HYB18T256400AF-3 [INFINEON]

256 Mbi t DDR2 SDRAM; 256姆吨DDR2 SDRAM
HYB18T256400AF-3
型号: HYB18T256400AF-3
厂家: Infineon    Infineon
描述:

256 Mbi t DDR2 SDRAM
256姆吨DDR2 SDRAM

存储 内存集成电路 动态存储器 双倍数据速率 时钟
文件: 总90页 (文件大小:1656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V1.02, May 2004  
HYB18T256400AF  
HYB18T256800AF  
HYB18T256160AF  
256 Mbit DDR2 SDRAM  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2004-04-02  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 5/7/04.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide  
(www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the  
failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life  
support devices or systems are intended to be implanted in the human body, or to support and/or maintain and  
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other  
persons may be endangered.  
.
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
DATASHEET Rev. 1.02 (05.04)  
Features  
• Differential clock inputs (CK and CK)  
• Bi-directional, differential data strobes (DQS and  
DQS) are transmitted / received with data. Edge  
aligned with  
High Performance:  
-5  
-3.7  
-3S  
-3  
read data and center-aligned with write data  
DDR2 DDR2 DDR2 DDR2  
Speed Sorts  
Units  
-400  
-533  
-667  
-667  
• DLL aligns DQ and DQS transitions with clock  
• DQS can be disabled for single-ended data strobe  
Bin (CL-tRCD-TRP)  
3-3-3 4-4-4 5-5-5 4-4-4  
tck  
operation  
max. Clock  
Frequency  
• Commands entered on each positive clock edge, data  
and data mask are referenced to both edges of DQS  
• Data masks (DM) for write data  
200  
266  
333  
667  
MHz  
Data Rate  
400  
3
533  
4
Mb/s/pin  
• Posted CAS by programmable additive latency for  
CAS Latency (CL)  
5
4
tck  
ns  
ns  
ns  
ns  
better command and data bus efficiency  
tRCD  
tRP  
15  
15  
40  
55  
15  
15  
45  
60  
15  
15  
45  
60  
12  
12  
45  
57  
• Off-Chip-Driver impedance adjustment (OCD) and  
On-Die-Termination (ODT) for better signal quality.  
• Auto-Precharge operation for read and write bursts  
tRAS  
tRC  
• Auto-Refresh, Self-Refresh and power saving Power-  
Down modes  
• Average Refresh Period 7.8µs at a T  
lower than  
CASE  
85oC, 3.9µs between 85oC and 95oC  
• 1.8V ± 0.1V Power Supply  
1.8 V ± 0.1V (SSTL_18) compatible) I/O  
• DRAM organisations with 4, 8 and 16 data in/outputs  
• Normal and Weak Strength Data-Output Drivers  
• 1k page size  
• Double Data Rate architecture: two data transfers per  
• Lead-freePackages:  
clock cycle, four internal banks for concurrent operation  
60 pin FBGA for x4 & x8 components  
84 pin FBPA for x16 components  
• CAS Latency: 3, 4 and 5  
• Burst Length: 4 and 8  
1.0 Description  
All of the control and address inputs are synchronized with  
a pair of externally supplied differential clocks. Inputs are  
latched at the cross point of differential clocks (CK rising  
and CK falling). All I/Os are synchronized with a single  
ended DQS or differential (DQS, DQS) pair in a source  
synchronous fashion. A 15 bit address bus is used to con-  
vey row, column and bank address information in a RAS /  
CAS multiplexing style.  
The 256Mb Double-Data-Rate-2 (DDR2) DRAMs are high-  
speed CMOS Double Data Rate 2 Synchronous DRAM  
devices containing 268,435,456 bits and are internally config-  
ured as a quad-bank DRAMs. The 256Mb chip is organized  
as either 16Mbit x 4 I/O x 4 bank, 8Mbit x 8 I/O x 4 bank or  
4Mbit x 16 I/O x 4 bank device. These synchronous devices  
achieve high speed double-data-rate transfer rates of up to  
667 Mb/sec/pin for general applications.  
The DDR2 devices operate with a 1.8V +/-0.1V power  
supply and are available in FBGA packages.  
The chip is designed to comply with all key DDR2 DRAM key  
features: (1) posted CAS with additive latency, (2) write  
latency = read latency -1, (3) normal and weak strength data-  
output driver, (4) Off-Chip Driver (OCD) impedance adjust-  
ment and (5) an ODT (On-Die Termination) function.  
An Auto-Refresh and Self-Refresh mode is provided along  
with various power-saving power-down modes.  
The functionality described and the timing specifications  
included in this data sheet are for the DLL Enabled mode  
of operation.  
Page 3  
Rainer.Weidlich@Infineon.com  
Rev. 1.02  
May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.1 Ordering Information  
CAS  
Clock  
(MHz)  
Speed  
Sort  
Part Number  
DRAM Organisation  
4 banks x 16 Mbits x 4  
Package  
Latency  
HYB18T256400AF(L)-5  
HYB18T256800AF(L)-5  
HYB18T256160AF(L)-5  
HYB18T256400AF(L)-3.7  
HYB18T256800AF(L)-3.7  
HYB18T256160AF(L)-3.7  
HYB18T256400AF(L)-3  
HYB18T256800AF(L)-3  
HYB18T256160AF(L)-3  
HYB18T256400AF(L)-3S  
HYB18T256800AF(L)-3S  
HYB18T256160A(L)-3S  
Notes:  
60 pin FBGA  
60 pin FBGA  
84 pin FBGA  
60 pin FBGA  
60 pin FBGA  
84 pin FBGA  
60 pin FBGA  
60 pin FBGA  
84 pin FBGA  
60 pin FBGA  
60 pin FBGA  
84 pin FBGA  
3, 4 & 5  
200  
DDR2-400 4 banks x 8 Mbits x 8  
4 banks x 4 Mbits x 16  
4 banks x 16 Mbits x 4  
4 & 5  
4 & 5  
5
266  
DDR2-533 4 banks x 8 Mbits x 8  
4 banks x 4 Mbits x 16  
4 banks x 16 Mbits x 4  
4 banks x 8 Mbits x 8  
4 banks x 4 Mbits x 16  
4 banks x 16 Mbits x 4  
4 banks x 8 Mbits x 8  
4 banks x 4 Mbits x 16  
333  
DDR2-667  
1) For product nomenclature see section 10 of this datasheet  
2) Versions with an “L” in the part numbers are Low Power versions of the standard component with reduced IDD6 Self-Refresh  
current. See section 6.1 for IDD current specifications.  
3) All FBGA packages are lead-free.  
1.2 Pin Description  
1.2.1 x4 Components  
Function  
Symbol  
Function  
Symbol  
A0~A12  
A0~A9,A11  
BA0, BA1  
Row Address Inputs  
Column Address Inputs  
Bank Address Inputs  
Differential Data Strobes  
No Connection (Chip to Pin)  
Supply Voltage  
DQS, DQS  
NC  
VDD  
Column Address Input  
for Auto-Precharge  
Ground  
A10/AP  
VSS  
Chip Select  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Supply Voltage for DQ  
Ground for DQs  
Supply Voltage for DLL  
Ground for DLL  
CS  
RAS  
CAS  
WE  
VDDQ  
VSSQ  
VDDL  
VSSDL  
Reference Voltage for SSTL  
Data Inputs/Outputs (x4)  
DQ0~DQ3  
VREF  
Inputs  
Clock Enable  
Differential Clock Inputs  
Data Input Mask  
On Die Termination Enable  
Reserved for future use  
Not Connected  
CKE  
CK, CK  
DM  
ODT  
RFU  
NC  
Page 4  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.2.1 x8 Components  
Function  
Symbol  
Function  
Symbol  
A0~A12  
A0~A9  
Row Address Inputs  
Column Address Inputs  
Bank Address Inputs  
Differential Data Strobes  
Differential Read Data Strobes  
Supply Voltage  
DQS, DQS  
RDQS, RDQS  
VDD  
BA0, BA1  
Column Address Input  
for Auto-Precharge  
Ground  
A10/AP  
VSS  
Chip Select  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Supply Voltage for DQ  
Ground for DQs  
Supply Voltage for DLL  
Ground for DLL  
CS  
RAS  
CAS  
WE  
VDDQ  
VSSQ  
VDDL  
VSSDL  
Reference Voltage for SSTL  
Data Inputs/Outputs (x8)  
DQ0~DQ7  
VREF  
Inputs  
Clock Enable  
Differential Clock Inputs  
Data Input Mask  
On Die Termination Enable  
Reserved for future use  
Not connected  
CKE  
CK, CK  
DM  
ODT  
RFU  
NC  
1.2.3 x16 Components  
Function  
Symbol  
Function  
Symbol  
LDQS,LDQS  
UDQS,UDQS  
Row Address Inputs  
Differential Data Strobes  
A0~A12  
Column Address Inputs  
Bank Address Inputs  
No Connection (Chip to Pin)  
Supply Voltage  
A0~A8  
BA0, BA1  
NC  
VDD  
Column Address Input  
for Auto-Precharge  
Ground  
A10/AP  
VSS  
Chip Select  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Supply Voltage for DQ  
Ground for DQs  
Supply Voltage for DLL  
Ground for DLL  
CS  
RAS  
CAS  
WE  
VDDQ  
VSSQ  
VDDL  
VSSDL  
Reference Voltage for SSTL  
Data Inputs/Outputs  
LDQ0~7, UDQ0~7  
VREF  
Inputs  
Clock Enable  
Differential Clock Inputs  
Data Input Masks  
On Die Termination Enable  
reserved for future use  
Not connected  
CKE  
CK, CK  
LDM, UDM  
ODT  
RFU  
NC  
Page 5  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.3 256Mbit DDR2 Addressing  
Configuration  
# of Banks  
64Mb x 4  
32Mb x 8  
4
16Mb x 16  
4
4
BA0, BA1  
A10 / AP  
A0 ~ A12  
A0 ~ A9, A11  
2048 bits  
1024 (1kB)  
Bank Address  
Auto-Precharge  
Row Address  
Column Address  
Page Length  
Page Size  
BA0, BA1  
A10 / AP  
A0 ~ A12  
A0 ~ A9  
1024 bits  
1024 (1kB)  
BA0, BA1  
A10 / AP  
A0 ~ A12  
A0 ~ A8  
512 bits  
1024 (1kB)  
page length = 2 colbit,  
page size in bytes = 2 colbits x ORG / 8  
where colbits is the number of column address bits and ORG the number of I/O (DQ) bits.  
,
1.4 Package Pinout & Addressing  
1.4.1 Package Pinout for x4 components, 60 pins, FBGA Package (top view)  
1
2
3
VSS  
DM  
7
8
DQS  
VSSQ  
DQ0  
VSSQ  
CK  
9
VDD  
NC  
NC  
A
B
C
D
E
F
VSSQ  
DQS  
VDDQ  
DQ2  
VSSDL  
RAS  
CAS  
A2  
VDDQ  
NC  
VSSQ  
DQ1  
VSSQ  
VREF  
CKE  
BA0  
A10  
A3  
VDDQ  
NC  
VDDQ  
DQ3  
VSS  
WE  
VDDQ  
NC  
VDDL  
VDD  
ODT  
CK  
RFU  
VSS  
VDD  
BA1  
A1  
G
H
J
CS  
A0  
VDD  
VSS  
A5  
A6  
A4  
A7  
A9  
K
L
A11  
A8  
A12  
NC,(A14)  
NC,(A15) NC,(A13)  
Notes:  
1) VDDL and VSSDL are power and ground for the DLL.They are isolated on the  
device from VDD, VDDQ, VSS and VSSQ.  
2) NC, (A13), NC,(A14) and NC,(A15) are additional address pins for future genera-  
tion DRAMs and are not connected on this component  
3) Ball position G1 “RFU” will be used for BA2 on 1Gbit memory densities and higher  
Page 6  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.4.2 Package Pinout for x8 components, 60 pins, FBGA Package (top view)  
1
2
3
7
8
9
NU,  
VDD  
VSS  
A
B
VSSQ  
DQS  
VDDQ  
RDQS  
DM,  
DQ6  
VSSQ  
DQS  
VSSQ  
DQ7  
RDQS  
VDDQ  
DQ4  
DQ1  
VSSQ  
VREF  
CKE  
BA0  
A10  
VDDQ  
DQ3  
VSS  
WE  
C
D
E
F
VDDQ  
DQ2  
VSSDL  
RAS  
CAS  
A2  
DQ0  
VSSQ  
CK  
VDDQ  
DQ5  
VDDL  
VDD  
ODT  
CK  
RFU  
VSS  
VDD  
BA1  
A1  
G
H
J
CS  
A0  
VDD  
VSS  
A3  
A5  
A6  
A4  
A7  
A9  
K
L
A11  
A8  
A12  
NC,(A14)  
NC,(A15) NC,(A13)  
Notes:  
1) RDQS / RDQS are enabled by EMRS(1) command.  
2) If RDQS / RDQS is enabled, the DM function is disabled  
3) When enabled, RDQS & RDQS are used as strobe signals during reads.  
4) VDDL and VSSDL are power and ground for the DLL. They are isolated on the  
device from VDD, VDDQ, VSS and VSSQ.  
5) NC,(A13), NC,(A14) and NC,(A15) are additional address pins for future generation  
DRAMs and are not connected on this component.  
6) Ball position G1 “RFU” will be used for BA2 on 1Gbit memory densities and higher  
Page 7  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.4.3 Package Pinout for x16 components 84 pins, FBGA Package (top view)  
1
2
3
VSS  
UDM  
VDDQ  
DQ3  
VSS  
LDM  
VDDQ  
LDQ3  
VSS  
WE  
7
8
9
VDD  
NC  
A
B
C
D
E
F
VSSQ  
UDQS  
VDDQ  
UDQ2  
VSSQ  
LDQS  
VDDQ  
LDQ2  
VSSDL  
RAS  
UDQS  
VSSQ  
UDQ0  
VSSQ  
LDQS  
VSSQ  
LDQ0  
VSSQ  
CK  
VDDQ  
UDQ7  
VDDQ  
UDQ5  
VDDQ  
LDQ7  
VDDQ  
LDQ5  
VDD  
UDQ6  
VDDQ  
UDQ4  
VDD  
VSSQ  
UDQ1  
VSSQ  
NC  
LDQ6  
VDDQ  
LDQ4  
VDDL  
VSSQ  
LDQ1  
VSSQ  
VREF  
CKE  
BA0  
A10  
G
H
J
K
L
CK  
ODT  
RFU  
VSS  
VDD  
BA1  
A1  
CAS  
CS  
M
N
P
R
A2  
A0  
VDD  
VSS  
A3  
A5  
A6  
A4  
A7  
A9  
A11  
A8  
A12  
NC,(A14)  
NC,(A15) NC,A13)  
Notes:  
1) UDQS/UDQS is data strobe for upper byte, LDQS/LDQS is data strobe for lower  
byte  
2) UDM is the data mask signal for the upper byte UDQ0~UDQ7,  
LDM is the data mask signal for the lower byte LDQ0~LDQ7  
3) NC,(A13), NC, (A14) and NC, (A15) are additional address pins for future gener-  
ation DRAMs and are not connected on this component.  
4) Ball position G1 “RFU” will be used for BA2 on 1Gbit memory densities and  
higher  
Page 8  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.5 Input/Output Functional Description  
Type  
Function  
Symbol  
Clock: CK and CK are differential system clock inputs. All address and control inputs are sampled on the crossing of  
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossing of CK and CK  
(both direction of crossing)  
CK, CK  
Input  
Clock Enable: CKE high activates and CKE low deactivates internal clock signals and device input buffers and out-  
put drivers. Taking CKE low provides Precharge Power-Down and Self-Refresh operation (all banks idle), or Active  
Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit and for self-refresh entry.  
Input buffers excluding CKE are disabled during self-refresh. CKE is used asynchronously to detect self-refresh exit  
condition. Self-refresh termination itself is synchronous. After VREF has become stable during power-on and initiali-  
sation sequence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and  
exit, VREF must be maintained to this input. CKE must be maintained high throughout read and write accesses.  
Input buffers, excluding CK, CK, ODT and CKE are disabled during dower-down.  
Input  
Input  
CKE  
Chip Select: All command are masked when CS is registered high. CS provides for external rank selection on sys-  
CS  
tems with multiple memory ranks. CS is considered part of the command code.  
Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered  
RAS, CAS, WE  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled high coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input  
Input only, the DM loading matches the DQ and DQS loading. LDM and UDM are the input mask signals for x16 compo-  
nents and control the lower or upper bytes. For x8 components the data mask function is disabled, when RDQS /  
RQDS are enabled by EMRS(1) command.  
DM, LDM, UDM  
Bank Address Inputs: BA0 and BA1 define to which bank an Activate, Read, Write or Precharge command is being  
Input applied. BA0 and BA1 also determines if the mode register or extended mode register is to be accessed during a  
MRS or EMRS(1) cycle.  
BA0, BA1  
A0 - A12  
Address Inputs: Provides the row address for Activate commands and the column address and Auto-Precharge bit  
A10 (=AP) for Read/Write commands to select one location out of the memory array in the respective bank. A10  
Input (=AP) is sampled during a Precharge command to determine whether the precharge applies to one bank (A10=low)  
or all banks (A10=high). If only one bank is to be precharged, the bank is selected by BA0 and BA1. The address  
inputs also provide the op-code during Mode Register Set commands.  
Input/  
Output  
Data Inputs/Output: Bi-directional data bus. DQ0~DQ3 for x4 components, DQ0~DQ7 for x8 components,  
DQx,  
LDQ0~LDQ7 and UDQ0~UDQ7 for x16 components  
LDQx,UDQx  
Data Strobe: output with read data, input with write data. Edge aligned with read data, centered with write data. For  
the x16, LDQS corresponds to the data on LDQ0 - LDQ7; UDQS corresponds to the data on UDQ0-UDQ7. The data  
strobes DQS, LDQS, UDQS may be used in single ended mode or paired with the optional complementary signals  
DQS, LDQS, UDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1)  
control bit enables or disables the complementary data strobe signals.  
DQS, (DQS)  
LDQS, (LDQS), Input/  
UDQS,(UDQS) Output  
Read Data Strobe: For the x8 components a RDQS, RDQS pair can be enabled via the EMRS(1) for read timing.  
RDQS, RDQS is not supported on x4 and x16 components. RDQS, RDQS are edge-aligned with read data. If  
RDQS, RDQS is enabled, the DM function is disabled on x8 components.  
Input/  
RDQS, (RDQS)  
Output  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When  
enabled, ODT is applied to each DQ, DQS, DQS and DM signal for x4 and DQ, DQS, DQS, RDQS, RDQS and DM  
for x8 configurations. For x16 configuration ODT is applied to each DQ, UDQS, UDQS, LDQS, LDQS, UDM and  
LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT.  
Input  
ODT  
NC  
No Connect: no internal electrical connection is present  
Supply DQ Power Supply: 1.8V +/- 0.1V  
Supply DQ Ground  
V
DDQ  
V
SSQ  
Supply DLL Power Supply: 1.8V +/- 0.1V  
Supply DLL Ground  
V
DDL  
V
SSDL  
Supply Power Supply: 1.8V +/- 0.1V  
V
DD  
Supply Ground  
V
SS  
Supply Reference Voltage  
VREF  
No Connects: BA2, A13 ~ A15 are additional address pins for future generation DRAMs and are not connected on  
the components describes in this datasheet.  
(BA2),  
NC  
(A13~A15)  
Page 9  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
1.6 Block Diagrams  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
AP  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
15  
8192  
Bank0  
Memory  
Array  
15  
Data  
15  
(8192 x 512 x 16)  
4
4
4
4
4
16  
Sense Amplifiers  
2
DQS  
Generator  
DQ0-DQ3,  
DM  
DQS  
DQS  
COL0,1  
Input  
I/O Gating  
DM Mask Logic  
16  
Register  
2
DQS  
DQS  
Mask 1  
1
A0-A12,  
15  
Write  
BA0, BA1  
FIFO  
1
1
1
&
16  
512  
2
1
Drivers  
(x16)  
1
1
4
1
Column  
Decoder  
4
4
4
9
4
Column-Address  
Counter/Latch  
11  
16  
4
4
COL0,1  
4
4
2
Data  
4
CK,  
CK  
COL0,1  
Note: This Functional Block Diagram is intended to facilitate user understanding of the operation of  
the device; it does not represent an actual circuit implementation.  
