4.12  
Operating Current Measurement Conditions  
(0°C TC +85°C, VDD = +2.0V ± 0.10 V, VDDQ = +2.0 V ± 0.10 V, see Table 1)  
Table 42  
Symbol Parameter/Condition  
Operating Current - One bank, Activate - Precharge  
tCK=min(tCK), tRC=min(tRC)  
Operating Current Measurement Conditions  
IDD0  
Databus inputs are SWITCHING; Address and control inputs are SWITCHING, CS = HIGH between  
valid commands.  
IDD1  
Operating Current - One bank, Activate - Read - Precharge  
One bank is accessed with tCK=min(tCK), tRC=min(tRC), CL = CL(min), Address and control inputs are  
SWITCHING;  
CS = HIGH between valid commands. Iout=0mA  
IDD2P  
IDD2F  
Precharge Power-Down Standby Current  
All banks idle, power-down mode, CKE is LOW, tCK=min(tCK), Data bus inputs are STABLE.  
Precharge Floating Standby Current  
All banks idle; CS is LOW, CKE is HIGH, tCK=min(tCK); Address and control inputs are SWITCHING;  
Data bus input are STABLE.  
Data Sheet  
73  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
Table 42  
Symbol Parameter/Condition  
Precharge Quiet Standby Current  
Operating Current Measurement Conditions  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5B  
IDD5D  
IDD6  
CS is HIGH, all banks idle, CKE is HIGH, tCK=min(tCK), Address and other control inputs STABLE, Data  
bus inputs are STABLE.  
Active Power-Down Standby Current  
All banks active, CKE is LOW, Address and control inputs are STABLE; Data bus inputs are STABLE;  
standard active power-down mode.  
Active Standby Current  
All banks active, CS is HIGH, CKE is HIGH, tRC=max(tRAS), tCK=min(tCK); Address and control inputs  
are SWITCHING; Data bus inputs are SWITCHING; Iout = 0 mA.  
Operating Current - Burst Read  
All banks active; Continuous read bursts, CL = CL(min); tCK=min(tCK); Address and control inputs are  
SWITCHING; Data bus inputs are SWITCHING.  
Operating Current - Burst Write  
All banks active; Continuous write bursts; tCK=min(tCK); Address and control inputs are SWITCHING;  
Data bus inputs are SWITCHING.  
Burst Auto Refresh Current  
Refresh command at tRC=min(tRFC); tCK=min(tCK); CKE is HIGH, CS is HIGH between all valid  
commands; Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING.  
Distributed Auto Refresh Current  
tCK=tCKmin; Refresh command every tREFI; CKE is HIGH, CS is HIGH between valid commands;  
Other command and address inputs are SWITCHING; Data bus inputs are SWITCHING.  
Self Refresh Current  
CKE max(VIL), external clock off, CK and CK LOW; Address and control inputs are STABLE; Data  
Bus inputs are STABLE.  
IDD7  
Operating Bank Interleave Read Current  
1. All banks interleaving with CL = CL(min); tRCD = tRCDRD(min); tRRD = tRRD(min); Iout=0mA;  
Address and control inputs are STABLE during DESELECT; Data bus inputs are SWITCHING.  
2: Timing pattern:  
-1.6 (600 MHz, CL=7) : tCK = 2.5ns, tRCDRD = 7. tCK; tRRD = 4. tCK; tRC = 18. tCK  
Read: A0 RA3 D D A1 D D RA0 A2 D D RA1 A3 D D RA2 D D TBD TBD TBD  
-2.0 (500 MHz, CL7) : tCK = 2.0ns, tRCDRD = 7. tCK; tRRD = 4. tCK; tRC = 18. tCK  