Note: DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidi-  
rectional DQ and DQS signals.  
Block Diagram 16Mbit x 4 I/O x 4 Internal Memory Banks,  
(64 Mbit x 4 Organisation with 13 Row, 2 Bank and 11 Column External Addresses)  
Page 10  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
AP  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
15  
Bank0  
Memory  
Array  
15  
8192  
Data  
15  
(8192x256x32)  
8
8
8
8
8
32  
Sense Amplifiers  
1
DQS  
Generator  
DQ0-DQ7,  
DM  
DQS  
DQS  
COL0,1  
Input  
I/O Gating  
DM Mask Logic  
32  
Register  
2
DQS  
DQS  
A0-A12,  
BA0, BA1  
1
1
Mask  
Write  
15  
FIFO  
1
1
1
1
&
32  
2
256  
1
Drivers  
(x32)  
1
1
4
Column  
Decoder  
8
8
8
8
8
8
Column-Address  
Counter/Latch  
10  
32  
8
COL0,1  
8
8
Data  
2
8
CK,  
CK  
COL0,1  
Note: This Functional Block Diagram is intended to facilitate user understanding of the operation of  
the device; it does not represent an actual circuit implementation.  
Note: DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidi-  
rectional DQ and DQS signals.  
Block Diagram 8Mbit x 8 I/O x 4 Internal Memory Banks  
(32Mb x 8 Organisation with 13 Row, 2 Bank and 10 Column External Addresses)  
Page 11  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
AP  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
15  
8192  
Bank0  
Memory  
Array  
15  
Data  
15  
16  
16  
16  
16  
(8192 x 128 x 64)  
16  
64  
Sense Amplifiers  
1
DQS  
Generator  
LDQ0-LDQ7  
LDM  
DQS  
DQS  
COL0,1  
Input  
Register  
I/O Gating  
DM Mask Logic  
UDQ0-UDQ7  
64  
2
Mask 2  
2
Write  
UDM  
A0-A12,  
BA0, BA1  
15  
FIFO  
2
2
2
LDQS  
LDQS  
UDQS  
&
64  
2
Drivers  
2
128  
2
2
(x64)  
8
2
UDQS  
Column  
Decoder  
16  
16  
16  
7
16  
16  
16  
64  
Column-Address  
Counter/Latch  
16  
9
16  
16  
COL0  
Data  
2
CK,  
CK  
COL0,1  
Note: This Functional Block Diagram is intended to facilitate user understanding of the operation  
of the device; it does not represent an actual circuit implementation.  
Note: DM is a unidirectional signal (input only), but is internally loaded to match the load of the  
Block Diagram 4Mbit x 16 I/O x 4 Internal Memory Banks  
(16Mb x 16 Organisation with 13 Row, 2 Bank and 9 Column External Addresses)  
Page 12  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2. Functional Description  
2.1 Simplified State Diagram  
CKEL  
REFSX  
Initialization  
Sequence  
Autorefreshing  
Selfrefresh  
t
RFC  
CKEL  
MRS  
setting MRS  
or EMRS  
PD_entry  
Idle  
Precharge PD CKEH  
t
MRD  
Activating  
t
RCD  
t
WL + BL/2 + WR  
Writing_AP  
RP  
Precharging  
RL + BL/2 + t  
RTP  
Reading_AP  
Write  
Read  
Writing  
Reading  
Automatic Sequence  
Command Sequence  
CKEL  
Active PD  
PD_entry  
CKEH  
Bank Active  
This Simplified State Diagram is intended to provide a floorplan of the possible state transitions and the  
commands to control them. In particular situations involving more than one bank, enabling / disabling on-die  
termination, Power-Down entry / exit - among other things - are not captured in full detail.  
Page 13  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.2 Basic Functionality  
Read and write accesses to the DDR2 SDRAM are burst oriented; accesses start at a selected location and con-  
tinue for the burst length of four or eight in a programmed sequence. Accesses begin with the registration of an  
Activate command, which is followed by a Read or Write command. The address bits registered coincident with  
the activate command are used to select the bank and row to be accessed (BA0 & BA1 select the bank, A0-A12  
select the row). The address bits registered coincident with the Read or Write command are used to select the  
starting column location for the burst access and to determine if the Auto-Precharge command is to be issued.  
Prior to normal operation, the DDR2 SDRAM must be initialized. The following sections provide detailed informa-  
tion covering device initialization, register definition, command description and device operation.  
2.2.1 Power On and Initialization  
DDR2 SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than  
those specified may result in undefined operation. Power-Up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE below 0.2 * VDDQ and ODT at a low state (all other inputs may be  
undefined). To guarantee ODT off, VREF must be valid and a low level must be applied to the ODT pin. Maximum  
power up interval for VDD/VDDQ is specified as 10.0 ms. The power interval is defined as the amount of time it takes  
for VDD / VDDQ to power-up from 0V to 1.8 V +/- 100 mV.  
- VDD,VDDL and VDDQ are driven from a single power converter output, AND  
- VTT is limited to 0.95 V max, AND  
- VREF tracks VDDQ/2  
or  
- Apply VDD before or at the same time as VDDL,  
- Apply VDDL before or at the same time as VDDQ.  
- Apply VDDQ before or at the same time as VTT & VREF.  
at least one of these two sets of conditions must be met.  
2. Start clock (CK, CK) and maintain stable power and clock condition for a minimum of 200 µs.  
3. Apply NOP or Deselect commands & take CKE high.  
4. Wait minimum of 400ns, then issue a Precharge-All command.  
5. Issue EMRS(2) command. (To issue EMRS(2) command, provide “low” to BA0 and BA2 and “high” to BA1)  
6. Issue EMRS(3) command. (To issue EMRS(3) command, provide “low” to BA2 and “high” to BA0 and BA1)  
7. Issue EMRS(1) command to enable DLL. (To issue “DLL Enable” command, provide “low” to A0 and  
“high” to BA0 and “low” to BA1,BA2 and A13~A15)  
8. Issue MRS command (Mode Register Set) for "DLL reset". (To issue DLL reset command, provide “high” to A8  
and “low” to BA0 ~ BA2 and A13 ~ A15)  
9. Issue Precharge-All command.  
10. Issue 2 or more Auto-Refresh commands.  
11. Issue a MRS command with low on A8 to initialize device operation. (i.e. to program operating parameters with  
out resetting the DLL)  
12. At least 200 clocks after step 8, execute OCD Calibration (Off Chip Driver impedance adjustment). If OCD cali-  
bration is not used, EMRS OCD Default command (A9=A8=A7=1) followed by EMRS(1) OCD Calibration Mode  
Exit command (A9=A8=A7=0) must be issued with other parameters of EMRS(1).  
13. The DDR2 SDRAM is now ready for normal operation.  
Page 14  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Example:  
CK, CK  
CKE  
ODT "low"  
Follow OCD  
tMRS  
tMRS  
tRP  
tMRS  
tRP  
tRFC  
tRFC  
tMRS  
tMRS  
tMRS  
400 ns  
flowchart  
PRE  
ALL  
PRE  
ALL  
2nd Auto  
refresh  
1st Auto  
refresh  
Any  
Command  
EMRS(1)  
OCD  
EMRS(1)  
OCD  
NOP  
EMRS(2)  
MRS  
EMRS(1)  
EMRS(3)  
MRS  
min. 200 cycles to lock the DLL  
Extended  
Mode  
Mode  
Mode  
Register  
Set w/o  
Register  
Set with  
OCD Drive(1)  
or  
OCD  
Register(1) Set  
calibration  
mode exit  
with DLL enable DLL reset  
OCD default  
DLL reset  
2.2.2 Programming the Mode Register and Extended Mode Registers  
For application flexibility, burst length, burst type, CAS latency, DLL reset function, write recovery time (WR) are  
user defined variables and must be programmed with a Mode Register Set (MRS) command. Additionally, DLL  
disable function, additive CAS latency, driver impedance, ODT (On Die Termination), single-ended strobe and  
OCD (off chip driver impedance adjustment) are also user defined variables and must be programmed with an  
Extended Mode Register Set (EMRS) command. Contents of the Mode Register (MRS) and Extended Mode Reg-  
isters (EMRS(#)) can be altered by re-executing the MRS and EMRS Commands. If the user chooses to modify  
only a subset of the MRS or EMRS variables, all variables must be redefined when the MRS or EMRS commands  
are issued. Also any programming of EMRS(2) or EMRS(3) must be followed by programming of MRS and  
EMRS(1). After initial power up, all MRS and EMRS Commands must be issued before read or write cycles may  
begin. All banks must be in a precharged state and CKE must be high at least one cycles before the Mode Regis-  
ter Set Command can be issued. Either MRS or EMRS Commands are activated by the low signals of CS, RAS,  
CAS and WE at the positive edge of the clock. When both bank addresses BA0 and BA1 are low, the DDR2  
SDRAM enables the MRS command. When the bank addresses BA0 is high and BA1 low, the DDR2 SDRAM  
enables the EMRS(1) command. The address input data during this cycle defines the parameters to be set as  
shown in the MRS and EMRS table. A new command may be issued after the mode register set command cycle  
time (tMRD). MRS, EMRS and DLL Reset do not affect array contents, which means re-initialization including  
those can be executed any time after power-up without affecting array contents.  
2.2.3 DDR2 SDRAM Mode Register Set (MRS)  
The mode register stores the data for controlling the various operating modes of DDR2 SDRAM. It programs CAS  
latency, burst length, burst sequence, test mode, DLL reset, WR (write recovery) and various vendor specific  
options to make DDR2 SDRAM useful for various applications. The default value of the mode register is not  
defined, therefore the mode register must be written after power-up for proper operation. The mode register is  
written by asserting low on CS, RAS, CAS, WE, BA0 and BA1, while controlling the state of address pins A0 ~  
A13. The DDR2 SDRAM should be in all bank precharge (idle) mode with CKE already high prior to writing into  
the mode register. The mode register set command cycle time (t  
MRD  
) is required to complete the write operation  
to the mode register. The mode register contents can be changed using the same command and clock cycle  
requirements during normal operation as long as all banks are in the precharge state. The mode register is divided  
into various fields depending on functionality. Burst length is defined by A0 ~ A2 with options of 4 and 8 bit burst  
length. Burst address sequence type is defined by A3 and CAS latency is defined by A4 ~ A6. A7 is used for test  
mode and must be set to low for normal MRS operation. A8 is used for DLL reset. A9 ~ A11 are used for write  
recovery time (WR) definition for Auto-Precharge mode. With address bit A12 two Power-Down modes can be  
selected, a “standard mode” and a “low-power” Power-Down mode, where the DLL is disabled. Address bit A13  
and all “higher” address bits (including BA2) have to be set to “low” for compatibility with other DDR2 memory  
products with higher memory densities.  
Page 15  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
MRS Mode Register Operation Table (Address Input For Mode Set)  
A13~  
A15  
BA2  
BA1 BA0  
A12 A11 A10 A9  
Address Field  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
0* PD  
0*  
0*  
0*  
WR  
DLL TM  
Mode  
Register  
CAS Latency  
BT  
Burst Length  
Burst Type  
Sequential  
Interleave  
A7  
Mode  
Normal  
Test  
A8  
DLL Reset  
No  
A2 A1 A0 Burst Length  
0
1
0
1
0
0
1
1
0
1
4
8
0
1
Yes  
A6  
0
A5  
0
A4  
0
Latency  
Reserved  
Reserved  
2 (optional) ***)  
3
A11 A10 A9  
WR **)  
Active Power-Down  
Mode Select  
A12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
0
0
1
2
0
1
Fast exit (use tXARD)  
Slow exit (use tXARDS)  
0
1
0
3
0
1
1
4
1
0
0
4
5
1
0
1
5
6
1
1
0
Reserved  
Reserved  
Reserved  
Reserved  
BA1  
BA0 MRS mode  
1
1
1
0
0
0
1
MRS  
EMRS(1)  
EMRS(2):  
Reserved  
1
1
0
1
EMRS(3):  
Reserved  
*) Must be programmed to 0 when setting the mode register. A13 ~ A15 and BA2 are reserved for future use  
and must be programmed to 0 when setting the mode register MRS  
**) The programmability of WR (Write Recovery) is for Writes with Auto-Precharge only and defines the time  
when the device starts precharge internally. WR must be programmed to fulfill the minimum retirement for  
the analogue tWR timing.  
***) CAS Latency = 2 is implemented in this design, but functionality is not tested and guaranteed.  
Page 16  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.2.4 DDR2 SDRAM Extended Mode Register Set (EMRS(1))  
The extended mode register EMRS(1) stores the data for enabling or disabling the DLL, output driver strength,  
additive latency, OCD program, ODT, DQS and output buffers disable, RQDS and RDQS enable. The default  
value of the extended mode register EMRS(1) is not defined, therefore the extended mode register must be writ-  
ten after power-up for proper operation. The extended mode register is written by asserting low on CS, RAS, CAS,  
WE, BA1 and high on BA0, while controlling the state of the address pins. The DDR2 SDRAM should be in all  
bank precharge with CKE already high prior to writing into the extended mode register. The mode register set  
command cycle time (tMRD) must be satisfied to complete the write operation to the EMRS(1). Mode register con-  
tents can be changed using the same command and clock cycle requirements during normal operation as long as  
all banks are in precharge state.  
EMRS(1) Extended Mode Register Operation Table (Address Input For Mode Set)  
A13~A15  
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Field  
BA2 BA1  
0* 0*  
A12 A11  
Qoff  
BA0  
1
Extended Mode  
Register  
OCD program  
Rtt  
Additive latency  
D.I.C DLL  
Rtt  
RDQS DQS  
0*  
A 6 A2 R tt (nom .)  
0
0
1
0
O D T disabled  
75 ohm  
A 11  
RDQ S,(RQ DS) Enable  
D isable  
0
0
1
A0  
0
D LL E nable  
Enable  
1
1
150 ohm  
E nable  
Reserved  
1
1
D isable  
a)  
Qoff  
A12  
O utput buffers enabled  
0
1
O utput buffers disabled  
DQ S,(RD Q S) Disable  
Enable  
A5  
0
A 4 A 3  
AdditiveLatency  
A 10  
a) Disables DQ, DQS, DQS, RDQS, RDQS  
0
1
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
D isable  
0
1
M R S m ode  
M R S  
BA 1 B A0  
0
2
0
0
1
0
1
0
0
3
E M R S(1)  
1
4
EMRS(2)  
EMRS(3)  
1
R eserved  
R eserved  
R eserved  
1
1
1
1
A 9  
A8  
0
A 7  
0
O C D C alibration Program  
0
0
0
1
1
OCD Cal. Mode Exit, maintain setting  
O utput D river  
Im pedence C ontrol  
D river  
S ize  
A 1  
0
1
D rive (1)  
D rive (0)  
0
1
N orm al  
100%  
60%  
1
0
a)  
W eak  
0
0
Adjust m ode  
b)  
1
OCD Calibration default  
1
a) When Adjust mode is issued, AL from previously set value must be applied  
b) After setting to default, OCD mode needs to be exited by setting A9~A7 to 000.  
Refer to the following 2.2.2.5 section for detailed information.  
*) must be programmed to 0 for compatibility with future DDR2 memory products.  
Page 17  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
A0 is used for DLL enable or disable. A1 is used for enabling half-strength data-output driver. A2 and A6 enables  
ODT (On-Die termination) and sets the Rtt value. A3~A5 are used for additive latency settings and A7 ~ A9  
enables the OCD impedance adjustment mode. A10 enables or disables the differential DQS and RDQS signals,  
A11 disables or enables RDQS. Address bit A12 have to be set to “low” for normal operation. With A12 set to  
“high” the SDRAM outputs are disabled and in Hi-Z. “High” on BA0 and “low” for BA1 have to be set to access the  
EMRS(1). A13 and all “higher” address bits (including BA2) have to be set to “low” for compatibility with other  
DDR2 memory products with higher memory densities. Refer to the table for specific codes on the previous page.  
Single-ended and Differential Data Strobe Signals  
The following table lists all possible combinations for DQS, DQS, RDQS, RQDS which can be programmed by  
A10 & A11 address bits in EMRS(1). RDQS and RDQS are available in x8 components only. If RDQS is enabled  
in x8 components, the DM function is disabled. RDQS is active for reads and don’t care for writes:  
EMRS(1)  
Strobe Function Matrix  
Signaling  
A10  
A11  
RDQS/DM  
RDQS  
DQS  
DQS  
(DQS Enable)  
0 (Enable)  
1 (Disable)  
0 (Enable)  
1 (Disable)  
(RDQS Enable)  
0 (Disable)  
0 (Disable)  
1 (Enable)  
1 (Enable)  
DM  
DM  
Hi-Z  
Hi-Z  
DQS  
DQS  
DQS  
DQS  
DQS  
Hi-Z  
DQS  
Hi-Z  
differential DQS signals  
single-ended DQS signals  
differential DQS signals  
single-ended DQS signals  
RDQS  
RDQS  
RDQS  
Hi-Z  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon  
returning to normal operation after having the DLL disabled. The DLL is automatically disabled when entering  
Self-Refresh operation and is automatically re-enabled and reset upon exit of Self-Refresh operation. Any time the  
DLL is reset, 200 clock cycles must occur before a Read command can be issued to allow time for the internal  
clock to be synchronized with the external clock. Less clock cycles may result in a violation of the tAC or tDQSCK  
parameters.  
Output Disable (Qoff)  
Under normal operation, the DRAM outputs are enabled during Read operation for driving data (Qoff bit in the  
EMRS(1) is set to 0). When the Qoff bit is set to 1, the DRAM outputs will be disabled. Disabling the DRAM out-  
puts allows users to measure IDD currents during Read operations, without including the output buffer current.  
Page 18  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.2.5 EMRS(2) Extended Mode Register  
The Extended Mode Registers EMRS(2) and EMRS(3) are reserved for future use and must be programmed  
when setting the mode register during initialization.  
The extended mode register EMRS(2) is written by asserting low on CS, RAS, CAS, WE, BA2, BA0 and high on  
BA1, while controlling the state of the address pins. The DDR2 SDRAM should be in all bank precharge with CKE  
already high prior to writing into the extended mode register. The mode register set command cycle time (tMRD)  
must be satisfied to complete the write operation to the EMRS(2). Mode register contents can be changed using  
the same command and clock cycle requirements during normal operation as long as all banks are in precharge  
state  
A13~A15  
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
Address Field  
BA2 BA1  
A12 A11  
BA0  
0
Extended Mode  
Register(2)  
0*  
1
0*  
*) must be programmed to "0"  
EMRS(2)  
2.2.6 EMRS(3) Extended Mode Register  
The Extended Mode Register EMRS(3) is reserved for future use and all bits except BA0 and BA1 must be pro-  
grammed to 0 when setting the mode register during initialization  
.
A13~A15  
Address Field  
BA2 BA1  
A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
0*  
BA0  
1
Extended Mode  
Register(3)  
0*  
1
*) must be programmed to "0"  
Page 19  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.3 Off-Chip Driver (OCD) Impedance Adjustment  
DDR2 SDRAM supports driver calibration feature and the flow chart below is an example of the sequence. Every  
calibration mode command should be followed by “OCD calibration mode exit” before any other command being  
issued. MRS should be set before entering OCD impedance adjustment and ODT (On Die Termination) should be  
carefully controlled depending on system environment.  
MRS should  
be set before entering OCD impedance adjustment and ODT should  
be carefully controlled depending on system environment  
Start  
EMRS: OCD calibration mode exit  
EMRS: Drive (1)  
EMRS: Drive(0)  
DQ & DQS High; DQSLow  
DQ & DQS Low; DQSHigh  
ALL OK  
ALL OK  
Test  
Test  
Need Calibration  
Need Calibration  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS :  
EMRS :  
Enter Adjus t Mode  
Enter Adjust Mode  
BL=4 code inpu t to all DQs  
Inc, Dec, or NOP  
BL=4 code input to all DQs  
Inc, Dec, or NOP  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
End  
Page 20  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Extended Mode Register Set for OCD impedance adjustment  
OCD impedance adjustment can be done using the following EMRS(1) mode. In drive mode all outputs are driven  
out by DDR2 SDRAM and drive of RDQS is dependent on EMRS(1) bit enabling RDQS operation. In Drive(1)  
mode, all DQ, DQS (and RDQS) signals are driven high and all DQS (and RDQS) signals are driven low. In  
Drive(0) mode, all DQ, DQS (and RDQS) signals are driven low and all DQS (and RDQS) signals are driven  
high. In adjust mode, BL = 4 of operation code data must be used. In case of OCD calibration default, output driver  
characteristics have a nominal impedance value of 18 Ohms during nominal temperature and voltage conditions.  
Output driver characteristics for OCD calibration default are specified in the following table. OCD applies only to  
normal full strength output drive setting defined by EMRS(1) and if half strength is set, OCD default driver charac-  
teristics are not applicable. When OCD calibration adjust mode is used, OCD default output driver characteristics  
are not applicable. After OCD calibration is completed or driver strength is set to default, subsequent EMRS(1)  
commands not intended to adjust OCD characteristics must specify A7~A9 as’000’ in order to maintain the default  
or calibrated value.  
Off- Chip-Driver program  
Operation  
OCD calibration mode exit  
A9  
0
A8  
0
A7  
0
Drive(1) DQ, DQS, (RDQS) high and DQS, (RDQS) low  
Drive(0) DQ, DQS, (RDQS) low and DQS, (RDQS) high  
Adjust mode  
0
1
0
1
0
0
1
1
1
0
0
1
OCD calibration default  
OCD impedance adjust  
To adjust output driver impedance, controllers must issue the ADJUST EMRS(1) command along with a 4 bit  
burst code to DDR2 SDRAM as in the following table. For this operation, Burst Length has to be set to BL = 4 via  
MRS command before activating OCD and controllers must drive the burst code to all DQs at the same time. DT0  
in the table means all DQ bits at bit time 0, DT1 at bit time 1, and so forth. The driver output impedance is adjusted  
for all DDR2 SDRAM DQs simultaneously and after OCD calibration, all DQs of a given DDR2 SDRAM will be  
adjusted to the same driver strength setting. The maximum step count for adjustment is 16 and when the limit is  
reached, further increment or decrement code has no effect. The default setting may be any step within the maxi-  
mum step count range. When Adjust mode command is issued, AL from previously set value must be applied.  
Off- Chip-Driver Adjust Program  
Operation  
Pull-down driver strength  
4 bit burst code inputs to all DQs  
D
D
D
D
T3  
Pull-up driver strength  
NOP (no operation)  
Increase by 1 step  
Decrease by 1 step  
NOP  
T0  
T1  
T2  
NOP (no operation)  
NOP  
0
0
1
0
0
0
1
0
1
0
0
0
0
1
0
0
1
1
0
0
0
1
0
1
1
0
0
0
1
0
0
0
1
0
1
0
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Increase by 1 step  
Decrease by 1 step  
Decrease by 1 step  
Reserved  
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Decrease by 1 step  
Reserved  
Other Combinations  
Page 21  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
For proper operation of adjust mode, WL = RL - 1 = AL + CL -1 clocks and tDS / tDH should be met as the follow-  
ing timing diagram. Input data pattern for adjustment, DT0 - DT3 is fixed and not affected by MRS addressing  
mode (i.e. sequential or interleave). Burst length of 4 have to be programmed in the MRS for OCD impedance  
adjustment.  
CK, C K  
CM D  
N O P  
N O P  
N O P  
EM R S(1)  
N O P  
N O P  
N O P  
N O P  
EM R S(1)  
WL  
tW R  
D QS  
DQ S_in  
tDS  
tDH  
DQ _in  
DM  
DT2 DT3  
DT0 DT1  
OCD calibration  
mode exit  
OCD adjust mode  
Drive Mode  
Drive mode, both Drive(1) and Drive(0), is used for controllers to measure DDR2 SDRAM Driver impedance  
before OCD impedance adjustment. In this mode, all outputs are driven out tOIT after “enter drive mode” com-  
mand and all output drivers are turned-off tOIT after “OCD calibration mode exit” command as the following timing  
diagram.  
CK, CK  
CM D  
N O P  
N O P  
E M R S (1)  
N O P  
E M R S (1)  
N O P  
N O P  
N O P  
tOIT  
tOIT  
DQ S_in  
DQ _in  
DQS high & DQS low for Drive(1), DQS low & DQS high for Drive 0  
DQS high for Drive(1)  
DQS high for Drive(0)  
OCD calibration  
mode exit  
Enter Drive Mode  
Page 22  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.4 On-Die Termination (ODT)  
ODT (On-Die Termination) is a new feature on DDR2 components that allows a DRAM to turn on/off termination  
resistance for each DQ, DQS, DQS and DM for x4 and DQ, DQ’s DM, RDQS (DM and RDQS share the same  
pin), and RDQS for x8 configuration via the ODT control pin, where DQS is terminated only when enabled in the  
EMRS(1) by address bit A10 = 0. For x8 configuration RDQS is only terminated, when enabled in the EMRS(1) by  
address bits A10 = 0 and A11 = 1.  
For x16 configuration ODT is applied to each UDQ, LDQ, UDQS, UDQS, LDQS, LDQS, UDM and LDM signal via  
the ODT control pin, where UDQS and LDQS are terminated only when enabled in the EMRS(1) by address bit  
A10 = 0.  
The ODT feature is designed to improve signal integrity of the memory channel by allowing the DRAM controller to  
independently turn on/off termination resistance for any or all DRAM devices.  
The ODT function can be used for all active and standby modes. ODT is turned off and not supported in Self-  
Refresh mode.  
Functional Representation of ODT  
VDDQ  
VDDQ  
sw2  
sw1  
Rval2  
Rval1  
DRAM  
Input  
Input  
Pin  
Buffer  
Rval2  
sw2  
Rval1  
sw1  
VSSQ  
VSSQ  
Switch sw1 or sw2 is enabled by the ODT pin. Selection between sw1 or sw2 is determined by “Rtt (nominal)” in  
EMRS(1) address bits A6 & A2. Target Rtt = 0.5 * Rval1 or 0.5 * Rval2.  
The ODT pin will be ignored if the Extended Mode Register (EMRS(1)) is programmed to disable ODT.  
Page 23  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
ODT Truth Tables  
The ODT Truth Table shows which of the input pins are terminated depending on the state of address bit A10 and  
A11 in the EMRS(1) for all three device organisations (x4, x8 and x16). To activate termination of any of these  
pins, the ODT function has to be enabled in the EMRS(1) by address bits A6 and A2.  
EMRS(1)  
EMRS(1)  
Input Pin  
Address Bit A10 Address Bit A11  
x4 components:  
DQ0~DQ3  
DQS  
X
X
0
X
X
X
X
DQS  
DM  
X
x8 components:  
DQ0~DQ7  
DQS  
X
X
0
X
X
X
1
1
0
DQS  
RDQS  
RDQS  
DM  
X
0
X
x16 components:  
LDQ0~LDQ7  
UDQ0~UDQ7  
LDQS  
X
X
X
0
X
X
X
X
X
X
X
X
LDQS  
UDQS  
UDQS  
LDM  
X
0
X
X
UDM  
X = don’t care; 0 = bit set to low; 1 = bit set to high  
ODT timing modes  
Depending on the operating mode synchronous or asynchronous ODT timings apply. Synchronous timings  
(tAOND, tAOFD, tAON and tAOF) apply for all modes, when the on-die DLL is not disabled.  
These modes are:  
Active Mode  
Standby Mode  
Fast Exit Active Power Down Mode (with MRS bit A12 is set to “0”)  
Asynchronous ODT timings (tAOFPD, tAONPD) apply when the on-die DLL is disabled.  
These modes are:  
Slow Exit Active Power Down Mode (with MRS bit A12 is set to “1”)  
Precharge Power Down Mode  
Page 24  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
ODT Timing for Active and Standby (Idle) Modes  
(Synchronous ODT timings)  
T8  
T5  
T7  
T1  
T3  
T4  
T6  
T0  
T2  
CK, CK  
see note 1  
C KE  
O DT  
tIS  
tIS  
tAOND (2 tck)  
tAOFD (2.5 tck)  
Rtt  
DQ  
tAON(min)  
tAOF(min)  
tAOF(max)  
tAON(max)  
ODT01  
1) Synchronous ODT timings apply for Active Mode and Standby Mode with CKE “high” and for the “Fast Exit” Active Power Down  
Mode (MRS bit A12 set to “0”). In all these modes the on-die DLL is enabled.  
2) ODT turn-on time (t  
) is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on  
AON,min  
) is when the ODT resistance is fully on. Both are measured from t  
time max. (t  
AON,max  
AOND.  
3) ODT turn off time min. (t  
) is when the device starts to turn off the ODT resistance.ODT turn off time max. (t  
) is  
AOF,max  
AOF,min  
when the bus is in high impedance. Both are measured from t  
AOFD.  
ODT Timing for Precharge Power-Down and Active Power-Down Mode (with slow exit)  
(Asynchronous ODT timings)  
T8  
T5  
T7  
T1  
T3  
T4  
T6  
T0  
T2  
C K, CK  
CKE  
"low"  
tIS  
O DT  
DQ  
tIS  
tAOFPD,min  
tAOFPD,max  
Rtt  
tAONPD,min  
tAONPD,max  
ODT02  
1) Asynchronous ODT timings apply for Precharge Power-Down Mode and “Slow Exit” Active Power Down Mode (MRS bit A12 set to  
“1”), where the on-die DLL is disabled in this mode of operation.  
Page 25  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
ODT timing mode switch  
When entering the Power Down Modes “Slow Exit” Active Power Down and Precharge Power Down two addi-  
tional timing parameters (tANPD and tAXPD) define if synchronous or asynchronous ODT timings have to be  
applied.  
Mode entry:  
As long as the timing parameter tANPDmin is satisfied when ODT is turned on or off before entering these power-  
down modes, synchronous timing parameters can be applied. If tANPDmin is not satisfied, asynchronous timing  
parameters apply  
T1  
T-3  
T-1  
T-5  
T-4  
T-2  
T0  
T2  
C K, C K  
C KE  
tANPD (3 tck)  
tIS  
ODT turn-off, tANPD >= 3 tck :  
tIS  
O D T  
Synchronous  
timings apply  
RTT  
tAOFD  
ODT turn-off, tANPD <3 tck :  
O D T  
Asynchronous  
timings apply  
RTT  
tAOFPDmax  
ODT turn-on, tANPD >= 3 tck :  
tIS  
tAOND  
O D T  
Synchronous  
timings apply  
RTT  
tIS  
ODT turn-on, tANPD < 3 tck :  
tAONPDmax  
Asynchronous  
timings apply  
O D T  
RTT  
ODT03  
Page 26  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Mode exit:  
As long as the timing parameter tAXPDmin is satisfied when ODT is turned on or off after exiting these power-  
down modes, synchronous timing parameters can be applied. If tAXPDmin is not satisfied, asynchronous timing  
parameters apply  
T8  
T1  
T5  
T7  
T6  
T0  
T9  
T10  
CK,  
CK  
t
IS  
tAXPD  
CKE  
t
ODT turn-off, tAXPD >= tAXPDmin:  
IS  
ODT  
Synchronous  
timings apply  
Rtt  
tAOFD  
ODT turn-off, tAXPD < tAXPDmin:  
t
IS  
ODT  
Asynchronous  
timings apply  
Rtt  
tAOFPDmax  
ODT turn-on, tAXPD >= tAXPDmin:  
t
Synchronous  
timings apply  
IS  
ODT  
Rtt  
tAOND  
t
IS  
ODT turn-on, tAXPD < tAXPDmin:  
ODT  
Asynchronous  
timings apply  
Rtt  
tAONPDmax  
ODT04  
Page 27  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.5 Bank Activate Command  
The Bank Activate command is issued by holding CAS and WE high with CS and RAS low at the rising edge of the  
clock. The bank addresses BA0 and BA1 are used to select the desired bank. The row addresses A0 through A12  
are used to determine which row to activate in the selected bank for x4 and x8 organised components. For x16  
components row addresses A0 through A12 have to be applied. The Bank Activate command must be applied  
before any Read or Write operation can be executed. Immediately after the bank active command, the DDR2  
SDRAM can accept a read or write command (with or without Auto-Precharge) on the following clock cycle. If a  
R/W command is issued to a bank that has not satisfied the tRCDmin specification, then additive latency must be  
programmed into the device to delay the R/W command which is internally issued to the device. The additive  
latency value must be chosen to assure tRCDmin is satisfied. Additive latencies of 0, 1, 2, 3 and 4 are supported.  
Once a bank has been activated it must be precharged before another Bank Activate command can be applied to  
the same bank. The bank active and precharge times are defined as tRAS and tRP, respectively. The minimum  
time interval between successive Bank Activate commands to the same bank is determined (tRC). The minimum  
time interval between Bank Active commands, to any other bank, is the Bank A to Bank B delay time (tRRD).  
Bank Activate Command Cycle: tRCD = 3, AL = 2, tRP = 3, tRRD = 2  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1  
Tn+2  
Tn+3  
CK, CK  
Internal RAS-CAS delay tRCDmin.  
Bank A  
Col. Addr.  
Bank B  
Col. Addr.  
Bank B  
Addr.  
Bank A  
Row Addr.  
Bank A  
Row Addr.  
Bank B  
Row Addr.  
Bank A  
Addr.  
NOP  
Address  
Bank A to Bank B delay tRRD.  
additive latency AL=2  
Read A  
Begins  
Posted CAS  
Read A  
Posted CAS  
Read B  
Bank A  
Activate  
Bank B  
Activate  
Bank A  
Precharge  
Bank B  
Precharge  
Bank A  
Activate  
NOP  
Command  
tRP Row Precharge Time (Bank A)  
tRAS Row Active Time (Bank A)  
tCCD  
tRC Row Cycle Time (Bank A)  
ACT  
Page 28  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6 Read and Write Commands and Access Modes  
After a bank has been activated, a read or write cycle can be executed. This is accomplished by setting RAS high,  
CS and CAS low at the clock’s rising edge. WE must also be defined at this time to determine whether the access  
cycle is a read operation (WE high) or a write operation (WE low). The DDR2 SDRAM provides a wide variety of  
fast access modes. A single Read or Write Command will initiate a serial read or write operation on successive  
clock cycles at data rates of up to 667Mb/sec/pin for main memory. The boundary of the burst cycle is restricted to  
specific segments of the page length.  
For example, the 16Mbit x 4 I/O x 4 Bank chip has a page length of 2048 bits (defined by CA0-CA9 & CA11).  
In case of a 4-bit burst operation (burst length = 4) the page length of 2048 is divided into 512 uniquely address-  
able segments (4-bits x 4 I/O each). The 4-bit burst operation will occur entirely within one of the 512 segments  
(defined by CA0-CA8) beginning with the column address supplied to the device during the Read or Write Com-  
mand (CA0-CA9 & A11). The second, third and fourth access will also occur within this segment, however, the  
burst order is a function of the starting address, and the burst sequence.  
In case of a 8-bit burst operation (burst length = 8) the page length of 2048 is divided into 256 uniquely address-  
able double segments (8-bits x 4 I/O each). The 8-bit burst operation will occur entirely within one of the 256 dou-  
ble segments (defined by CA0-CA7) beginning with the column address supplied to the device during the Read or  
Write Command (CA0-CA9 & CA11).  
A new burst access must not interrupt the previous 4 bit burst operation in case of BL = 4 setting. Therefore the  
minimum CAS to CAS delay (tCCD) is a minimum of 2 clocks for read or write cycles.  
For 8 bit burst operation (BL = 8) the minimum CAS to CAS delay (tCCD) is 4 clocks for read or write cycles.  
Burst interruption is allowed with 8 bit burst operation. For details see the “Burst Interrupt” - Section of this  
datasheet.  
Example:  
Read Burst Timing Example: (CL = 3, AL = 0, RL = 3, BL = 4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T12  
CK, CK  
CM D  
N O P  
tCCD  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
R E A D  
C
R E A D A  
N O P  
tCCD  
DQ S,  
DQ S  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout C0 Dout C1  
Dout C2 Dout C3  
DQ  
RB  
Page 29  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.1 Posted CAS  
Posted CAS operation is supported to make command and data bus efficient for sustainable bandwidths in DDR2  
SDRAM. In this operation, the DDR2 SDRAM allows a Read or Write command to be issued immediately after the  
RAS bank activate command (or any time during the RAS to CAS delay time, tRCD, period). The command is  
held for the time of the Additive Latency (AL) before it is issued inside the device. The Read Latency (RL) is the  
sum of AL and the CAS latency (CL). Therefore if a user chooses to issue a Read/Write command before the  
tRCDmin, then AL greater than 0 must be written into the EMRS(1). The Write Latency (WL) is always defined as  
RL - 1 (Read Latency -1) where Read Latency is defined as the sum of Additive Latency plus CAS latency  
(RL=AL+CL). If a user chooses to issue a Read command after the tRCDmin period, the Read Latency is also  
defined as RL = AL + CL.  
Examples:  
Read followed by a write to the same bank, Activate to Read delay < tRCDmin:  
AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 4  
1
0
2
3
4
5
6
7
8
9
10  
11  
CK, CK  
CMD  
WL = RL -1 = 4  
Activate  
Read  
Write  
Bank A Bank A  
Bank A  
CL = 3  
AL = 2  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0 Dout1 Dout2 Dout3  
Din0  
Din1 Din2 Din3  
PostCAS1  
Read followed by a write to the same bank, Activate to Read delay < tRCDmin:  
AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 8  
1
0
2
3
4
5
6
7
8
9
10  
11  
12  
CK, CK  
CMD  
WL = RL -1 = 4  
Write  
Bank A  
Activate  
Read  
Bank A Bank A  
AL = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0 Dout1 Dout2 Dout3 Dout4 Dout5 Dout6 Dout7  
Din0  
Din1 Din2 D
PostCAS3  
Page 30  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Read followed by a write to the same bank, Activate to Read delay = tRCDmin:  
AL = 0, CL = 3, RL = (AL + CL) = 3, WL = (RL -1) = 2, BL = 4  
1
0
2
3
4
5
6
7
8
9
10  
11  
CK, CK  
CMD  
AL = 0  
Activate  
Bank A  
Read  
Write  
Bank A  
Bank A  
WL = RL -1 = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 3  
DQ  
Dout0 Dout1 Dout2 Dout3  
Din0  
Din1 Din2 Din3  
PostCAS2  
Read followed by a write to the same bank, Activate to Read delay > tRCDmin:  
AL = 1, CL = 3, RL = 4, WL = 3, BL = 4  
1
0
2
3
4
5
6
7
8
9
10  
11 12  
13  
CK, CK  
CMD  
WL = 3  
Write  
Activate  
Bank A  
Read  
Bank A  
Bank A  
tRCD > tRCDmin.  
DQS,  
DQS  
RL = 4  
DQ  
Dout0 Dout1 Dout2 Dout3  
Din0  
Din1 Din2 Din3  
PostCAS5  
Page 31  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.2 Burst Mode Operation  
Burst mode operation is used to provide a constant flow of data to memory locations (write cycle), or from memory  
locations (read cycle). The parameters that define how the burst mode will operate are burst sequence and burst  
length. The DDR2 SDRAM supports 4 bit and 8 bit burst modes only. For 8 bit burst mode, full interleave address  
ordering is supported, however, sequential address ordering is nibble based for ease of implementation. The burst  
length is programmable and defined by the addresses A0 ~ A2 of the MRS. The burst type, either sequential or  
interleaved, is programmable and defined by the address bit 3 (A3) of the MRS. Seamless burst read or write  
operations are supported. Interruption of a burst read or write operation is prohibited, when burst length = 4 is pro-  
grammed. For burst interruption of a read or write burst when burst length = 8 is used, see the “Burst Interruption  
“section of this datasheet. A Burst Stop command is not supported on DDR2 SDRAM devices.  