Read: A0 RA3 D D A1 D D RA0 A2 D D RA1 A3 D D RA2 D D  
-2.2 (455 MHz, CL6) : tCK = 2.2ns, tRCDRD = 7. tCK; tRRD = 4. tCK; tRC = 18. tCK  
Read: A0 RA3 D D A1 D D RA0 A2 D D RA1 A3 D D RA2 D D  
1. Data Bus consists of DQ, DM, WDQS  
2. Definitions for IDD : LOW is defined as VIN = 0.4 x VDDQ; HIGH is defined as VIN = VDDQ  
STABLE is defined as inputs are stable at a HIGH level.  
;
SWITCHING is defined as inputs are changing between HIGH and LOW every clock cycle for address and  
control signals, and inputs changing 50% of each data transfer for DQ signals.  
3. Legend : A=Activate, RA=Read with Autoprecharge, D=DESELECT  
Data Sheet  
74  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.13  
Summary of timing parameters for –1.6, –2.0 and –2.2 ns speed sorts in DLL  
on mode  
Table 43  
Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Parameter  
Read  
latency bol  
Sym- Limit Values  
–1.6  
max  
Unit Notes  
–2.0  
max  
–2.2  
max  
min  
min  
min  
Clock and Clock Enable  
Clock Cycle Time  
7
6
5
7
6
5
tCK7  
tCK6  
tCK5  
fCK7  
fCK6  
fCK5  
tCH  
1.6  
3.3  
3.3  
2.0  
4.0  
4.0  
2.2  
4.0  
ns  
2.0  
2.0  
2.2  
4.0  
ns  
2.7  
4.0  
ns  
System frequency  
300  
300  
600  
500  
250  
250  
500  
500  
250  
250  
250  
0.45  
0.45  
0.45  
455  
455  
370  
0.55  
0.55  
MHz  
MHz  
MHz  
tCK  
Clock high level width  
Clock low-level width  
Minimum clock half period  
0.45  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.45  
0.55  
0.55  
tCL  
tCK  
1)  
tHP  
tCK  
Command and Address Setup and Hold Timing  
Address/Command input setup time tIS  
Address/Command input hold time tIH  
0.6  
0.75  
0.75  
0.85  
0.75  
0.75  
0.85  
ns  
ns  
tCK  
0.6  
Address/Command input pulse  
width  
tIPW  
0.85  
Mode Register Set Timing  
Mode Register Set cycle time  
tMRD  
5
4
4
tCK  
tCK  
Mode Register Set to READ timing tMRDR 15  
12  
12  
Row Timing  
Row Cycle Time  
Row Active Time  
tRC  
37.2  
24.0  
8.0  
37.2  
39.6  
ns  
tRAS  
8 x tREFI 24.0  
8 x tREFI 26.2  
8 x tREFI ns  
ACT(a) to ACT(b) Command period tRRD  
8.0  
8.8  
ns  
ns  
ns  
Row Precharge Time  
tRP  
13.2  
13.2  
16.0  
13.2  
17.5  
Row to Column Delay Time for  
Reads  
tRCDRD 16.0  
Row to Column Delay Time for  
Writes  
tRCDWR  
t
RCDWR(min) = tRCDRD(min) - (WL + 1) x tCK(min)  
ns  
Column Timing  
2)  
3)  
4)  
CAS(a) to CAS(b) Command period tCCD  
2
2
2
tCK  
ns  
Write to Read Command Delay  
Read to Write command delay  
tWTR  
tRTW  
6.0  
6.0  
6.6  
tRTW(min)= (CL+4-WL)  
tCK  
Write Cycle Timing Parameters for Data and Data Strobe  
Write command to first WDQS  
latching transition  
tDQSS WL - WL  
WL - WL  
WL - WL  
tCK  
0.25  
+0.25  
0.25  
+0.25  
0.25  
+0.25  
Data-in and Data Mask to WDQS  
Setup Time  
tDS  
0.35  
0.375  
0.375  
ns  
Data Sheet  
75  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
Table 43  
Timing Parameters for –1.6, –2.0 and –2.2 speed sorts  
Read Sym- Limit Values  
latency bol  
Parameter  
Unit Notes  
–2.2  