Burst Length and Sequence  
Starting Address  
Burst Length  
Sequential Addressing (decimal)  
Interleave Addressing (decimal)  
(A2 A1 A0)  
x 0 0  
0, 1, 2, 3  
0, 1, 2, 3  
x 0 1  
1, 2, 3, 0  
1, 0, 3, 2  
4
x 1 0  
2, 3, 0, 1  
2, 3, 0, 1  
x 1 1  
3, 0, 1, 2  
3, 2, 1, 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
8
Notes: 1) Page size for all 256Mbit components is 1 kByte  
2) Order of burst access for sequential addressing is “nibble-based” and therefore different from SDR  
or DDR components  
Page 32  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.3 Burst Read Command  
The Burst Read command is initiated by having CS and CAS low while holding RAS and WE high at the rising  
edge of the clock. The address inputs determine the starting column address for the burst. The delay from the  
start of the command until the data from the first cell appears on the outputs is equal to the value of the read  
latency (RL). The data strobe output (DQS) is driven low one clock cycle before valid data (DQ) is driven onto the  
data bus. The first bit of the burst is synchronized with the rising edge of the data strobe (DQS). Each subsequent  
data-out appears on the DQ pin in phase with the DQS signal in a source synchronous manner. The RL is equal to  
an additive latency (AL) plus CAS latency (CL). The CL is defined by the Mode Register Set (MRS). The AL is  
defined by the Extended Mode Register Set (EMRS(1)).  
Basic Burst Read Timing  
tCH  
tCL  
tCK  
CLK  
CLK  
CLK, CLK  
tDQSCK  
DQS  
tAC  
DQS,  
DQS  
DQS  
tRPST  
Dout  
t
RPRE  
tHZ  
tLZ  
DQ  
Dout  
Dout  
Dout  
tDQSQmax  
tDQSQmax  
tQH  
tQH  
DO-Read  
Examples:  
Burst Read Operation: RL = 5 (AL = 2, CL = 3, BL = 4)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
P ost C A S  
R E A D A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
<= tD Q S C K  
DQ S,  
DQ S  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
BRead523  
Page 33  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Read Operation: RL = 3 (AL = 0, CL = 3, BL = 8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D A  
N O P  
N O P  
CMD  
<= tD Q S C K  
DQ S,  
DQ S  
C L =  
R L =  
3
3
DQ's  
Dout A0 Dout A1  
Dout A2 Dout A3  
Dout A4 Dout A5  
Dout A6 Dout A7  
BRead303  
Burst Read followed by Burst Write: RL = 5, WL = (RL-1) = 4, BL = 4  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, CK  
CM D  
P osted C A S  
W R ITE A  
P osted C A S  
R E A D A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
BL/2 + 2  
DQ S,  
DQ S  
WL = RL - 1 = 4  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Din A0  
Din A1  
Din A2  
Din A3  
BRBW514  
The minimum time from the burst read command to the burst write command is defined by a read-to-write turn-  
around time, which is BL/2 + 2 clocks.  
Page 34  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Seamless Burst Read Operation: RL = 5, AL = 2, CL = 3, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
P ost C A S  
R E A D B  
P ost C A S  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D  
A
DQ S,  
DQ S  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3  
SBR523  
The seamless burst read operation is supported by enabling a read command at every BL / 2 number of clocks.  
This operation is allowed regardless of same or different banks as long as the banks are activated.  
Seamless Burst Read Operation: RL = 3, AL = 0, CL = 3, BL = 8 (non interrupting)  
T9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
P ost C A S  
R E A D B  
P ost C A S  
R E A D A  
N O  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
DQ S,  
DQ S  
CL = 3  
RL = 3  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout A4 Dout A5 Dout A4 Dout A7 Dout B0 Dout B1 Dout B2 Dout B3  
SBR_BL8  
Dou  
The seamless, non interrupting 8-bit burst read operation is supported by enabling a read command at every BL /  
2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are acti-  
vated.  
Page 35  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.4 Burst Write Command  
The Burst Write command is initiated by having CS, CAS and WE low while holding RAS high at the rising edge of  
the clock. The address inputs determine the starting column address. Write latency (WL) is defined by a read  
latency (RL) minus one and is equal to (AL + CL -1). A data strobe signal (DQS) has to be driven low (preamble) a  
time tWPRE prior to the WL. The first data bit of the burst cycle must be applied to the DQ pins at the first rising  
edge of the DQS following the preamble. The tDQSS specification must be satisfied for write cycles. The subse-  
quent burst bit data are issued on successive edges of the DQS until the burst length is completed. When the  
burst has finished, any additional data supplied to the DQ pins will be ignored. The DQ signal is ignored after the  
burst write operation is complete. The time from the completion of the burst write to bank precharge is named  
“write recovery time” (tWR) and is the time needed to store the write data into the memory array. tWR is an analog  
timing parameter (see the AC table in this specification) and is not the programmed value for WR in the MRS.  
Basic Burst Write Timing  
tDQSH tDQSL  
DQ S  
DQ S,  
DQ S  
DQ S  
t WPST  
tWPRE  
Din  
Din  
Din  
Din  
t DS  
tDH  
Example:.  
Burst Write Operation: RL = 5 (AL = 2, CL = 3), WL = 4, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CM D  
P ost C A S  
W R ITE A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
P recharge  
<= tDQSS  
Com pletion of  
the Burst W rite  
DQ S,  
DQ S  
tW R  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW543  
Page 36  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Write Operation: RL = 3 (AL = 0, CL = 3), WL = 2, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CM D  
B ank A  
A ctivate  
P ost C A S  
W R ITE A  
N O P  
N O P  
N O P  
P recharge  
N O P  
N O P  
N O P  
Com pletion of  
the Burst W rite  
<= tDQSS  
DQ S,  
DQ S  
tR P  
tW R  
WL = RL-1 = 2  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW322  
Burst Write followed by Burst Read: RL = 5 (AL = 2, CL = 3), WL = 4, twitter = 2, BL = 4  
T0 T1 T2 T3 T4 T5 T6 T7  
T9  
T8  
CK, CK  
W rite to R ead = (C L - 1)+ BL/2 +tW TR (2) = 6  
P ost C A S  
R E A D A  
CM D  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
DQ S,  
DQ S  
C L=3  
AL=2  
tW TR  
W L = R L - 1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
R L=5  
BWBR  
The minimum number of clocks from the burst write command to the burst read command is  
(CL - 1) +BL/2 + tWTR  
where tWTR is the write-to-read turn-around time tWTR expressed in clock cycles. The tWTR is not a write recov-  
ery time (tWR) but the time required to transfer 4 bit write data from the input buffer into sense amplifiers in the  
array.  
Page 37  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Seamless Burst Write Operation: RL = 5, WL = 4, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
P ost C A S  
W R ITE B  
P ost C A S  
W R ITE A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
DQ S,  
DQ S  
W L = R L - 1 = 4  
DQ  
DIN B0  
DIN B1 DIN B2 DIN B3  
DIN A0  
DIN A1 DIN A2 DIN A3  
SBR  
The seamless burst write operation is supported by enabling a write command every BL / 2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
Seamless Burst Write Operation: RL = 3, WL = 2, BL = 8, non interrupting  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
W R ITE A  
N O P  
N O P  
N O P  
W R ITE B  
DQ S,  
DQ S  
W L = R L - 1 = 2  
DQ  
DIN B4  
DIN B1 DIN B2 DIN B3  
DIN B5 DIN  
DIN B0  
DIN A0  
DIN A1 DIN A2 DIN A3  
DIN A4  
DIN A5 DIN A5 DIN A7  
SBW_BL8  
The seamless, non interrupting 8-bit burst write operation is supported by enabling a write command at every BL /  
2 number of clocks. This operation is allowed regardless of same or different banks as long as the banks are acti-  
vated.  
Page 38  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.5 Write Data Mask  
One write data mask input (DM) for x4 and x8 components and two write data mask inputs (LDM, UDM) for x16  
components are supported on DDR2 SDRAM’s, consistent with the implementation on DDR SDRAM’s. It has  
identical timings on write operations as the data bits, and though used in a uni-directional manner, is internally  
loaded identically to data bits to insure matched system timing. Data mask is not used during read cycles. If DM is  
high during a write burst coincident with the write data, the write data bit is not written to the memory. For x8 com-  
ponents the DM function is disabled, when RDQS / RDQS are enabled by EMRS(1).  
.
Write Data Mask Timing  
tDQSH tDQSL  
DQ S  
DQ S,  
DQ S  
DQ S  
t WPST  
tWPRE  
DQ  
Din  
Din  
Din  
Din  
tDS  
tDH  
DM  
don't care  
.
Burst Write Operation with Data Mask: RL = 3 (AL = 0, CL = 3), WL = 2, tWR = 3, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CM D  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
W R ITE A  
N O P  
P recharge  
N O P  
N O P  
<= tDQSS  
DQ S,  
DQ S  
WL = RL-1 = 2  
tR P  
tW R  
DQ  
DM  
DIN A0  
DIN A1 DIN A2 DIN A3  
DM  
Page 39  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.6.6 Burst Interruption  
Interruption of a read or write burst is prohibited for burst length of 4 and only allowed for burst length of 8 under  
the following conditions:  
1. A Read Burst of 8 can only be interrupted by another Read command. Read burst interruption by a Write or Precharge  
Command is prohibited.  
2. A Write Burst of 8 can only be interrupted by another Write command. Write burst interruption by a Read or Precharge  
Command is prohibited.  
3. Read burst interrupt must occur exactly two clocks after the previous Read command. Any other Read burst interrupt timings  
are prohibited.  
4. Write burst interrupt must occur exactly two clocks after the previous Write command. Any other Read burst interrupt timings  
are prohibited.  
5. Read or Write burst interruption is allowed to any bank inside the DDR2 SDRAM.  
6. Read or Write burst with Auto-Precharge enabled is not allowed to be interrupted.  
7. Read burst interruption is allowed by a Read with Auto-Precharge command.  
8. Write burst interruption is allowed by a Write with Auto-Precharge command.  
9. All command timings are referenced to burst length set in the mode register. They are not referenced to the actual burst. For  
example, Minimum Read to Precharge timing is AL + BL/2 where BL is the burst length set in the mode register and not the  
actual burst (which is shorter because of interrupt). Minimum Write to Precharge timing is WL + BL/ 2 + tWR, where tWR  
starts with the rising clock after the un-interrupted burst end and not form the end of the actual burst end.  
Examples:  
Read Burst Interrupt Timing Example: (CL = 3, AL = 0, RL = 3, BL = 8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
N O P  
R E A D A  
DQ S,  
DQ S  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout B4 Dout B5  
Dout B6 Dout B  
RBI  
Page 40  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Write Burst Interrupt Timing Example: (CL = 3, AL = 0, WL = 2, BL = 8)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
W R ITE A  
N O P  
W R ITE B  
N O P  
N O P  
DQ S,  
DQ S  
DQ  
Din A0  
Din A1  
Din A2  
Din A3  
Din B0  
Din B1  
Din B2  
Din B3  
Dout B4 Din B5  
Din B6  
Din B7  
WBI  
Page 41  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.7 Precharge Command  
The Precharge Command is used to precharge or close a bank that has been activated. The Precharge  
Command is triggered when CS, RAS and WE are low and CAS is high at the rising edge of the clock. The Pre-  
charge Command can be used to precharge each bank independently or all banks simultaneously. Three address  
bits A10, BA0 and BA1 are used to define which bank to precharge when the command is issued.  
Bank Selection for Precharge by Address Bits  
Precharge  
A10  
BA0  
BA1  
Bank(s)  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
all banks  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
Don’t Care  
Don’t Care  
Note: The bank address assignment is the same for activating and precharging a specific bank.  
2.7.1 Burst Read Operation Followed by a Precharge  
The following rules apply as long as the tRTP timing parameter - Internal Read to Precharge Command delay time  
- is less or equal two clocks, which is the case for operating frequencies less or equal 266 Mhz (DDR2 400 and  
533 speed sorts):  
Minimum Read to Precharge command spacing to the same bank = AL + BL/2 clocks. For the earliest possible  
precharge, the Precharge command may be issued on the rising edge which is “Additive Latency (AL) + BL/2  
clocks” after a Read Command, as long as the minimum tRAS timing is satisfied.  
A new bank active command may be issued to the same bank if the following two conditions are satisfied simulta-  
neously:  
(1) The RAS precharge time (tRP) has been satisfied from the clock at which the precharge begins.  
(2) The RAS cycle time (tRCmin) from the previous bank activation has been satisfied.  
For operating frequencies higher than 266 MHz, tRTP becomes > 2 clocks and one additional clock cycle has to  
be added for the minimum Read to Precharge command spacing, which now becomes AL + BL/2 + 1 clocks.  
Page 42  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Examples:  
Burst Read Operation Followed by Precharge: RL = 4 (AL = 1, CL = 3), BL = 4, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
P ost C A S  
R E A D A  
N O P  
A L + B L/2 clks  
N O P  
N O P  
N O P  
P recharge  
N O P  
N O P  
tR P  
DQ S,  
DQ S  
A L = 1  
C L = 3  
R L = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
>=tR A S  
C L = 3  
>=tR C  
>=tR TP  
Burst Read Operation Followed by Precharge: RL = 4 (AL = 1, CL = 3), BL = 8, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
P ost C A S  
R E A D A  
N O P  
A L + B L/2 clks  
N O P  
N O P  
N O P  
P recharge  
N O P  
N O P  
tR P  
DQ S,  
DQ S  
A L = 1  
C L = 3  
R L = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout A4 Dout A5  
Dout A6 Dout A7  
>=tR A S  
C L = 3  
>=tR C  
>=tR TP  
BR-P413(8)  
first 4-bit prefetch  
second 4-bit prefetch  
Page 43  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Read Operation Followed by Precharge: RL = 5 (AL = 2, CL = 3), BL = 4, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
P ost C A S  
N O P  
N O P  
tR P  
N O P  
N O P  
N O P  
N O P  
P recharge  
R E A D  
A
A L + B L/2 clks  
DQ S,  
DQ S  
C L = 3  
A L = 2  
R L = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
>=tR A S  
C L = 3  
>=tR C  
>=tR TP  
BR-P523  
Burst Read Operation Followed by Precharge: RL = 6, (AL = 2, CL = 4), BL = 4, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
P recharge  
A
P ost C A S  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
tR P  
R E A D  
A
A L + B L/2 clocks  
DQ S,  
DQ S  
A L = 2  
R L = 6  
C L = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
>=tR A S  
C L = 4  
>=tR C  
>=tR TP  
BR-P624  
Page 44  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Read Operation Followed by Precharge: RL = 4, (AL = 0, CL = 4), BL = 8, tRTP > 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
P recharge  
R E A D A  
N O P  
N O P  
tR P  
A L + B L/2 clks + 1  
DQ S,  
DQ S  
C L = 4  
R L = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout A4 Dout A5  
Dout A6 Dout A7  
>=tR A S  
>=tR TP  
BR-P404(8)  
first 4-bit prefetch  
second 4-bit prefetch  
Page 45  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.7.2 Burst Write followed by Precharge  
Minimum Write to Precharge command spacing to the same bank = WL + BL/2 + tWR. For write cycles, a delay  
must be satisfied from the completion of the last burst write cycle until the Precharge command can be issued.  
This delay is known as a write recovery time (t WR) referenced from the completion of the burst write to the Pre-  
charge command. No Precharge command should be issued prior to the tWR delay, as DDR2 SDRAM does not  
support any burst interrupt by a Precharge command. tWR is an analog timing parameter (see the AC table in this  
datasheet) and is not the programmed value for tWR in the MRS.  
Examples:.  
Burst Write followed by Precharge: WL = (RL - 1) = 3, BL = 4, tWR = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
P recharge  
A
P ost C A S  
W R ITE A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
Com pletion of  
the Burst W rite  
DQ S,  
DQ S  
tW R  
WL = 3  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P3  
Burst Write followed by Precharge: WL = (RL - 1) = 4, BL = 4, tWR = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CM D  
P recharge  
A
P ost C A S  
W R ITE A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
Com pletion of  
the Burst W rite  
DQ S,  
DQ S  
tW R  
WL = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P4  
Page 46  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.8 Auto-Precharge Operation  
Before a new row in an active bank can be opened, the active bank must be precharged using either the Pre-  
charge Command or the Auto-Precharge function. When a Read or a Write Command is given to the DDR2  
SDRAM, the CAS timing accepts one extra address, column address A10, to allow the active bank to automati-  
cally begin precharge at the earliest possible moment during the burst read or write cycle. If A10 is low when the  
Read or Write Command is issued, then normal Read or Write burst operation is executed and the bank remains  
active at the completion of the burst sequence. If A10 is high when the Read or Write Command is issued, then  
the Auto-Precharge function is enabled. During Auto-Precharge, a Read Command will execute as normal with  
the exception that the active bank will begin to precharge internally on the rising edge which is CAS Latency (CL)  
clock cycles before the end of the read burst. Auto-Precharge is also implemented for Write Commands.The pre-  
charge operation engaged by the Auto-Precharge command will not begin until the last data of the write burst  
sequence is properly stored in the memory array. This feature allows the precharge operation to be partially or  
completely hidden during burst read cycles (dependent upon CAS Latency) thus improving system performance  
for random data access. The RAS lockout circuit internally delays the precharge operation until the array restore  
operation has been completed so that the Auto-Precharge command may be issued with any read or write com-  
mand.  
2.8.1 Burst Read with Auto-Precharge  
If A10 is high when a Read Command is issued, the Read with Auto-Precharge function is engaged. The DDR2  
SDRAM starts an Auto-Precharge operation on the rising edge which is (AL + BL/2) cycles later from the Read  
with AP command if tRASmin and tRTP are satisfied. If tRASmin is not satisfied at the edge, the start point of  
Auto-Precharge operation will be delayed until tRASmin is satisfied. If tRTPmin is not satisfied at the edge, the  
start point of Auto-Precharge operation will be delayed until tRTPmin is satisfied.  
In case the internal precharge is pushed out by tRTP, tRP starts at the point where the internal precharge happens  
(not at the next rising clock edge after this event). So for BL = 4 the minimum time from Read with Auto-Precharge  
to the next Activate command becomes AL + tRTP + tRP. For BL = 8 the time from Read with Auto-Precharge to  
the next Activate command is AL + 2 + tRTP + tRP. Note that (tRTP + tRP) has to be rounded up to the next inte-  
ger value. In any event internal precharge does not start earlier than two clocks after the last 4-bit prefetch.  
A new bank active (command) may be issued to the same bank if the following two conditions are satisfied simul-  
taneously:  
(1) The RAS precharge time (tRP) has been satisfied from the clock at which the Auto-Precharge begins.  
(2) The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
Page 47  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Examples:  
Burst Read with Auto-Precharge followed by an activation to the Same Bank (tRC Limit)  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
AL + BL/2  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRAS  
tRCmin.  
BR-AP5231  
Burst Read with Auto-Precharge followed by an Activation to the Same Bank (tRAS Limit):  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
tRAS(min)  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRC  
BR-AP5232  
Page 48  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Read with Auto-Precharge followed by an Activation to the Same Bank:  
RL = 4 (AL = 1, CL = 3), BL = 8, tRTP <= 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
AL + BL/2  
tRP  
Auto-Precharge Begins  
DQ S,  
DQ S  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A4 Dout A5  
Dout A2 Dout A3  
Dout A6 Dout A7  
Dout A0 Dout A1  
>= tRTP  
BR-AP413(8)2  
second 4-bit prefetch  
first 4-bit prefetch  
Burst Read with Auto-Precharge followed by an Activation to the Same Bank:  
RL = 4 (AL = 1, CL = 3), BL = 4, tRTP > 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
AL + tRTP + tRP  
Auto-Precharge Begins  
DQ S,  
DQ S  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRP  
tRTP  
BR-AP4133  
first 4-bit prefetch  
Page 49  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.8.2 Burst Write with Auto-Precharge  
If A10 is high when a Write Command is issued, the Write with Auto-Precharge function is engaged. The DDR2  
SDRAM automatically begins precharge operation after the completion of the write burst plus the write recovery  
time delay (WR), programmed in the MRS register, as long as tRAS is satisfied. The bank undergoing Auto-Pre-  
charge from the completion of the write burst may be reactivated if the following two conditions are satisfied.  
(1) The last data-in to bank activate delay time (tDAL = WR + tRP) has been satisfied.  
(2) The RAS cycle time (tRC) from the previous bank activation has been satisfied.  
In DDR2 SDRAM’s the write recovery time delay (WR) has to be programmed into the MRS mode register. As  
long as the analog twr timing parameter is not violated, WR can be programmed between 2 and 6 clock cycles.  
Minimum Write to Activate command spacing to the same bank = WL + BL/2 + tDAL.  
Examples:  
Burst Write with Auto-Precharge (tRC Limit): WL = 2, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, CK  
CM D  
W R ITE  
w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Completion of the Burst Write  
Auto-Precharge Begins  
DQ S,  
DQ S  
WR  
tRP  
WL = RL-1 = 2  
tDAL  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
tRCmin.  
>=tRASmin.  
BW-AP223  
Page 50  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Burst Write with Auto-Precharge (WR + tRP Limit): WL = 4, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T12  
T9  
CK, CK  
CM D  
P osted C A S  
W R ITE w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
Completion of the Burst Write  
A10 ="high"  
Auto-Precharge Begins  
DQ S,  
DQ S  
tRP  
WR  
tDAL  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
>=tRC  
>=tRAS  
BW-AP423  
2.8.3 Read or Write to Precharge Command Spacing Summary  
The following table summarizes the minimum command delays between Read, Read w/AP, Write, Write w/AP to  
the Precharge commands to the same banks and Precharge-All commands.  
To Command  
Minimum Delay between “From  
Command” to “To Command”  
From Command  
Units Notes  
PRECHARGE (to same banks as READ)  
PRECHARGE-ALL  
AL + BL/2 + max(tRTP, 2) - 2*tck  
AL + BL/2 + max(tRTP, 2) - 2*tck  
AL + BL/2 + max(tRTP, 2) - 2*tck  
AL + BL/2 + max(tRTP, 2) - 2*tck  
WL + BL/2 + tWR  
WL + BL/2 + tWR  
WL + BL/2 + WR  
WL + BL/2 + WR  
1*tck  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
1, 2  
1, 2  
1, 2  
1, 2  
2
READ  
PRECHARGE (to same banks as READ w/AP)  
PRECHARGE-ALL  
READ w/AP  
WRITE  
PRECHARGE (to same banks as WRITE)  
PRECHARGE-ALL  
2
PRECHARGE (to same banks as WRITE w/AP)  
PRECHARGE-ALL  
2
WRITE w/AP  
PRECHARGE  
PRECHARGE-ALL  
2
PRECHARGE (to same banks as PRECHARGE)  
PRECHARGE-ALL  
2
1*tck  
2
PRECHARGE  
1*tck  
2
PRECHARGE-ALL  
1*tck  
2
Note 1: RTP[cycles] = RU{tRTP(ns) / tCK(ns)}, where RU stands for round up.  
Note 2: For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge or  
precharge-all, issued to that bank. The precharge period is satisfied after tRP or tRPall depending on the latest prechargte com-  
mand issued to that bank  
Page 51  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.8.4 Concurrent Auto-Precharge  
DDR2 devices support the “Concurrent Auto-Precharge” feature. A Read with Auto-Precharge enabled, or a Write  
with Auto-Precharge enabled, may be followed by any command to the other bank, as long as that command does  
not interrupt the read or write data transfer, and all other related limitations (e.g. contention between Read data  
and Write data must be avoided externally and on the internal data bus.  
The minimum delay from a Read or Write command with Auto-Precharge enabled, to a command to a different  
bank, is summarized in the table below. As defined, the WL = RL - 1 for DDR2 devices which allows the command  
gap and corresponding data gaps to be minimized.  
To Command  
(different bank,  
non-interrupting command)  
Minimum Delay with  
Concurrent Auto-Pre-  
charge Support  
From Command  
Units  
Note  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
(CL -1) + (BL/2) + tWTR  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
WRITE w/AP  
BL/2  
1
1)  
1)  
BL/2  
BL/2 + 2  
1
Read w/AP  
Note:  
1) This rule only applies to a selective Precharge command to another banks, a Precharge-All command is  
illegal  
Page 52  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.9 Refresh  
DDR2 SDRAM requires a refresh of all rows in any rolling 64 ms interval. The necessary refresh can be generated  
in one of two ways: by explicit Auto-Refresh commands or by an internally timed Self-Refresh mode.  
2.9.1 Auto-Refresh Command  
Auto-Refresh is used during normal operation of the DDR2 SDRAM’s. This command is non persistent, so it must  
be issued each time a refresh is required. The refresh addressing is generated by the internal refresh controller.  
This makes the address bits”Don’t Care” during an Auto-Refresh command. The DDR2 SDRAM requires Auto-  
Refresh cycles at an average periodic interval of tREFI (maximum).  
When CS, RAS and CAS are held low and WE high at the rising edge of the clock, the chip enters the Auto-  
Refresh mode. All banks of the SDRAM must be precharged and idle for a minimum of the precharge time (tRP  
)
before the Auto-Refresh Command can be applied. An internal address counter supplies the addresses during the  
refresh cycle. No control of the external address bus is required once this cycle has started.  
When the refresh cycle has completed, all banks of the SDRAM will be in the precharged (idle) state. A delay  
between the Auto-Refresh Command and the next Activate Command or subsequent Auto-Refresh Command  
must be greater than or equal to the Auto-Refresh cycle time (tRFC).  
To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh  
interval is provided. A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM,  
meaning that the maximum absolute interval between any Auto-Refresh command and the next Auto-Refresh  
command is 9 * tREFI.  
T0  
T1  
T2  
T3  
CK, CK  
"high"  
CKE  
> = t  
> = t  
> = t  
RFC  
N O P  
RP  
RFC  
A U T O  
R E FR E S H  
A U TO  
R E FR E S H  
CMD  
N O P  
N O P  
A N Y  
P recharge  
N O P  
N O P  
AR  
Page 53  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.9.2 Self-Refresh Command  
The Self-Refresh command can be used to retain data, even if the rest of the system is powered down. When in  
the Self-Refresh mode, the DDR2 SDRAM retains data without external clocking. The DDR2 SDRAM device has  
a built-in timer to accommodate Self-Refresh operation. The Self-Refresh Command is defined by having CS,  
RAS, CAS and CKE held low with WE high at the rising edge of the clock. ODT must be turned off before issuing  
Self Refresh command, by either driving ODT pin low or using EMRS(1) command. Once the command is regis-  
tered, CKE must be held low to keep the device in Self-Refresh mode. The DLL is automatically disabled upon  
entering Self Refresh and is automatically enabled upon exiting Self Refresh. When the DDR2 SDRAM has  
entered Self-Refresh mode all of the external control signals, except CKE, are “don’t care”. The DRAM initiates a  
minimum of one Auto Refresh command internally within tCKE period once it enters Self Refresh mode. The clock  
is internally disabled during Self-Refresh Operation to save power. The minimum time that the DDR2 SDRAM  
must remain in Self Refresh mode is tCKE. The user may change the external clock frequency or halt the external  
clock one clock after Self-Refresh entry is registered, however, the clock must be restarted and stable before the  
device can exit Self-Refresh operation.  
The procedure for exiting Self Refresh requires a sequence of commands. First, the clock must be stable prior to  
CKE going back HIGH. Once Self-Refresh Exit command is registered, a delay of at least tXSNR must be satis-  
fied before a valid command can be issued to the device to allow for any internal refresh in progress. CKE must  
remain high for the entire Self-Refresh exit period tXSRD for proper operation. Upon exit from Self Refresh, the  
DDR2 SDRAM can be put back into Self Refresh mode after tXSNR expires. NOP or deselect commands must be  
registered on each positive clock edge during the Self-Refresh exit interval tXSNR. ODT should be turned off dur-  
ing tXSRD.  
The use of Self Refresh mode introduces the possibility that an internally timed refresh event can be missed when  
CKE is raised for exit from Self Refresh mode. Upon exit from Self Refresh, the DDR2 SDRAM requires a mini-  
mum of one extra auto refresh command before it is put back into Self Refresh Mode.  
T4  
T0  
T5  
Tm  
Tr  
T1  
T2  
T3  
Tn  
CK/CK  
CKE  
tRP*  
tis  
tis  
>=tXSRD  
tCKE  
tis  
tAOFD  
>= tXSNR  
ODT  
CMD  
R ead  
C om m and  
Self R efresh  
Entry  
Non-R ead  
C om m and  
N O P  
CK/CK may  
be halted  
CK/CK must  
be stable  
* = Device must be in the “All banks idle” state before entering Self Refresh mode.  
tXSRD (>=200 tCK) has to be satisfied for a Read or a Read with Auto-Precharge command.  
tXSNR has to be satisfied for any command except a Read or a Read with Auto-Precharge command  
Since CKE is an SSTL input, VREF must be maintained during Self Refresh.  
Page 54  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.10 Power-Down  
Power-down is synchronously entered when CKE is registered low, along with NOP or Deselect command. CKE is  
not allowed to go low while mode register or extended mode register command time, or read or write operation is  
in progress. CKE is allowed to go low while any other operation such as row activation, Precharge, Auto-Pre-  
charge or Auto-Refresh is in progress, but power-down IDD specification will not be applied until finishing those  
operations.  
The DLL should be in a locked state when power-down is entered. Otherwise DLL should be reset after exiting  
power-down mode for proper read operation. DRAM design guarantees it’s DLL in a locked state with any CKE  
intensive operations as long as DRAM controller complies with DRAM specifications.  
If power-down occurs when all banks are precharged, this mode is referred to as Precharge Power-down; if  
power-down occurs when there is a row active in any bank, this mode is referred to as Active Power-down. For  
Active Power-down two different power saving modes can be selected within the MRS register, address bit A12.  
When A12 is set to “low” this mode is referred as “standard active power-down mode” and a fast power-down exit  
timing defined by the tXARD timing parameter can be used. When A12 is set to “high” this mode is referred as a  
power saving “low power active power-down mode”. This mode takes longer to exit from the power-down mode  
and the tXARDS timing parameter has to be satisfied.  
Entering power-down deactivates the input and output buffers, excluding CK, CK, ODT and CKE. Also the DLL is  
disabled upon entering Precharge Power-down or slow exit active power-down, but the DLL is kept enabled dur-  
ing fast exit active power-down. In power-down mode, CKE low and a stable clock signal must be maintained at  
the inputs of the DDR2 SDRAM, and all other input signals are “Don’t Care”. Power-down duration is limited by 9  
times tREFI of the device.  
The power-down state is synchronously exited when CKE is registered high (along with a NOP or Deselect com-  
mand). A valid, executable command can be applied with power-down exit latency, tXP, tXARD or tXARDS, after  
CKE goes high. Power-down exit latencies are defined in the AC spec table of this data sheet.  
Power-Down Entry  
Active Power-down mode can be entered after an activate command. Precharge Power-down mode can be  
entered after a Precharge, Precharge-All or internal precharge command. It is also allowed to enter power-mode  
after an Auto-Refresh command or MRS / EMRS(1) command when tMRD is satisfied.  
Active Power-down mode entry is prohibited as long as a Read Burst is in progress, meaning CKE should be kept  
high until the burst operation is finished. Therefore Active Power-Down mode entry after a Read or Read with  
Auto-Precharge command is allowed after RL + BL/2 is satisfied.  
Active Power-down mode entry is prohibited as long as a Write Burst and the internal write recovery is in progress.  
In case of a write command, active power-down mode entry is allowed when WL + BL/2 + tWTR is satisfied.  
In case of a write command with Auto-Precharge, Power-down mode entry is allowed after the internal precharge  
command has been executed, which is WL + BL/2 + WR starting from the write with Auto-Precharge command. In  
case the DDR2 SDRAM enters the Precharge Power-down mode.  
Page 55  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Examples:  
Active Power-Down Mode Entry and Exit after an Activate Command  
T0  
T1  
T2  
Tn  
Tn+1  
Tn+2  
CK, CK  
Valid  
C om m and  
CM D  
CKE  
N O P  
N O
N O P  
A ctivate  
NO P  
P  
tIS  
tIS  
tXARD or  
tXARDS *)  
Act.PD 0  
Active  
Power-Down  
Exit  
Active  
Power-Down  
Entry  
note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MRS, address bit A12.  
Active Power-Down Mode Entry and Exit after a Read Command: RL = 4 (AL = 1, CL =3), BL = 4  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, C K  
Valid  
Com m and  
R EAD  
R EAD w/A P  
C M D  
CKE  
N O P  
N
N O P  
NO P  
N O P  
N O P  
O P  
N O P  
N O P  
N O P  
tIS  
RL + BL/2  
tIS  
D Q S,  
D Q S  
CL = 3  
RL = 4  
tXARD or  
AL = 1  
tXARDS *)  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 1  
note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MRS, address bit A12.  
Page 56  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Active Power-Down Mode Entry and Exit after a Write Command: WL = 2, tWTR = 2, BL = 4  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, CK  
Valid  
Com m and  
C M D  
CKE  
NO P  
N O P  
NO P  
NO P  
P  
NO P  
W R ITE  
NO P  
N
NO P  
N O P  
tIS  
WL + BL/2 + tWTR  
tIS  
D Q S,  
D Q S  
WL = RL - 1 = 2  
tWTR  
tXARD or  
tXARDS *)  
D Q  
DIN A0  
DIN A1 DIN A2 DIN A3  
Active  
Active  
Power-Down  
Exit  
Act.PD 2  
Power-Down  
Entry  
note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MRS, address bit A12.  
Active Power-Down Mode Entry and Exit after a Write Command with AP: WL = 2, tWR = 3, BL = 4  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, CK  
Valid  
C om m and  
W R ITE  
w /A P  
C M D  
CKE  
N O P  
N O P  
N O P  
N O P  
N O P  
P  
N
N O P  
N O P  
N O P  
WL + BL/2 + WR  
tIS  
tIS  
D Q S,  
D Q S  
WL = RL - 1 = 2  
WR  
tXARD or  
tXARDS *)  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
Active  
Active  
Act.PD 3  
Power-Down  
Entry  
Power-Down  
Exit  
note: Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MRS, address bit A12.WR is the programmed value in the MRS mode register.  
Page 57  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Precharge Power Down Mode Entry and Exit  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
CK, CK  
Precharge  
*)  
Valid  
N O P  
CM D  
C KE  
N O P  
N O P  
N O P  
N O
NO P  
N O P  
C om m and  
tIS  
tIS  
tXP  
tRP  
Precharge  
Power-Down  
Entry  
Precharge  
Power-Down  
Exit  
*) "Precharge" may be an external command or an internal  
precharge following Write with AP.  
PrePD  
Auto-Refresh command to Power-Down entry  
T0  
T1  
T2  
T3  
T4  
Tn  
CK, CK  
tRFC  
Valid  
Command  
Auto  
CM D  
CKE  
Refresh  
tXP  
tis  
CKE can go low one clock after an Auto-Refresh command  
ARPD  
When tRFC expires the DRAM is in Precharge Power-Down Mode  
MRS, EMRS command to Power-Down entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, CK  
MRS or  
EMRS  
CM D  
C KE  
t
MRD  
Enters Precharge Power-Down Mode  
MRS_PD  
Page 58  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.11 No Operation Command  
2.11.1 No Operation Command (NOP)  
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state. The purpose of  
the No Operation Command is to prevent the SDRAM from registering any unwanted commands between opera-  
tions. A No Operation Command is registered when CS is low with RAS, CAS, and WE held high at the rising  
edge of the clock. A No Operation Command will not terminate a previous operation that is still executing, such as  
a burst read or write cycle.  
2.11.2 Deselect Command (DESEL)  
The Deselect Command performs the same function as a No Operation Command. Deselect Command occurs  
when CS is brought high, the RAS, CAS, and WE signals become don’t care.  
2.12 Input Clock Frequency Change  
During operation the DRAM input clock frequency can be changed under the following conditions:  
a) During Self-Refresh operation  
b) DRAM is in Precharge Power-down mode and ODT is completely turned off.  
The DDR2-SDRAM has to be in Precharged Power-down mode and idle. ODT must be already turned off and  
CKE must be at a logic “low” state. After a minimum of two clock cycles after tRP and tAOFD have been satisfied  
the input clock frequency can be changed. A stable new clock frequency has to be provided, before CKE can be  
changed to a “high” logic level again. After tXP has been satisfied a DLL RESET command via EMRS(1) has to be  
issued. During the following DLL re-lock period of 200 clock cycles, ODT must remain off. After the DLL-re-lock  
period the DRAM is ready to operate with the new clock frequency.  
Example:  
Input frequency change during Precharge Power-Down mode  
Ty+2  
Tz  
Ty+3  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx+1  
Ty  
Ty+1  
D LL  
R ES ET  
Valid  
C om m and  
N O P  
N O P  
N O P  
N O P  
NO P  
N O P  
N O P  
N O P  
NO P  
N O P  
tRP  
tAOFD  
tXP  
200 clocks  
Minimum 2 clocks  
required before  
Frequency Change  
occurs here  
Stable new clock  
ODT is off during  
DLL RESET  
before power-down exit  
changing the frequency  
Frequ.Ch.  
Page 59  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
2.13 Asynchronous CKE Low Reset Event  
In a given system, Asynchronous Reset event can occur at any time without prior knowledge. In this situation,  
memory controller is forced to drop CKE asynchronously low, immediately interrupting any valid operation. DRAM  
requires CKE to be maintained “high” for all valid operations as defined in this data sheet. If CKE asynchronously  
drops “low” during any valid operation DRAM is not guaranteed to preserve the contents of the memory array. If  
this event occurs, the memory controller must satisfy a time delay (t  
) before turning off the clocks. Stable  
delay  
clocks must exist at the input of DRAM before CKE is raised “high” again. The DRAM must be fully re-initialized as  
described the initialization sequence (section 2.2.1, step 4 thru 13). DRAM is ready for normal operation after the  
initialization sequence. See AC timing parametric table for t  
specification.  
delay  
Asynchronous CKE Low Event  
stable clocks  
CK, CK  
tdelay  
CKE  
CKE drops low due to an  
asynchronous reset event  
Clocks can be turned off after  
this point  
Page 60  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
3. Truth Tables  
3.1 Command Truth Table  
CKE  
BA0  
BA1  
CS RAS CAS WE  
Function  
A12-A11 A10 A9 - A0 Notes  
Previous Current  
Cycle  
Cycle  
(Extended) Mode Register Set  
Auto-Refresh  
H
H
L
L
L
H
L
L
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
H
H
X
L
BA  
X
OP Code  
1, 2  
1
H
H
X
X
X
X
X
X
X
X
X
X
X
Self-Refresh Entry  
Self-Refresh Exit  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
L
L
L
X
X
1
L
H
X
L
X
H
H
H
L
X
X
1
H
H
BA  
X
L
1,2  
1
H
H
L
L
H
H
H
L
H
L
BA  
Row Address  
1, 2  
Write  
H
H
H
H
H
H
H
X
X
H
X
H
BA Column  
BA Column  
BA Column  
BA Column  
L
H
L
Column 1,2,3  
Column 1,2,3  
Column 1,2,3  
Column 1,2,3  
Write with Auto-Precharge  
Read  
H
H
L
L
H
H
L
H
H
H
X
X
H
X
H
Read with Auto-Precharge  
No Operation  
H
H
L
H
X
X
H
X
H
X
X
H
X
H
X
X
X
X
X
X
1
1
Device Deselect  
H
X
Power Down Entry  
Power Down Exit  
H
L
L
X
X
X
X
X
X
X
X
1,4  
1,4  
H
1. All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.  
2. Bank addresses (BAx) determine which bank is to be operated upon. For (E)MRS BAx selects an (Extended) Mode  
Register.  
3. Burst reads or writes at BL = 4 cannot be terminated. See sections “Reads interrupted by a Read” and “Writes inter-  
rupted by a Write” in section 2.4.6 for details.  
4. The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by  
the refresh requirements outlined in section 2.7.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self  
Refresh.  
6. “X” means “H or L (but a defined logic level)”.  
7. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM  
must be powered down and then restarted through the specified initialization sequence before normal operation can  
continue.  
Page 61  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
3.2 Clock Enable (CKE) Truth Table for Synchronous Transitions  
CKE  
3,12  
Command (N)  
2
3
Previous  
Current  
Notes  
Current State  
Action (N)  
1
1
Cycle  
Cycle  
RAS, CAS, WE, CS  
(N-1)  
(N)  
Maintain Power-Down  
Power-Down Exit  
L
L
L
L
L
X
11, 13, 15  
4, 8, 11, 13  
11, 15  
Power-Down  
Self Refresh  
H
L
DESELECT or NOP  
X
Maintain Self Refresh  
Self Refresh Exit  
H
DESELECT or NOP  
4, 5, 9  
Bank(s)  
Active  
Active Power-Down Entry  
H
L
DESELECT or NOP  
4,8,10,11, 13  
Precharge Power-Down Entry  
Self Refresh Entry  
H
H
L
L
DESELECT or NOP  
AUTOREFRESH  
4,8,10,11  
All Banks Idle  
6, 9, 11, 13  
Any State other  
than listed above  
Refer to the Command Truth Table  
H
H
7
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
2. Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
3. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N).  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR  
period.  
Read commands may be issued only after tXSRD (200 clocks) is satisfied.  
6. Self Refresh mode can only be entered from the All Banks Idle state.  
7. Must be a legal command as defined in the Command Truth Table.  
8. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
9. Valid commands for Self Refresh Exit are NOP and DESELCT only.  
10. Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations,  
Precharge or Refresh operations are in progress. See section 2.8 “Power Down” and section 2.7.2 “Self Refresh Com-  
mand” for a detailed list of restrictions.  
11. Minimum CKE high time is 3 clocks, minimum CKE low time is 3 clocks.  
12. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
13. The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by  
the refresh requirements.  
14. CKE must be maintained high while the device is in OCD calibration mode.  
15. “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven  
high or low in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).  
16. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3.3 Data Mask (DM) Truth Table  
Name (Function)  
Write Enable  
DM  
L
DQs  
Valid  
X
Notes  
1
1
Write Inhibit  
H
1. Used to mask write data; provided coincident with the corresponding data.  
Page 62  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
4. Operating Conditions  
4.1 Absolute Maximum Ratings  
Symbol  
VDD  
Parameter  
Rating  
Units  
Notes  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
1
1
1
-1.0 to + 2.3  
-0.5 to + 2.3  
-0.5 to + 2.3  
-0.5 to + 2.3  
V
V
V
V
VDDQ  
VDDL  
V
, V  
1
IN OUT  
Storage Temperature  
T
1, 2  
-55 to + 100  
°C  
STG  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions,  
please refer to JESD51-2 standard.  
4.2 DRAM Component Operating Temperature Range  
Symbol  
Parameter  
Operating Temperature  
Rating  
Units  
Notes  
oC  
1 ~ 4  
T
0 to 95  
OPER  
1. Operating Temperature is the case surface temperature on the center / top side of the DRAM. For measurement conditions,  
please refer to the JEDEC document JESD51-2.  
2. The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the  
o
DRAM case temperature must be maintained between 0 - 95 C under all other specification parameters.  
o
o
3. Some application may require to operate the DRAM up to 95 C case temperature. In this case above 85 C case temperature the  
Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs.  
o
4. Self-Refresh period is hard-coded in the chip and therefore it is imperative that the system ensures the DRAM is below 85 C case  
temperature before initiating self-refresh operation.  
Page 63  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5. AC & DC Operating Conditions  
5.1 DC Operating Conditions  
5.1.1 Recommended DC Operating Conditions (SSTL_18)  
Rating  
Symbol  
Parameter  
Supply Voltage  
Units  
Notes  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
VDD  
VDDDL  
VDDQ  
VREF  
VTT  
V
V
V
V
V
1
1
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
1.7  
1.8  
1.9  
1
0.49 * VDDQ 0.5 * VDDQ 0.51 * VDDQ  
VREF - 0.04 VREF VREF + 0.04  
2, 3  
4
1. VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
2. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is  
expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.  
3. Peak to peak ac noise on VREF may not exceed +/- 2% VREF (dc).  
4. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF  
and must track variations in die dc level of VREF.  
5.1.2 ODT DC Electrical Characteristics  
Units  
Parameter / Condition  
Symbol  
min.  
nom.  
75  
max.  
Notes  
1
Rtt  
Rtt  
impedance value for EMRS(1)(A6,A2)=0,1; 75 ohm  
Rtt1  
(eff)  
60  
90  
(eff)  
(eff)  
impedance value for EMRS(1)(A6,A2)=1,0; 150 ohm Rtt2  
(eff)  
120  
180  
1
2
150  
Deviation of VM with respect to VDDQ / 2  
delta VM - 6.00  
+ 6.00  
%
1) Measurement Definition for Rtt(eff):  
Apply VIH  
and VIL  
to test pin separately, then measure current Ι(VIHac) and Ι(VILac) respectively.  
(ac)  
(ac)  
Rtt(eff) = (VIH  
(ac)  
- VIL  
) /(Ι(VIHac) - Ι(VILac))  
(ac)  
2) Measurement Definition for VM:  
Measure voltage (VM) at test pin (midpoint) with no load:  
delta VM =((2* VM / VDDQ) - 1) x 100%  
5.1.3 Input and Output Leakage Currents:  
Units  
Symbol  
Parameter / Condition  
min.  
max.  
Notes  
1
I
Input Leakage Current; any input 0V < V < VDD  
IN  
-2  
+2  
µΑ  
IL  
I
Output Leakage Current; 0V < V < VDDQ  
OUT  
-5  
+5  
µΑ  
2
OL  
notes: 1) all other pins not under test = 0V  
2) DQ’s, DQS, DQS and ODT are disabled  
Page 64  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.2 DC & AC Logic Input Levels  
DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the  
EMRS(1) “Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The  
method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single ended mode, timing  
relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode,  
these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinc-  
tion in timing methods is verified by design and characterization but not subject to production test. In single ended  
mode, the DQS (and RDQS) signals are internally disabled and don’t care.  
5.2.1 Single-ended DC & AC Logic Input Levels  
Symbol  
VIH (dc)  
VIL (dc)  
VIH (ac)  
VIL (ac)  
Parameter  
Min.  
VREF + 0.125  
- 0.3  
Max.  
VDDQ + 0.3  
VREF - 0.125  
-
Units  
DC input logic high  
V
V
V
V
DC input low  
AC input logic high  
AC input low  
VREF + 0.250  
-
VREF - 0.250  
5.2.2 Single-ended AC Input Test Conditions  
Symbol  
VREF  
Condition  
Input reference voltage  
Value  
Units  
V
Notes  
1, 2  
0.5 * VDDQ  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1, 2  
VSWING(max)  
SLEW  
1.0  
1.0  
V
3, 4  
V / ns  
1. This timing and slew rate definition is valid for all single-ended signals except tis, tih, tds, tdh.  
2. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
3. The input signal minimum slew rate is to be maintained over the range from VIL(dc)max to VIH(ac)min for rising edges and  
the range from VIH(dc)min to VIL(ac)max for falling edges as shown in the below figure.  
4. AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac)  
to VIL(ac) on the negative transitions.  
Start of Falling Edge Input Timing  
Start of Rising Edge Input Timing  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
V
SWING(MAX)  
max  
max  
IL(dc)  
IL(ac)  
SS  
delta TF  
VIH(dc) min - VIL(ac) max  
delta TR  
VIH(ac) min - VIL(dc) max  
delta TR  
Falling Slew =  
Rising Slew =  
delta TF  
Page 65  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.2.3 Differential DC and AC Input and Output Logic Levels  
Symbol  
VIN(dc)  
VID(dc)  
VID(ac)  
VIX(ac)  
VOX(ac)  
Parameter  
min.  
max.  
Units Notes  
DC input signal voltage  
-0.3  
VDDQ + 0.3  
1
DC differential input voltage  
0.25  
VDDQ + 0.6  
2
AC differential input voltage  
0.5  
VDDQ + 0.6  
V
V
V
3
4
5
AC differential cross point input voltage  
AC differential cross point output voltage  
0.5 * VDDQ - 0.175  
0.5 * VDDQ - 0.125  
0.5 * VDDQ + 0.175  
0.5 * VDDQ + 0.125  
notes:  
1) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.  
2) VID(dc) specifies the input differential voltage VTR - VCP required for switching. The minimum value is equal to VIH(dc) - VIL(dc).  
3) VID(ac) specifies the input differential voltage VTR - VCP required for switching. The minimum value is equal to VIH(ac) - VIL(ac).  
4) The value of VIX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ.  
VIX(ac) indicates the voltage at which differential input signals must cross.  
5) The value of VOX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VOX(ac) is expected to track variations in  
VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross.  
VDDQ  
VTR  
Crossing Point  
VID  
VIX or VOX  
VCP  
VSSQ  
SSTL18_3  
Page 66  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.3 Output Buffer Levels  
5.3.1 SSTL_18 Output DC Current Drive  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
Symbol  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTL_18 Class II  
I
-13.4  
13.4  
OH  
I
mA  
OL  
1. VDDQ = 1.7 V; V  
- 280 mV.  
= 1.42 V. (V  
OUT  
-VDDQ) / IOH must be less than 21 ohm for values of V  
between VDDQ and VDDQ  
OUT  
OUT  
2. VDDQ = 1.7 V; V  
= 280 mV. V  
OUT  
/ IOL must be less than 21 ohm for values of VOUT between 0V and 280 mV.  
OUT  
3. The dc value of VREF applied to the receiving device is set to VTT  
4. The values of I (dc) and I (dc) are based on the conditions given in note 1 and 2. They are used to test drive current capa-  
OH OL  
bility to ensure VIHmin. plus a noise margin and VILmax. minus a noise margin are delivered to an SSTL_18 receiver. The  
actual current values are derived by shifting the desired driver operating points along 21 ohm load line to define a convenient  
current for measurement.  
5.3.2 SSTL_18 Output AC Test Conditions  
Symbol  
Parameter  
SSTL_18 Class II  
Units  
Notes  
1
V
Minimum Required Output Pull-up  
V
+ 0.603  
– 0.603  
V
V
V
OH  
TT  
TT  
1
2
V
Maximum Required Output Pull-down  
Output Timing Measurement Reference Level  
V
OL  
V
0.5 * V  
DDQ  
OTR  
1. SSTL_18 test load for VOH and VOL is different from the reference load described in section 8.1 of this datasheet. The  
SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition  
assumes that +/- 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA x 25 Ohm = 335 mV).  
With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the out-  
put device (13.4 mA * 45 Ohm) = 603 mV).  
2. The VDDQ of the device under test is referenced.  
5.3.3 OCD “Off-Chip Driver” Default Characteristics  
max.  
23.4  
4
Unit  
Notes  
Symbol  
Description  
min.  
12.6  
0
nominal  
Output Impedance  
Ohms  
1,2  
-
-
-
18  
-
Pull-up / Pull down mismatch  
Ohms  
Ohms  
1, 2, 3  
8
Output Impedance step size for OCD calibration  
0
-
1.5  
1, 4, 5, 6,  
7
Output Slew Rate  
V / ns  
Sout  
1.5  
-
5.0  
1) V  
DDQ  
= 1.8 V ± 0.1 V; V  
= 1.8 V ± 0.1 V.  
DD  
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV;  
(VOUT-VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ - 280 mV. Impedance measurement  
condition for output sink dc current: VDDQ = 1.7 V; VOUT = -280 mV; VOUT / IOL must be less than 23.4 ohms for values of VOUT  
between 0 V and 280 mV.  
3) Mismatch is absolute value between pull-up and pull-down, both are measured at same temperature and voltage.  
4) Slew rates measured from VIL(ac) to VIH(ac) with the load specified in Section 8.2.  
5) The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This  
is verified by design and characterisation but not subject to production test.  
6) DRAM output slew rate specification applies to 400, 533 and 667 MT/s speed bins.  
7) Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and tQHS specifi-  
cation.  
8) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the  
DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 +/- 0.75 ohms under nominal condi-  
tions.  
Page 67  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.4 Default Output V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined for full strength default operation as selected by the  
EMRS(1) bits A7~A9 =’111’. Figures in Section 5.3.5 and 5.3.6 show the driver characteristics graphically and the  
tables sow the same data suitable for input into simulation tools.  
5.4.1 Full Strength Default Pull-up Driver Characteristics  
Pull-up Driver Current [mA]  
Minimum  
Nominal Default low  
Nominal Default high  
Maximum  
Voltage (V)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
-8.5  
-11.1  
-16.0  
-20.3  
-24.0  
-27.2  
-29.8  
-31.9  
-33.4  
-34.6  
-35.5  
-36.2  
-36.8  
-37.2  
-37.7  
-38.0  
-38.4  
-38.6  
-11.8  
-17.0  
-22.2  
-27.5  
-32.4  
-36.9  
-40.8  
-44.5  
-47.7  
-50.4  
-52.5  
-54.2  
-55.9  
-57.1  
-58.4  
-59.6  
-60.8  
-15.9  
-23.8  
-31.8  
-39.7  
-47.7  
-55.0  
-62.3  
-69.4  
-75.3  
-80.5  
-84.6  
-87.7  
-90.8  
-92.9  
-94.9  
-97.0  
-99.1  
-101.1  
-12.1  
-14.7  
-16.4  
-17.8  
-18.6  
-19.0  
-19.3  
-19.7  
-19.9  
-20.0  
-20.1  
-20.2  
-20.3  
-20.4  
-20.6  
The driver characteristics evaluation conditions are:  
o
Nominal Default 25 C (Tcase), VDDQ = 1.8 V, typical process  
o
o
Minimum 95 C (Tcase), VDDQ = 1.7V, slow-slow process  
Maximum 0 C (Tcase). VDDQ = 1.9 V, fast-fast process  
0
-20  
-40  
Minimum  
Nominal Default Low  
Nominal Default High  
Maximum  
-60  
-80  
-100  
-120  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
1,4  
1,6  
1,8  
2
VDDQ to VOUT (V)  
Page 68  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.4.2 Full Strength Default Pull-down Driver Characteristics  
Pull-down Driver Current [mA]  
Nominal Default low Nominal Default high  
Minimum  
Maximum  
Voltage (V)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
8.5  
11.3  
11.8  
16.8  
22.1  
27.6  
32.4  
36.9  
40.9  
44.6  
47.7  
50.4  
52.6  
54.2  
55.9  
57.1  
58.4  
59.6  
60.9  
15.9  
23.8  
31.8  
39.7  
47.7  
55.0  
62.3  
69.4  
75.3  
80.5  
84.6  
87.7  
90.8  
92.9  
94.9  
97.0  
99.1  
101.1  
12.1  
14.7  
16.4  
17.8  
18.6  
19.0  
19.3  
19.7  
19.9  
20.0  
20.1  
20.2  
20.3  
20.4  
20.6  
16.5  
21.2  
25.0  
28.3  
30.9  
33.0  
34.5  
35.5  
36.1  
36.6  
36.9  
37.1  
37.4  
37.6  
37.7  
37.9  
The driver characteristics evaluation conditions are:  
o
Nominal Default 25 C (Tcase), VDDQ = 1.8 V, typical process  
o
o
Minimum 95 C (Tcase), VDDQ = 1.7V, slow-slow process  
Maximum 0 C (Tcase). VDDQ = 1.9 V, fast-fast process  
120  
100  
80  
60  
40  
20  
0
Minimum  
Nominal Default Low  
Nominal Default High  
Maximum  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
VOUT to VSSQ (V)  
Page 69  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.4.3 Calibrated Output Driver V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined for full strength calibrated operation as selected by the  
procedure outlined in the Off-Chip Driver (OCD) Impedance Adjustment. The following tables show the data in  
tabular format suitable for input into simulation tools. The nominal points represent a device at exactly 18 ohms.  
The nominal low and nominal high values represent the range that can be achieved with a maximum 1.5 ohms  
step size with no calibration error at the exact nominal conditions only (i.e. perfect calibration procedure, 1.5 ohm  
maximum step size guaranteed by specification). Real system calibration error needs to be added to these values.  
It must be understood that these V-I curves are represented here or in supplier IBIS models need to be adjusted to  
a wider range as a result of any system calibration error. Since this is a system specific phenomena, it cannot be  
quantified here. The values in the calibrated tables represent just the DRAM portion of uncertainty while looking at  
one DQ only. If the calibration procedure is used, it is possible to cause the device to operate outside the bounds  
of the default device characteristics tables and figure. In such a situation, the timing parameters in the specifica-  
tion cannot be guaranteed. It is solely up to the system application to ensure that the device is calibrated between  
the minimum and maximum default values at all times. If this can’t be guaranteed by the system calibration proce-  
dure, re-calibration policy and uncertainty with DQ to DQ variation, it is recommended that only the default values  
to be used. The nominal maximum ad minimum values represent the change in impedance from nominal low and  
high as a result of voltage and temperature change from the nominal condition to the maximum and minimum con-  
ditions. If calibrated at an extreme condition, the amount of variation could be as much as from the nominal mini-  
mum to the nominal maximum or vice versa.  
Full Strength Calibrated Pull-down Driver Characteristics  
Calibrated Pull-down Driver Current [mA]  
Nominal Minimum  
(21 Ohms)  
Normal Low  
(18.75 Ohms)  
Nominal  
(18 ohms)  
Normal High  
(17.25 Ohms)  
Nominal Maximum  
(15 Ohms)  
Voltage (V)  
0.2  
0.3  
0.4  
9.5  
10.7  
16.0  
21.0  
11.5  
16.6  
21.6  
11.8  
17.4  
23.0  
13.3  
20.0  
27.0  
14.3  
18.7  
The driver characteristics evaluation conditions are:  
o
Nominal 25 C (Tcase), VDDQ = 1.8 V, typical process  
o
Nominal Low and Nominal High 25 C (Tcase), VDDQ = 1.8V, any process  
o
Nominal Minimum 95 C (Tcase). VDDQ = 1.7 V, any process  
o
Nominal Maximum 0 C (Tcase), VDDQ = 1.9 V, any process  
Full Strength Calibrated Pull-up Driver Characteristics  
Calibrated Pull-up Driver Current [mA]  
Nominal Minimum  
(21 Ohms)  
Normal Low  
(18.75 Ohms)  
Nominal  
(18 ohms)  
Normal High  
(17.25 Ohms)  
Nominal Maximum  
(15 Ohms)  
Voltage (V)  
0.2  
0.3  
0.4  
-9.5  
-14.3  
-18.3  
-10.7  
-16.0  
-21.0  
-11.4  
-16.5  
-21.2  
-11.8  
-17.4  
-23.0  
-13.3  
-20.0  
-27.0  
The driver characteristics evaluation conditions are:  
o
Nominal 25 C (Tcase), VDDQ = 1.8 V, typical process  
o
Nominal Low and Nominal High 25 C (Tcase), VDDQ = 1.8V, any process  
o
o
Nominal Minimum 95 C (Tcase). VDDQ = 1.7 V, any process  
Nominal Maximum 0 C (Tcase), VDDQ = 1.9 V, any process  
Page 70  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
5.5 Input / Output Capacitance  
Symbol  
Parameter  
min.  
1.0  
-
max.  
2.0  
Units  
pF  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
0.25  
2.0  
pF  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
1.0  
-
pF  
CDI  
0.25  
pF  
Input/output capacitance,  
CIO  
3.0  
-
4.0  
0.5  
pF  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
Input/output capacitance delta,  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
5.6 Power & Ground Clamp V-I Characteristics  
Power and Ground clamps are provided on address (A0~A12, BA0, BA1), RAS, CAS, CS, WE, CKE and ODT  
pins. The V-I characteristics for pins with clamps is shown in the following table:  
Minimum Power  
Clamp Current (mA)  
Minimum Ground  
Clamp Current (mA)  
Voltage across clamp  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
Page 71  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
6. IDD Specifications and Measurement Conditions  
6.1 IDD Specifications  
(VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1V, 0 oC to TCASEmax  
)
.
-3 & -3S  
DDR2 - 667  
-5  
-3.7  
DDR2 -533  
Unit  
DDR2 -400  
Symbol  
Parameter/Condition  
I/O  
max.  
50  
55  
4
max.  
55  
60  
4
max.  
60  
65  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
Operating Current  
all  
all  
all  
all  
all  
all  
all  
all  
DD0  
DD1  
Operating Current  
I
Precharge Power-Down Current  
Precharge Standby Current  
Precharge Quiet Standby Current:  
DD2P  
DD2N  
DD2Q  
I
28  
20  
13  
4
36  
25  
16  
4
45  
30  
20  
4
I
MRS(12)=0  
MRS(12)=1  
Active Power-Down Standby  
Current  
I
DD3P  
I
I
Active Standby Current  
30  
35  
40  
DD3N  
DD4R  
80  
90  
x4/x8  
x16  
60  
70  
70  
80  
mA  
mA  
Operating Current Burst Read  
100  
115  
x4/x8  
x16  
70  
90  
85  
100  
I
Operating Current Burst Write  
DD4W  
I
Burst Auto-Refresh Current (tRFC=tRFCmin.)  
Distributed Auto-Refresh Current (tRFC=7.8µs)  
Self-Refresh Current for standard products  
Self-Refresh Current for low power products  
all  
all  
all  
all  
80  
6
85  
6
90  
6
mA  
mA  
mA  
mA  
DD5B  
I
DD5D  
I
I
4
4
4
DD6  
DD6  
2
2
2
145  
160  
x4/x8  
x16  
125  
140  
135  
150  
I
Operating Current  
mA  
DD7  
Page 72  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
6.2 IDD Measurement Conditions  
(VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1V)  
Symbol  
Parameter/Condition  
Operating Current - One bank Active - Precharge  
I
I
tCK =tCK(IDD).; tRC = tRC(IDD); tRAS = tRASmin(IDD); CKE is HIGH, CS is HIGH between valid commands.  
DD0  
DD1  
Address and control inputs are SWITCHING; Data bus inputs are SWITCHING;  
Operating Current - One bank Active - Read - Precharge  
IOUT = 0 mA; BL = 4, tCK = tCK(IDD), tRC = tRC(IDD); tRAS = tRASmin(IDD); tRCD = tRCD(IDD), CL = CL(IDD).;AL = 0;  
CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING, Data bus inputs are SWITCHING;  
Precharge Power-Down Current: All banks idle; CKE is LOW; tCK = tCK(IDD).; Other control and address inputs are STA-  
I
DD2P  
DD2N  
DD2Q  
BLE, Data Bus inputs are FLOATING.  
Precharge Standby Current: All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD).; Other control and address bus inputs  
I
are SWICHTING; Data bus inputs are SWITCHING.  
Precharge Quiet Standby Current: All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD).; Other control and address bus  
I
inputs are STABLE; Data bus inputs are FLOATING.  
Active Power-Down Current: All banks open; tCK = tCK(IDD).;CKE is LOW; Other control and address inputs are STABLE;  
I
I
DD3P(0)  
DD3P(1)  
Data Bus inputs are FLOATING. MRS A12 bit is set to “0”(Fast Power-down Exit);  
Active Power-Down Current: All banks open; tCK = tCK(IDD).;CKE is LOW; Other control and address inputs are STABLE;  
Data Bus inputs are FLOATING. MRS A12 bit is set to “1”(Slow Power-down Exit);  
Active Standby Current: All banks open; tCK = tCK(IDD).; tRAS = tRASmax(IDD).; tRP = tRP(IDD)., CKE is HIGH; CS is  
I
I
DD3N  
DD4R  
HIGH between valid commands; Other control and address inputs are SWITCHING; Data Bus inputs are SWITCHING.  
Operating Current - Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD).; tCK = tCK(IDD).;  
tRAS = tRASmax(IDD)., tRP = tRP(IDD)., CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCH-  
ING; Data bus inputs are SWITCHING; IOUT = 0mA.  
Operating Current - Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD).; tCK = tCK(IDD).;  
tRAS = tRASmax(IDD)., tRP = tRP(IDD).;CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCH-  
ING; Data Bus inputs are SWITCHING;  
I
DD4W  
Burst Auto-Refresh Current: tCK = tCK(IDD); Refresh command every tRFC = tRFC(IDD) interval; CKE is HIGH, CS is  
I
DD5B  
HIGH between valid commands; Other control and address inputs are SWITCHING; Data bus inputs are SWITCHING.  
Distributed Auto-Refresh Current: tCK = tCK(IDD).; Refresh command every tREFI=7.8 µs interval; CKE is LOW and CS is  
I
DD5D  
HIGH between valid commands; Other control and address inputs are SWITCHING; Data bus inputs are SWITCHING  
Self-Refresh Current: CKE 0.2V; external clock off, CK and CK at 0V; Other control and address inputs are FLOATING;  
I
I
DD6  
DD7  
Data Bus inputs are FLOATING.  
All Bank Interleave Read Current:  
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL=CL(IDD), AL = tRCD(IDD) -1*tCK(IDD);  
tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is high between valid commands, Address bus  
inputs are STABLE during DESELECTS; Data bus is SWITCHING.  
2. Timing pattern:  
- DDR2 -400 -333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D  
- DDR2 -533 -444: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
- DDR2 -667 -444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
- DDR2 -667 -555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D  
3. Legend: Activate, RA=Read with Auto-Precharge, D=DESELECT  
1. IDD specifications are tested after the device is properly initialized.  
2. IDD parameter are specified with ODT disabled.  
3. Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.  
4. Definitions for IDD:  
LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIHAC(min.);  
STABLE is defined as inputs are stable at a HIGH or LOW level  
FLOATING is defined as inputs are VREF = VDDQ / 2  
SWITCHING is defined as:  
Inputs are changing between HIGH and LOW every other clock (once per two clocks) for address and control signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including mask or strobes.  
5. Timing parameter minimum and maximum values for IDD current measurements are defined in the following table.  
Page 73  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
6.2 IDD Measurement Conditions (cont’d)  
For testing the IDD parameters, the following timing parameters are used:  
-5  
-3.7  
DDR2 -533  
-3S  
DDR2 - 667  
-3  
Unit  
DDR2 -400  
DDR2 - 667  
Parameter  
Symbol  
3-3-3  
3
4-4-4  
4
5-5-5  
5
4-4-4  
4
CAS Latency  
CL(IDD)  
tCK(IDD)  
tRCD(IDD)  
tCK  
ns  
Clock Cycle Time  
5
3.75  
15  
3
3
Active to Read or Write delay  
15  
15  
12  
ns  
Active to Active / Auto-Refresh command  
period  
tRC(IDD)  
60  
60  
60  
57  
ns  
ns  
Active bank A to Active  
1 kB page size  
tRRD(IDD)  
7.5  
7.5  
7.5  
7.5  
bank B command delay  
tRASmin(IDD)  
tRASmax(IDD)  
tRP(IDD)  
45  
70000  
15  
45  
70000  
15  
45  
70000  
15  
45  
70000  
12  
ns  
ns  
ns  
Active to Precharge Command  
Precharge Command Period  
Auto-Refresh to Active / Auto-Refresh com-  
mand period  
tRFC(IDD)  
75  
75  
75  
75  
ns  
6.3 ODT (On Die Termination) Current  
The ODT function adds additional current consumption to the DDR2 SDRAM when enabled by the EMRS(1).  
Depending on address bits A6 & A2 in the EMRS(1) a “week” or “strong” termination can be selected. The current  
consumption for any terminated input pin, depends on the input pin is in tri-state or driving “0” or “1”, as long a  
ODT is enabled during a given period of time.  
ODT current per terminated input pin:  
EMRS(1) State  
Unit  
min. typ. max.  
A6 = 0, A2 = 1  
A6 = 1, A2 = 0  
A6 = 0, A2 = 1  
tbd.  
tbd.  
tbd.  
tbd.  
tbd.  
tbd.  
7.5  
mA/DQ  
Enabled ODT current per DQ  
IODTO  
IODTT  
added IDDQ current for ODT enabled;  
ODT is HIGH; Data Bus inputs are FLOATING  
3.75 mA/DQ  
15  
mA/DQ  
mA/DQ  
Active ODT current per DQ  
added IDDQ current for ODT enabled;  
ODT is HIGH; worst case of Data Bus inputs  
are STABLE or SWITCHING.  
A6 = 1, A2 = 0  
tbd.  
tbd.  
7.5  
note: For power consumption calculations the ODT duty cycle has to be taken into account  
Page 74  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7. Electrical Characteristics & AC Timing - Absolute Specification  
7.1 Timing Parameter by Speed Grade - DDR2-400 & DDR2-533  
(V  
DDQ  
= 1.8V ± 0.1V; V  
DD  
= 1.8V ± 0.1V) (notes 1-4)  
-5  
-3.7  
DDR2-400-333  
DDR2-533-444  
Notes  
Symbol  
Parameter  
Unit  
min.  
max  
+ 600  
+ 500  
0.55  
min.  
max  
+500  
+450  
0.55  
0.55  
t
DQ output access time from CK / CK  
DQS output access time from CK / CK  
CK, CK high-level width  
- 600  
- 500  
0.45  
0.45  
-500  
-450  
0.45  
0.45  
ps  
ps  
AC  
t
DQSCK  
t
t
t
CH  
CK  
t
CK, CK low-level width  
0.55  
CL  
HP  
CK  
t
Clock half period  
min (t  
t
min (t  
t
5
6
6
7
7
8
8
CL, CH)  
8000  
CL, CH)  
CL = 3  
CL = 4 & 5  
5000  
5000  
350  
5000  
3750  
250  
375  
100  
225  
0.6  
8000  
ps  
ps  
ps  
ps  
ps  
ps  
t
Clock cycle time  
CK  
8000  
8000  
t
Address and control input setup time  
Address and control input hold time  
DQ and DM input setup time  
-
-
IS  
t
475  
-
-
IH  
t
t
150  
-
-
DS  
DQ and DM input hold time  
275  
-
-
-
-
DS  
t
Address and control input pulse width (each input)  
DQ and DM input pulse width (each input)  
Data-out high-impedance time from CK / CK  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
DQS-DQ skew (for DQS & associated DQ signals)  
Data hold skew factor  
0.6  
t
t
IPW  
CK  
t
0.35  
-
-
0.35  
-
-
DIPW  
CK  
ps  
t
tACmax  
tACmax  
tACmax  
350  
tACmax  
tACmax  
tACmax  
300  
9
9
HZ  
2*tACmin  
tACmin  
-
t
2*tACmin  
tACmin  
-
ps  
ps  
ps  
ps  
(DQ)  
LZ  
t
LZ  
9
(DQS)  
t
18  
DQSQ  
t
-
450  
-
400  
QHS  
t
Data output hold time from DQS  
t
-t  
t
-t  
QH  
HP QHS  
HP QHS  
t
Write command to 1st DQS latching transition  
DQS input low (high) pulse width (write cycle)  
DQS falling edge to CK setup time (write cycle)  
DQS falling edge hold time from CK (write cycle)  
Mode register set command cycle time  
Write preamble  
WL-0.25  
0.35  
0.2  
WL+0.25  
WL-0.25  
0.35  
0.2  
WL+0.25  
t
t
t
t
t
t
t
t
t
DQSS  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
t
-
-
DQSL,H  
t
-
-
DSS  
t
0.2  
-
0.2  
-
DSH  
t
2
-
-
2
-
-
MRD  
t
0.25  
0.40  
0.9  
0.25  
0.40  
0.9  
WPRE  
t
Write postamble  
0.60  
1.1  
0.60  
70000  
-
0.60  
1.1  
0.60  
70000  
-
10  
9
WPST  
t
Read preamble  
RPRE  
t
Read postamble  
0.40  
40  
0.40  
45  
9
RPST  
CK  
ns  
t
Active to Precharge command  
11  
RAS  
t
Active to Active/Auto-Refresh command period  
Auto-Refresh to Active/Auto-Refresh command period  
55  
60  
ns  
ns  
RC  
t
75  
-
75  
-
12  
13  
RFC  
RCD  
Active to Read or Write delay  
t
15  
15  
-
-
15  
15  
-
-
ns  
ns  
(with and without Auto-Precharge)  
t
Precharge command period  
RP  
Page 75  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7.1 Timing Parameter by Speed Grade - DDR2-400 & DDR2-533  
(V  
DDQ  
= 1.8V ± 0.1V; V  
DD  
= 1.8V ± 0.1V) (notes 1-4)  
-5  
-3.7  
DDR2-400-333  
DDR2-533-444  
Notes  
Symbol  
Parameter  
Unit  
min.  
max  
min.  
max  
Active bank A to Active bank B  
command period  
x4, x8 & x16  
t
t
7.5  
-
7.5  
-
ns  
RRD  
(1k page size)  
CAS A to CAS B Command Period  
Write recovery time  
2
15  
2
15  
t
t
CCD  
CK  
ns  
t
-
-
-
-
-
-
-
-
WR  
t
Auto-Precharge write recovery + precharge time  
Internal Write to Read command delay  
WR+tRP  
10  
WR+tRP  
7.5  
14  
15  
DAL  
CK  
ns  
t
WTR  
t
Internal Read to Precharge command delay  
7.5  
7.5  
ns  
RTP  
Exit power down to any valid command  
(other than NOP or Deselect)  
t
2
6 - AL  
2
-
-
2
6 - AL  
2
-
-
t
t
16  
16  
XARD  
CK  
Exit active power-down mode to Read command  
(slow exit, lower power)  
t
XARDS  
CK  
CK  
Exit precharge power-down to any valid command  
(other than NOP or Deselect)  
t
-
-
-
-
t
t
XP  
t
t
Exit Self-Refresh to read command  
200  
200  
XSRD  
XSNR  
CK  
ns  
Exit Self-Refresh to non-Read command  
tRFC+10  
tRFC+10  
tCKE CKE minimum high and low pulse width  
3
-
3
-
t
CK  
µs  
o
o
0 C - 85 C  
7.8  
3.9  
12  
7.8  
3.9  
12  
t
Average periodic refresh Interval  
OCD drive mode output delay  
19  
17  
REFI  
o
o
85 C - 95 C  
-
-
µs  
ns  
t
0
0
OIT  
Minimum time clocks remain ON after CKE asynchro-  
nously drops LOW  
t
tIS+tCK+tIH  
-
tIS+tCK+tIH  
-
ns  
DELAY  
Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
Page 76  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7.2 Timing Parameter by Speed Grade - DDR2-667  
(V  
DDQ  
= 1.8V ± 0.1V; V  
DD  
= 1.8V ± 0.1V) (notes 1-4)  
-3S  
-3  
DDR2-667-555  
DDR2-667-444  
Notes  
Symbol  
Parameter  
Unit  
min.  
max  
+450  
+400  
0.55  
0.55  
min.  
-450  
-400  
0.45  
0.45  
max  
+450  
+400  
0.55  
0.55  
t
DQ output access time from CK / CK  
DQS output access time from CK / CK  
CK, CK high-level width  
-450  
-400  
0.45  
0.45  
ps  
ps  
AC  
t
DQSCK  
t
t
t
t
t
CH  
CK  
t
CK, CK low-level width  
CL  
HP  
CK  
Clock half period  
min (t  
t
min (t  
t
5
6
CL, CH)  
8000  
CL, CH)  
CL = 3  
5000  
5000  
3000  
150  
275  
50  
5000  
3000  
3000  
150  
275  
50  
8000  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Clock cycle time  
CL = 4  
CL = 5  
8000  
8000  
CK  
8000  
8000  
t
Address and control input setup time  
Address and control input hold time  
DQ and DM input setup time  
-
-
7
7
8
8
IS  
t
-
-
IH  
t
-
-
DS  
t
DQ and DM input hold time  
175  
0.6  
-
-
175  
0.6  
-
-
DH  
t
Address and control input pulse width (each input)  
DQ and DM input pulse width (each input)  
Data-out high-impedance time from CK / CK  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
DQS-DQ skew (for DQS & associated DQ signals)  
Data hold skew factor  
t
t
IPW  
CK  
t
0.35  
-
-
0.35  
-
-
DIPW  
CK  
ps  
t
tACmax  
tACmax  
tACmax  
250  
tACmax  
tACmax  
tACmax  
250  
9
9
HZ  
2*tACmin  
tACmin  
-
t
2*tACmin  
tACmin  
-
ps  
ps  
ps  
ps  
(DQ)  
LZ  
t
LZ  
9
(DQS)  
t
18  
DQSQ  
t
-
350  
-
350  
QHS  
t
Data output hold time from DQS  
t
-t  
t
-t  
QH  
HP QHS  
HP QHS  
t
Write command to 1st DQS latching transition  
DQS input low (high) pulse width (write cycle)  
DQS falling edge to CK setup time (write cycle)  
DQS falling edge hold time from CK (write cycle)  
Mode register set command cycle time  
Write preamble  
WL-0.25  
0.35  
0.2  
WL+0.25  
WL-0.25  
0.35  
0.2  
WL+0.25  
t
t
t
t
t
t
t
t
t
DQSS  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
t
-
-
DQSL,H  
t
-
-
DSS  
t
0.2  
-
0.2  
-
DSH  
t
2
-
-
2
-
-
MRD  
t
0.35  
0.40  
0.9  
0.35  
0.40  
0.9  
WPRE  
t
Write postamble  
0.60  
1.1  
0.60  
70000  
-
0.60  
1.1  
0.60  
70000  
-
10  
9
WPST  
t
Read preamble  
RPRE  
t
Read postamble  
0.40  
45  
0.40  
45  
9
RPST  
CK  
ns  
t
Active to Precharge command  
11  
RAS  
t
Active to Active/Auto-Refresh command period  
Auto-Refresh to Active/Auto-Refresh command period  
60  
57  
ns  
ns  
RC  
t
75  
-
75  
-
12  
13  
RFC  
RCD  
Active to Read or Write delay  
t
15  
-
12  
-
ns  
(with and without Auto-Precharge)  
Page 77  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7.2 Timing Parameter by Speed Grade - DDR2-667  
(V  
DDQ  
= 1.8V ± 0.1V; V  
DD  
= 1.8V ± 0.1V) (notes 1-4)  
-3S  
-3  
DDR2-667-555  
DDR2-667-444  
Notes  
Symbol  
Parameter  
Unit  
min.  
max  
min.  
max  
t
Precharge command period  
15  
-
-
12  
-
ns  
ns  
RP  
Active bank A to Active bank B  
command period  
x4, x8 & x16  
t
t
7.5  
7.5  
-
RRD  
(1k page size)  
CAS A to CAS B Command Period  
Write recovery time  
2
15  
2
15  
t
t
CCD  
CK  
ns  
t
-
-
-
-
-
-
-
-
WR  
t
Auto-Precharge write recovery + precharge time  
Internal Write to Read command delay  
WR+tRP  
7.5  
WR+tRP  
7.5  
14  
15  
DAL  
CK  
ns  
t
WTR  
t
Internal Read to Precharge command delay  
7.5  
7.5  
ns  
RTP  
Exit power down to any valid command  
(other than NOP or Deselect)  
t
2
6 - AL  
2
-
-
2
6 - AL  
2
-
-
t
t
16  
16  
XARD  
CK  
Exit active power-down mode to Read command  
(slow exit, lower power)  
t
XARDS  
CK  
CK  
Exit precharge power-down to any valid command  
(other than NOP or Deselect)  
t
-
-
-
-
t
t
XP  
t
t
Exit Self-Refresh to read command  
200  
200  
XSRD  
XSNR  
CK  
ns  
Exit Self-Refresh to non-Read command  
tRFC+10  
tRFC+10  
tCKE CKE minimum high and low pulse width  
3
-
3
-
t
CK  
µs  
o
o
0 C - 85 C  
7.8  
3.9  
12  
7.8  
3.9  
12  
t
Average periodic refresh Interval  
OCD drive mode output delay  
19  
17  
REFI  
o
o
85 C - 95 C  
-
-
µs  
ns  
t
0
0
OIT  
Minimum time clocks remain ON after CKE asynchro-  
nously drops LOW  
t
tIS+tCK+tIH  
-
tIS+tCK+tIH  
-
ns  
DELAY  
Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down  
and then restarted through the specified initialization sequence before normal operation can continue.  
Page 78  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7.3 ODT AC Electrical Characteristics and Operating Conditions (all speed bins)  
Parameter / Condition  
Symbol  
min.  
max.  