–1.6  
max  
–2.0  
max  
min  
min  
min  
max  
Data-in and Data Mask to WDQS  
Hold Time  
tDH  
0.35  
0.375  
0.375  
ns  
Data-in and DM input pulse width  
(each input)  
tDIPW 0.45  
0.45  
0.45  
tCK  
DQS input low pulse width  
DQS input high pulse width  
DQS Write Preamble Time  
DQS Write Postamble Time  
Write Recovery Time  
tDQSL 0.45  
tDQSH 0.45  
tWPRE 0.75  
tWPST 0.75  
0.45  
0.45  
0.75  
0.75  
11.0  
0.45  
0.45  
0.75  
0.75  
11.0  
tCK  
tCK  
tCK  
tCK  
ns  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
tWR  
11.0  
3
Read Cycle Timing Parameters for Data and Data Strobe  
Data Access Time from Clock  
Read Preamble  
tAC  
–0.4  
0.4  
1.25  
–0.4  
0.75  
0.75  
0.4  
–0.45 0.45  
ns  
tCK  
tCK  
ns  
tRPRE 0.75  
tRPST 0.75  
1.25  
1.25  
0.75  
0.75  
1.25  
1.25  
Read Postamble  
1.25  
Data-out high impedance time from tHZ  
tACmin tACmax  
tACmin tACmax tACmin tACmax  
CLK  
Data-out low impedance time from tLZ  
tACmin tACmax  
tACmin tACmax tACmin tACmax  
ns  
CLK  
DQS edge to Clock edge skew  
tDQSCK –0.4  
0.4  
–0.4  
0.4  
–0.45 0.45  
ns  
ns  
ns  
ns  
DQS edge to output data edge skew tDQSQ  
0.225  
0.225  
0.225  
0.225  
0.25  
0.25  
Data hold skew factor  
tQHS  
tQH  
0
0
0
Data output hold time from DQS  
Refresh/Power Down Timing  
Refresh Period (4096 cycles)  
tHPtQHS  
tHPtQHS  
tHPtQHS  
tREF  
32  
32  
32  
ms  
µs  
Average periodic Auto Refresh  
interval  
tREFI  
7.8  
7.8  
7.8  
Delay from AREF to next ACT/  
AREF  
tRFC  
54  
54  
54  
ns  
Self Refresh Exit time  
tXSC  
200  
5
200  
4
200  
4
tCK  
tCK  
tCK  
Precharge Power Down Exit time  
Active Power Down Exit time  
Other Timing Parameters  
RES to CKE setup timing  
RES to CKE hold timing  
tXPN  
t XARD  
8
6
6
tATS  
tATH  
tKO  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
Termination update Keep Out  
timing  
Rev. ID EMRS to DQ on timing  
Rev. ID EMRS to DQ off timing  
tRIDon  
tRIDoff  
20  
20  
20  
20  
20  
20  
ns  
ns  
1) tHP is the lesser of tCL minimum and tCH minimum actually applied to the device CLK, CLK inputs  
2) tCCD is either for gapless consecutive reads or gapless consecutive writes.  
3)  
tWTR and tWR start at the first rising edge of CLK after the last valid (falling) WDQS edge of the slowest WDQS signal  
.
4) Please round up tRTW to the next integer of tCK.  
Data Sheet  
76  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Electrical Characteristics  
4.14  
AC Characteristics and Settings  
The following tables are meant as a guideline to correctly set the most important timing parameters depending on  
speed sort and clock frequency.  
Table 44  
HYB18T256324F–16  
Frequency / tCK  
CAS  
Latency  
tRC  
tRFC  
tRAS  
tRP  
tWR  
tRRD  
tRCDRD tRCDWR Unit  
600 MHz / 1.6ns  
500 MHz / 2.0ns  
455 MHz / 2.2ns  
400 MHz / 2.5ns  
370 MHz / 2.7ns  
300 MHz / 3.0ns  
7
7
7
6
6
6
23  
19  
17  
15  
14  
12  
33  
27  
25  
22  
20  
17  
15  
12  
11  
10  
9
8
7
6
6
5
4
7
6
5
5
5
4
5
4
4
4
3
3
10  
8
7
6
6
5
5
4