2
Units Notes  
t
ODT turn-on delay  
2
tAC(min)  
tAC(min)  
tAC(min) + 2 ns  
2.5  
t
AOND  
CK  
ns  
-400 & -533  
-667  
tAC(max) + 1 ns  
tAC(max) + 0.7 ns  
20  
t
ODT turn-on  
AON  
t
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
2 t  
CK  
+ tAC(max) + 1 ns  
2.5  
ns  
AONPD  
t
t
AOFD  
CK  
ns  
t
ODT turn-off  
tAC(min)  
tAC(min) + 2 ns  
3
tAC(max) + 0.6 ns  
21  
AOF  
AOFPD  
t
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency  
ODT Power Down Exit Latency  
2.5 t  
+ tAC(max) + 1 ns  
ns  
CK  
t
-
-
t
t
ANPD  
CK  
t
8
AXPD  
CK  
Page 79  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
7.4 Notes for Electrical Characteristics & AC Timing  
1. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. For DQS signals timings are guaranteed with a dif-  
ferential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1 V/ns in single ended mode. For other slew  
rates see Section 8 of this datasheet.  
2. The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross.  
The DQS / DQS,RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS, tIS, tiH, tDS, tDH is VREF.  
For tIS, tiH, tDS, tDH input reference levels see section 8.3 of this datasheet  
3. Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as LOW.  
4. The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.  
5. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device  
(i.e. this value can be greater than the minimum specification limits for tCL and tCH.  
6. For input frequency change during DRAM operation, see the 2.11 section of this datasheet.  
7. For timing definition, slew rate and slew rate derating see Section 8.3  
8. For timing definition, slew rate and slew rate derating see Section 8.3  
9. The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device out-  
put is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access  
time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to  
production test.  
10. The maximum limit for this parameter is not a device limit. The device operate with a greater value for this parameter, but  
system performance (bus turnaround) degrades accordingly.  
11. tRAS(max) is calculated from the maximum amount of time a DDR2 device can operate without a Refresh command  
which is equal to 9 * tREFI  
12. A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
13. The tRCD timing parameter is valid for both activate command to read or write command with and without Auto-Precharge.  
Therefore a separate parameter tRAP for activate command to read or write command with Auto-Precharge is not neces-  
sary anymore.  
14. For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MRS.  
15. tWTR is at least two clocks independent of operation frequency.  
16. User can choose two different active power-down modes for additional power saving via MRS address bit A12.  
In “standard active power-down mode” (MRS, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active  
power-down mode” (MRS, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
17. The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock fre-  
quency change during power-down, a specific procedure is required as describes in section 2.12.  
18. Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output slew rate mis-match between DQS / DQS and associated DQ in any given cycle.  
19. The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85oC and 95oC.  
20. ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measure from tAOND.  
21. ODT turn off time min. is when the device starts to turn off ODT resistance  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
Page 80  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
8. Reference Loads, Setup & Hold Timing Definition and Slew Rate Derating  
8.1 Reference Load for Timing Measurements  
The figure represents the timing reference load used in defining the relevant timing parameters of the device. It is  
not intended to either a precise representation of the typical system environment nor a depiction of the actual load  
presented by a production tester. System designers should use IBIS or other simulation tools to correlate the tim-  
ing reference load to a system environment. Manufacturers correlate to their production test conditions, generally  
a coaxial transmission line terminated at the tester electronics. This reference load is also used for output slew  
rate characterization.  
VDDQ  
DQ  
DQS  
CK, CK  
DQS  
DUT  
Vtt = VDDQ / 2  
RDQS  
RDQS  
25 Ohm  
Timing Reference Points  
The output timing reference voltage level for single ended signals is the crosspoint with VTT.  
The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the  
complement (e.g. DQS) signal.  
8.2 Slewrate Measurements  
8.2.1 Output Slewrate  
With the reference load for timing measurements output slew rate for falling and rising edges is measured  
between VTT - 250 mV and VTT + 250 mV for single ended signals.For differential signals (e.g. DQS / DQS) out-  
put slew rate is measured between DQS - DQS = - 500 mV and DQS - DQS = + 500 mV. Output slew rate is veri-  
fied by design and characterisation, but not tested during production.  
8.2.2 Input Slewrate - Differential signals  
Input slewrate for differential signals (CK / CK, DQS / DQS, RDQS / RDQS) for rising edges are measured from  
f.e. CK - CK = -250 mV to CK - CK = + 500 mV and from CK - CK = +250 mV to CK - CK = - 500mV for falling  
edges.  
8.2.3 Input Slewrate - Single ended signals  
Input slew rate for single ended signals (other than tis, tih, tds and tdh) are measured from dc-level to ac-level:  
VREF -125 mV to VREF + 250 mV for rising edges and from VREF + 125 mV to VREF - 250 mV for falling edges.  
For slew rate definition of the input and data setup and hold parameters see section 8.3 of this datasheet.  
Page 81  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
8.3 Input and Data Setup and Hold Time  
8.3.1 Timing Definition for Input Setup (tIS) and Hold Time (tIH)  
Address and control input setup time (tIS) is referenced from the input signal crossing at the VIH(ac) level for a ris-  
ing signal and VIL(ac) for a falling signal applied to the device under test. Address and control input hold time (tIH)  
is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal  
applied to the device under test..  
CK  
CK  
t
t
t
t
IS  
IH  
IS IH  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
8.3.2 Timing Definition for Data Setup (tDS) and Hold Time (tDH)  
Data input setup time (tDS) with differential data strobe enabled MR[bit10]=0, is referenced from the input signal  
crossing at the VIH(ac) level to the differential data strobe crosspoint for a rising signal, and from the input signal  
crossing at the VIL(ac) level to the differential data strobe crosspoint for a falling signal applied to the device under  
test. DQS/DQS signals must be monotonic between VIL(dc)max and VIH(dc)min. Data input hold time (tDH) with  
differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIL(dc) level to the  
differential data strobe crosspoint for a rising signal and VIH(dc) to the differential data strobe crosspoint for a fall-  
ing signal applied to the device under test. DQS/DQS signals must be monotonic between VIL(dc)max and  
VIH(dc)min.  
Data input setup time (tDS) with single-ended data strobe enabled MR[bit10]=1, is referenced from the input sig-  
nal crossing at the VIH(ac) level to the data strobe crossing VREF for a rising signal, and from the input signal  
crossing at the VIL(ac) level to the single-ended data strobe crossing VREF for a falling signal applied to the  
device under test. Data input hold time (tDH) with single-ended data strobe enabled MR[bit10]=1, is referenced  
from the input signal crossing at the VIL(dc) level to the single-ended data strobe crossing VREF for a rising signal  
and VIH(dc) to the single-ended data strobe crossing VREF for a falling signal applied to the device under test.  
DQS  
Differential Input  
Waveform  
DQS  
DQS  
Single-ended Input  
Waveform  
REF  
V
t
t
t
t
DS DH  
DS DH  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
Page 82  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
8.3.3 Slew Rate Definition for Input and Data Setup and Hold Times  
Setup (tIS & tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VREF(dc) and the first crossing of VIH(ac)min. Setup (tIS & tDS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF(dc) and the first crossing of VIL(ac)max. If the actual signal is  
always earlier than the nominal slew rate line between shaded ‘VREF(dc) to ac region’, use nominal slew rate for  
derating value (see fig. A). If the actual signal is later than the nominal slew rate line anywhere between shaded  
‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for  
derating value.(see fig.B)  
Hold (tIH & tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
VIL(dc)max and the first crossing of VREF(dc). Hold (tIH & tDH) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VIH(dc)min and the first crossing of VREF(dc). If the actual signal is  
always later than the nominal slew rate line between shaded ‘dc to VREF region’, use nominal slew rate for derat-  
ing value (see fig. A). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ‘dc to  
VREF(dc) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF level is used for  
derating value (see fig.B).  
CK, CK for tIS and tIH  
DQS, DQS for tDS and tDH  
CK, CK for tIS and tIH  
DQS, DQS for tDS and tDH  
t
t
t
t
IH  
IS  
IS IH  
t
t
t
IH  
t
IH  
IS  
IS  
t
t
t
t
DS  
DH  
DS DH  
t
t
t
DH  
DH  
t
DS  
DS  
V
V
V
V
V
DDQ  
DDQ  
min  
min  
IH(ac)  
IH(dc)  
min  
min  
IH(ac)  
IH(dc)  
VREF to ac  
region  
VREF to ac  
region  
V
dc to VREF  
dc to Vref  
region  
region  
V
REF  
V
REF  
dc to VREF  
region  
dc to Vref  
region  
V
V
max  
max  
V
V
IL(dc)  
max  
max  
IL(dc)  
IL(ac)  
VREF to ac  
region  
VREF to ac  
region  
IL(ac)  
V
V
SS  
SS  
Delta TFH  
Delta TFS  
tangent line  
nominal line  
Delta TRH Delta TRS  
Delta TFS  
Delta TRH Delta TRS  
Delta TFH  
VREF(dc) - VIL(ac)max
Delta TFS  
tangent line [VREF(dc) - VIL(ac)max]  
Delta TFS  
falling  
signal  
falling signal  
rising signal  
Setup Slew Rate =  
Setup Slew Rate =  
Setup Slew Rate =  
Setup Slew Rate =  
VIH(ac)min - VREF(dc)
Delta TRS  
tangent line [VIH(ac)min - VREF(dc)]  
Delta TRS  
rising  
signal  
VREF(dc)-VIL(dc)max  
Delta TRH  
tangent line [VREF(dc) - VIL(dc)max]  
Delta TRH  
rising  
signal  
rising signal  
falling signal  
Hold Slew Rate  
Hold Slew Rate  
=
=
Hold Slew Rate  
Hold Slew Rate  
=
=
VIH(dc)min - VREF(dc)  
Delta TFH  
tangent line [VIH(dc)min - VREF(dc)]  
Delta TFH  
falling  
signal  
fig. A  
fig. B  
Page 83  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
8.3.4 Input Setup (tIS) and Hold (tIH) Time Derating Table  
CK, CK Differential Slew Rate  
1.5 V/ns  
2.0 V/ns  
1.0 V/ns  
tIS  
tIH  
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
+19  
+5  
-13  
-37  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
-24  
-53  
-95  
-158  
-262  
-345  
-470  
-678  
-1095  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
+49  
+35  
+17  
-7  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
+60  
+46  
+29  
+6  
Unit  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
0
-11  
-25  
-43  
+94  
+89  
+83  
+75  
+45  
+21  
0
-14  
-31  
-54  
-83  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-67  
-23  
-65  
-110  
-175  
-285  
-350  
-525  
-800  
-1450  
-80  
-50  
-145  
-255  
-320  
-495  
-770  
-1420  
-115  
-225  
-290  
-465  
-740  
-1390  
-128  
-232  
-315  
-440  
-648  
-1065  
1. For all input signals the total tIS (input setup time) and tIH (input hold time) required is calculated by adding the individual  
datasheet value to the derating value listed in the previous table.  
2. For slow slewrate the total setup time might be negativ (i.e. a valid input signal will not have reached VIH(ac) / VIL(ac) at the  
time of the rising clock) a valid input signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew  
rates in between the values listed in the next tables, the derating values may be obtained by linear interpolation. These val-  
ues are not subject to production test. They are verified only by design and characterisation.  
8.3.5 Data Setup (tDS) and Hold Time (tDH) Derating Tablefor differential DQS / DQS  
DQS, DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4 V/ns  
1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH Unit  
-
-
2.0 +125 +45 +125 +45 +125 +45  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ps  
ps  
ps  
ps  
ps  
ps  
1.5 +83 +21 +83 +21 +83 +21 +95 +33  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
-
-
-
-
-
-
0
-
-
-
-
-
-
0
0
0
0
+12 +12 +24 +24  
-11 -14 -11 -14 +1  
-2 +13 +10 +25 +22  
-25 -31 -13 -19 -1  
-
-
-
-
-
-
-
-
-
-
-7 +11 +5 +23 +17  
-31 -42 -19 -30 -7 -18 +5  
-43 -49 -31 -47 -19 -35 -7  
-
-
-
-
-
-
-
-
-6 +17 +6  
-
-
-
-
-
-
-23 +5 -11 ps  
-74 -89 -62 -77 -50 -65 -38 -53 ps  
-127 -140 -115 -128 -103 -116 ps  
-
-
-
-
-
-
1. For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the individual datasheet value to the der-  
ating value listed in the previous table.  
2. For slow slewrate the total setup time might be negativ (i.e. a valid input signal will not have reached VIH(ac) / VIL(ac) at the time of the ris-  
ing DQS) a valid input signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew rates in between the values  
listed in the next tables, the derating values may be obtained by linear interpolation. These values are not subject to production test. They  
are verified only by design and characterisation.  
Page 84  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
8.4 Overshoot and Undershoot Specification  
8.4.1 AC Overshoot / Undershoot Specification for Address and Control Pins  
DDR2  
-400  
DDR2  
-533  
DDR2  
-667  
Parameter  
Units  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
0.9  
0.9  
0.9  
V
0.9  
0.9  
0.9  
V
0.75  
0.75  
0.56  
0.56  
0.45  
0.45  
V.ns  
V.ns  
Maximum undershoot area below VSS  
Maximum Amplitude  
Overshoot Area  
Undershoot Area  
VDD  
VSS  
Maximum Amplitude  
Time (ns)  
8.4.2 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins  
DDR2  
-400  
DDR2  
-533  
DDR2  
-667  
Parameter  
Units  
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDDQ  
0.9  
0.9  
0.9  
V
0.9  
0.9  
0.9  
V
0.38  
0.38  
0.28  
0.28  
0.23  
0.23  
V.ns  
V.ns  
Maximum undershoot area below VSSQ  
Maximum Amplitude  
Overshoot Area  
Undershoot Area  
VDDQ  
VSSQ  
Maximum Amplitude  
Time (ns)  
Page 85  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
9. Package Dimensions  
60 balls FBGA-Package  
10, 5 mm x 10,0 mm  
MO-207 Variation DJ-z (x4,x8)  
0,8  
0,8  
TOP VIEW  
(see balls through package)  
0,45  
+
0,05  
-
6.4  
10,0  
84 balls FBGA-Package  
12,5 mm x 10,0 mm  
0,8  
MO-207 Variation DK-z (x16)  
0,8  
TOP VIEW  
0,45  
(see balls through package)  
+
0,05  
-
6.4  
10,0  
Page 86  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
10. DDR2 Component Nomenclature  
1
2
3
4
5
6
7
8
9
H Y B 1 8  
T
2 5 6 4 0  
0
A
- 5  
C
Example :  
INFINEON  
0 = standard  
1
2
HYB for DRAM Components  
18 = 1.8 V Power Supply  
6
7
Product Variations  
Die Revision  
Component Prefix  
2 = two dies in one package  
A = 1st Generation  
B = 2nd Generation  
C = 3rd Generation  
C = BGA package  
F = BGA package (lead and  
halogen free)  
-5 = DDR2-400-333  
-3.7 = DDR2-533-444  
-3 = DDR2-667-444  
-3S = DDR2-667-555  
Power Supply Voltage  
DRAM Technology  
3
4
5
T = DDR2  
8
Package Type  
Speed Grade  
256 = 256 Mb  
512 = 512 Mb  
1G = 1024 Mb  
2G = 2048 Mb  
40 = x4, 4 data in/outputs  
80 = x8, 8 data in/outputs  
16 = x16, 16 data in/outputs  
Memory Density  
9
Memory Organisation  
Page 87  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
11. Content  
1.  
Description  
1.1 Ordering Information  
1.2 Pin Description  
1.3 DDR2 SDRAM Addressing  
1.4 Package Pinouts  
1.5 Input / Output Functional Description  
1.6 Block Diagrams  
2.  
Functional Description  
2.1 Simplified State Diagram  
2.2 Basic Functionality  
2.2.1 Power-On and Initialization  
2.2.2 Programming the Mode Registers  
2.2.3 Mode Register Set (MRS)  
2.2.4 Extended Mode Register Set (EMRS(1))  
2.2.5 Extended Mode Register Set (EMRS(2))  
2.2.6 Extended Mode Register Set (EMRS(3))  
2.3 Off-Chip Driver (OCD) Impedance Adjustment  
2.4 ODT On-Die Active Termination  
2.5 Bank Activate Command  
2.6 Read and Write Command  
2.6.1 Posted CAS  
2.6.2 Burst Mode Operation  
2.6.3 Burst Read Operation  
2.6.4 Burst Write Operation  
2.6.5 Write Data Mask  
2.6.6 Burst Interruption  
2.7 Precharge Command  
2.7.1 Burst Read Operation followed by a Precharge  
2.7.2 Burst Write Operation followed by a Precharge  
2.8 Auto-Precharge Command  
2.8.1 Read with Auto-Precharge  
2.8.2 Write with Auto-Precharge  
2.8.3 Read or Write to Precharge Command Spacing Summary  
2.8.4 Concurrent Auto-Precharge  
2.9 Refresh Commands  
2.9.1 Auto-Refresh Command  
2.9.2 Self-Refresh Command  
2.10 Power-Down  
2.11 Other Commands  
2.11.1 No Operation  
2.11.2 Deselect  
2.12 Input Clock Frequency Change  
2.13 Asynchronous CKE Low Event  
3.  
4.  
Truth Tables  
3.1 Command Truth Table  
3.2 Clock Enable (CKE) Truth Table  
3.3 Data Mask (DM) Truth Table  
Operating Conditions  
4.1 Absolute Maximum Ratings  
4.2 DRAM Component Operating Temperature Range  
Page 88  
Rev. 1.02 May 2004  
INFINEON Technologies  
HYB18T256400/800/160AF  
256Mb DDR2 SDRAM  
Content  
5.  
AC & DC Operation Conditions  
5.1 DC Operation Conditions  
5.1.1 Recommended DC Operation Conditions  
5.1.2 ODT DC Operation Conditions  
5.1.3 Input and Output Leakage Current  
5.2 DC & AC Logic Input Levels  
5.2.1 Single-ended DC & AC Logic Input Levels)  
5.2.2 Single-ended AC Input Test Conditions  
5.2.3 Differential DC and AC Input and Output Logic Levels  
5.3 Output Buffer Levels  
5.3.1 Output DC Current Drive  
5.3.2 Output AC Test Conditions  
5.3.4 Default Output V-I Characteristics  
5.3.5 Full Strength Pull-up Driver Characteristics  
5.3.6 Full Strength Pull-down Driver Characteristics  
5.3.7 Calibrated Output Driver V-I Characteristics  
5.4 Input/Output Capacitances  
5.5 Power & Ground Clamp V-I Characteristics  
6.  
7.  
IDD Specifications  
6.1 IDD Specifications  
6.2 IDD Measurement Conditions  
6.2 ODT current  
AC Timing Specifications  
7.1 Timing parameters by speed grade - DDR2-400 & DDR2-533  
7.2 Timing parameters by speed grade - DDR2-667  
7.3 ODT AC Electrical Characteristics and Operating Conditions  
7.4 Notes for AC Timing Specifications  
8.  
Reference Loads, Slew Rates and Slew Rate Derating  
8.1 Reference Load for Timing Measurements  
8.2 Output Slew Rate Measurements  
8.3 Input and Data Setup and Hold Time  
8.3.1 Timing Definition for Input Setup and Hold Time  
8.3.2 Timing Definition for Data Setup and Hold Time  
8.3.3 Slew Rate Definition for Input and Data Setup and Hold Time  
8.3.4 Input Setup and Hold Time Derating Table  
8.3.5 Data Setup and Hold Time Derating Table  
8.4 Overshoot and Undershoot Specification  
9.  
Package Dimensions  
10. DDR2 component nomenclature  
Page 89  
Rev. 1.02 May 2004  
INFINEON Technologies  

相关型号:

HYB18T256400AF-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AF-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-3S

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

DDR DRAM, 64MX4, 0.6ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AFL-3

256 Mbi t DDR2 SDRAM
INFINEON
QIMONDA

HYB18T256400AFL-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AFL-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AFL-3S

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AFL-5

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400BF

256-Mbit Double-Data-Rate-Two SDRAM
QIMONDA