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
8
7
6
8
5
Table 45  
HYB18T256324F–20  
Frequency / tCK  
CAS  
Latency  
tRC  
tRFC  
tRAS  
tRP  
tWR  
tRRD  
tRCDRD tRCDWR Unit  
500 MHz / 2.0ns  
455 MHz / 2.2ns  
400 MHz / 2.5ns  
370 MHz / 2.7ns  
300 MHz / 3.0ns  
7
19  
17  
15  
14  
12  
27  
25  
22  
20  
17  
12  
11  
10  
9
7
6
6
5
4
6
5
5
5
4
4
4
4
3
3
8
8
7
6
5
5
5
4
4
3
tCK  
tCK  
tCK  
tCK  
tCK  
7,6  
7,6  
6
6
8
Table 46  
HYB18T256324F–22  
Frequency / tCK  
CAS  
Latency  
tRC  
tRFC  
tRAS  
tRP  
tWR  
tRRD  
tRCDRD tRCDWR Unit  
455 MHz / 2.2ns  
400 MHz / 2.5ns  
370 MHz / 2.7ns  
300 MHz / 3.0ns  
266 MHz / 3.8ns  
250MHZ / 4.0ns  
7
18  
16  
15  
12  
11  
10  
25  
22  
20  
17  
15  
14  
12  
11  
10  
8
6
6
5
4
4
4
5
5
5
4
3
3
4
4
4
3
3
3
8
7
7
6
5
5
5
5
4
4
3
3
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
7,6  
7,6  
5
5
7
5
7
Data Sheet  
77  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Package Outlines  
5
Package Outlines  
11.00 ± 0.10  
BALL A1  
INDICATOR  
1.20 MAX  
TOP VIEW  
C
1
2
3
4
5
6
7
8
9 10 11 12  
M
L
K
J
H
G
F
0.12  
C
E
D
C
B
A
0.40  
0.80 (11X)  
BALLS VIEW  
All dimensions in mm.  
Figure 58 Package Outline FBGA  
1. The package is conforming with JEDEC MO216  
2. The inner matrix of 4x4 balls is reserved for thermal contacts  
Data Sheet  
78  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
HYB18T256324F–[16/20/22]  
256-Mbit DDR SGRAM  
Package Outlines  
5.1  
Package Thermal Characteristics  
Table 47  
P-FBGA 144 Package Thermal Resitances  
Theta_jA  
Theta_jB Theta_jC  
JEDEC Board  
Air Flow  
K/W  
1s0p  
1 m/s  
40.2  
2s0p  
1 m/s  
23.5  
0 m/s  
48.8  
3 m/s  
35.1  
0 m/s  
27.0  
3 m/s  
22.0  
-
-
6.0  
3.9  
1. Theta_jA : Junction to Ambient thermal resistance. The values have been obtained by simulation using the  
conditions stated in the JEDEC JESD-51 standard.  
2. Theta_jB : Junction to Board thermal resistance. The value has been obtained by simulation.  
3. Theta_jC : Junction to Case thermal resistance. The value has been obtainned by simulation.  
Data Sheet  
79  
Rev. 1.11, 04-2005  
10292004-DOXT-FS0U  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYB18T256400AC

DDR2 Registered DIMM Modules
INFINEON

HYB18T256400AC-3

DDR DRAM, 64MX4, 0.45ns, CMOS, PBGA60, 10.50 X 10 MM, MO-207DJ-Z, FBGA-60
INFINEON

HYB18T256400AC-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AC-3S

DDR DRAM, 64MX4, 0.45ns, CMOS, PBGA60, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AC-5

DDR DRAM, 64MX4, 0.6ns, CMOS, PBGA60, 10.50 X 10 MM, MO-207DJ-Z, FBGA-60
INFINEON

HYB18T256400AF

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYB18T256400AF-2.5

DDR DRAM, 64MX4, 0.4ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AF-25F

DDR DRAM, 64MX4, 0.4ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AF-3

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-3

DDR DRAM, 64MX4, 0.45ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AF-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON