HYB18T256400AF-3.7 [INFINEON]

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60;
HYB18T256400AF-3.7
型号: HYB18T256400AF-3.7
厂家: Infineon    Infineon
描述:

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总98页 (文件大小:1724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.1, Sep. 2004  
HYB18T256400AF  
HYB18T256800AF  
HYB18T256160AF  
256-Mbit Double-Data-Rate-Two SDRAM  
DDR2 SDRAM  
RoHS Compliant Products  
Memory Products  
N e v e r s t o p t h i n k i n g .  
The information in this document is subject to change without notice.  
Edition 2004-09  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2004.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, Rev. 1.1, Sep. 2004  
HYB18T256400AF  
HYB18T256800AF  
HYB18T256160AF  
256-Mbit Double-Data-Rate-Two SDRAM  
DDR2 SDRAM  
RoHS Compliant Products  
Memory Products  
N e v e r s t o p t h i n k i n g .  
HYB18T256[40/80/16]0AF–[3.7/5]  
Revision History:  
2004-09  
Rev. 1.1  
Previous Version:  
2004-04-30 (V1.01)  
Page  
all  
Subjects (major changes since last revision)  
Document contains final currents  
all  
Document contains green products only  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_v2.3_2004-01-14.fm  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
256 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
2
2.1  
2.2  
2.2.1  
2.2.2  
2.2.2.1  
2.2.3  
2.2.3.1  
2.2.3.2  
2.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Programming the Mode Register and Extended Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DDR2 SDRAM Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DDR2 SDRAM Extended Mode Register Set (EMRS(1)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
EMR(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
EMR(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Off-Chip Driver (OCD) Impedance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
On-Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Bank Activate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Read and Write Commands and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Posted CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Write Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Burst Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Read Operation Followed by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Write followed by Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Auto-Precharge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Read with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Write with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Read or Write to Precharge Command Spacing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Concurrent Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Auto-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Self-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
No Operation Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Deselect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Input Clock Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Asynchronous CKE LOW Reset Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
2.4  
2.5  
2.6  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.7  
2.7.1  
2.7.2  
2.8  
2.8.1  
2.8.2  
2.8.3  
2.8.4  
2.9  
2.9.1  
2.9.2  
2.10  
2.11  
2.11.1  
2.11.2  
2.12  
2.13  
3
4
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Default Output V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Calibrated Output Driver V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
5.1  
5.2  
5.3  
5.4  
5.4.1  
Data Sheet  
5
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Table of Contents  
5.5  
5.6  
5.7  
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Power & Ground Clamp V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6
6.1  
6.2  
I
DD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
DD Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
I
On Die Termination (ODT) Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
8
8.1  
8.2  
AC Timing Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Reference Load for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Slew Rate Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Input Slew Rate - Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Input and Data Setup and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Definition for Input Setup (tIS) and Hold Time (tIH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes . . . . . . . . . . . . . . . . 89  
Definition for Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes . . . . . . . . . . . . . 90  
Slew Rate Definition for Input and Data Setup and Hold Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Setup (tIS) and Hold (tIH) Time Derating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
8.2.1  
8.2.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
9
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
10  
DDR2 Component Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Data Sheet  
6
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1
Overview  
This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its  
main characteristics.  
1.1  
Features  
The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features:  
1.8 V ± 0.1 V Power Supply  
Commands entered on each positive clock edge,  
data and data mask are referenced to both edges of  
DQS  
1.8 V ± 0.1 V (SSTL_18) compatible I/O  
DRAM organisations with 4, 8 and 16 data  
in/outputs  
Double Data Rate architecture: two data transfers  
per clock cycle, four internal banks for concurrent  
operation  
Data masks (DM) for write data  
Posted CAS by programmable additive latency for  
better command and data bus efficiency  
Off-Chip-Driver impedance adjustment (OCD) and  
On-Die-Termination (ODT) for better signal quality.  
Auto-Precharge operation for read and write bursts  
Auto-Refresh, Self-Refresh and power saving  
Power-Down modes  
Average Refresh Period 7.8 µs at a TCASE lower  
than 85 °C, 3.9 µs between 85 °C and 95 °C  
Normal and Weak Strength Data-Output Drivers  
1K page size  
CAS Latency: 3, 4 and 5  
Burst Length: 4 and 8  
Differential clock inputs (CK and CK)  
Bi-directional, differential data strobes (DQS and  
DQS) are transmitted / received with data. Edge  
aligned with read data and center-aligned with write  
data.  
DLL aligns DQ and DQS transitions with clock  
DQS can be disabled for single-ended data strobe  
operation  
Packages:  
P-TFBGA-60 for ×4 & ×8 components  
P-TFBGA-84 for ×16 components  
RoHS Compliant Products1)  
Table 1  
High Performance  
Product Type Speed Code  
Speed Grade  
–3.7  
DDR2–533 4–4–4  
fCK5 266  
–5  
Unit  
DDR2–400 3–3–3  
max. Clock Frequency  
@CL5  
@CL4  
@CL3  
200  
200  
200  
15  
MHz  
MHz  
MHz  
ns  
fCK4 266  
fCK3 200  
tRCD 15  
min. RAS-CAS-Delay  
min. Row Precharge Time  
min. Row Active Time  
min. Row Cycle Time  
tRP  
tRAS 45  
tRC 60  
15  
15  
ns  
40  
ns  
55  
ns  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic  
equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January  
2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and  
polybrominated biphenyl ethers.  
Data Sheet  
7
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1.2  
Description  
The 256-Mb DDR2 DRAM is a high-speed Double- All of the control and address inputs are synchronized  
Data-Rate-2 CMOS Synchronous DRAM device with a pair of externally supplied differential clocks.  
containing 268,435,456 bits and internally configured Inputs are latched at the cross point of differential  
as a quad-bank DRAM. The 256-Mb device is clocks (CK rising and CK falling). All I/Os are  
organized as either 16 Mbit × 4 I/O × 4 banks, 8 Mbit × 8 synchronized with a single ended DQS or differential  
I/O × 4 banks or 4 Mbit × 16 I/O × 4 banks chip. These DQS-DQS pair in a source synchronous fashion.  
synchronous devices achieve high speed transfer rates  
starting at 400 Mb/sec/pin for general applications. See  
bank address information in a RAS-CAS multiplexing  
Table 1 for performance figures.  
A 15 bit address bus is used to convey row, column and  
style.  
The device is designed to comply with all DDR2 DRAM  
key features:  
The DDR2 device operates with a 1.8 V ± 0.1 V power  
supply. An Auto-Refresh and Self-Refresh mode is  
provided along with various power-saving power-down  
modes.  
1. posted CAS with additive latency,  
2. write latency = read latency - 1,  
The functionality described and the timing  
specifications included in this data sheet are for the  
DLL Enabled mode of operation.  
3. normal and weak strength data-output driver,  
4. Off-Chip Driver (OCD) impedance adjustment  
5. On-Die Termination (ODT) function.  
The DDR2 SDRAM is available in P-TFBGA package.  
1.3  
Ordering Information  
Table 2  
Ordering information for RoHS Compliant Products  
Org. Speed  
CAS1)-RCD2)-RP3) Clock CAS1)-RCD2)-RP3) Clock Package  
Part Number  
(MHz)  
(MHz)  
Latencies  
Latencies  
HYB18T256400AF–5 ×4  
HYB18T256800AF–5 ×8  
HYB18T256160AF–5 ×16  
HYB18T256400AF–3.7 ×4  
HYB18T256800AF–3.7 ×8  
HYB18T256160AF–3.7 ×16  
DDR2–400 3–3–3  
200  
P-TFBGA-60  
P-TFBGA-84  
P-TFBGA-60  
DDR2–533 4–4–4  
266  
3–3–3  
200  
P-TFBGA-84  
1) CAS: Column Adress Strobe  
2) RCD: Row Column Delay  
3) RP: Row Precharge  
Note:For product nomenclature see Chapter 10 of this data sheet  
Data Sheet  
8
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1.4  
Pin Configuration  
The pin configuration of a DDR2 SDRAM is listed by function in Table 3. The abbreviations used in the Pin#/Buffer  
Type columns are explained in Table 4 and Table 5 respectively. The pin numbering for the FBGA package is  
depicted in Figure 1 for ×4, Figure 2 for ×8 and Figure 3 for ×16.  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
Clock Signals ×4/×8 organizations  
E8  
F8  
CK  
CK  
I
I
SSTL  
SSTL  
Clock Signal CK, Complementary Clock Signal CK  
Note:CK and CK are differential system clock inputs. All address  
and control inputs are sampled on the crossing of the  
positive edge of CK and negative edge of CK. Output (read)  
data is referenced to the crossing of CK and CK (both  
direction of crossing)  
F2  
CKE  
I
SSTL  
Clock Enable  
Note:CKE HIGH activates and CKE LOW deactivates internal  
clock signals and device input buffers and output drivers.  
Taking CKE LOW provides Precharge Power-Down and  
Self-Refresh operation (all banks idle), or Active Power-  
Down (row Active in any bank). CKE is synchronous for  
power down entry and exit and for self-refresh entry. Input  
buffers excluding CKE are disabled during self-refresh.  
CKE is used asynchronously to detect self-refresh exit  
condition. Self-refresh termination itself is synchronous.  
After VREF has become stable during power-on and  
initialisation sequence, it must be maintained for proper  
operation of the CKE receiver. For proper self-refresh entry  
and exit, VREF must be maintained to this input. CKE must  
be maintained HIGH throughout read and write accesses.  
Input buffers, excluding CK, CK, ODT and CKE are disabled  
during power-down  
Clock Signals ×16 organization  
J8  
CK  
I
I
I
SSTL  
SSTL  
SSTL  
Clock Signal CK, Complementary Clock Signal CK  
Clock Enable  
K8  
K2  
CK  
CKE  
Control Signals ×4/×8 organizations  
F7  
G7  
F3  
RAS  
CAS  
WE  
I
I
I
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS),  
Write Enable (WE)  
Note:RAS, CAS and WE (along with CS) define the command  
being entered.  
G8  
CS  
I
SSTL  
Chip Select  
Note:All command are masked when CS is registered HIGH. CS  
provides for external rank selection on systems with  
multiple memory ranks. CS is considered part of the  
command code.  
Control Signals ×16 organization  
Data Sheet  
9
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
K7  
L7  
K3  
L8  
RAS  
CAS  
WE  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS),  
Write Enable (WE)  
CS  
Chip Select  
Address Signals ×4/×8 organizations  
G2  
G3  
BA0  
BA1  
I
I
SSTL  
SSTL  
Bank Address Bus 1:0  
Note:BAn define to which bank an Activate, Read, Write or  
Precharge command is being applied. BAn also determines  
if the mode register or extended mode register is to be  
accessed during a MRS or EMRS(1) cycle  
H8  
H3  
H7  
J2  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 12:0, Address Signal 10/Autoprecharge  
Note:Provides the row address for Activate commands and the  
column address and Auto-Precharge bit A10 (=AP) for  
Read/Write commands to select one location out of the  
memory array in the respective bank. A10(=AP) is sampled  
during a Precharge command to determine whether the  
Precharge applies to one bank (A10=LOW) or all banks  
(A10=HIGH). If only one bank is to be precharged, the bank  
is selected by BAn. The address inputs also provide the op-  
code during Mode Register Set commands.  
A1  
A2  
A3  
J8  
A4  
J3  
A5  
J7  
A6  
K2  
K8  
K3  
H2  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
A13  
K7  
L2  
L8  
Address Signal 13  
Note:512 Mbit components  
Note:256 Mbit components  
NC  
Address Signals ×16 organization  
L2  
L3  
L1  
BA0  
BA1  
NC  
I
SSTL  
SSTL  
Bank Address Bus 1:0  
I
Data Sheet  
10  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
M8  
M3  
M7  
N2  
N8  
N3  
N7  
P2  
P8  
P3  
M2  
A0  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 12:0, Address Signal 10/Autoprecharge  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
P7  
R2  
Data Signals ×4/×8 organizations  
C8  
C2  
D7  
D3  
DQ0  
DQ1  
DQ2  
DQ3  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 3:0  
Note:Bi-directional data bus. DQ[3:0] for ×4 components, DQ[7:0]  
for ×8 components  
Data Signals ×8 organization  
D1  
D9  
B1  
B9  
DQ4  
DQ5  
DQ6  
DQ7  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 7:4  
Data Signals ×16 organization  
Data Sheet  
11  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
G8  
G2  
H7  
H3  
H1  
H9  
F1  
F9  
C8  
C2  
D7  
D3  
D1  
D9  
B1  
B9  
DQ0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 15:0  
Note:Bi-directional data bus. DQ[15:0] for ×16 components  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
Data Strobe ×48 organisations  
B7  
A8  
DQS  
DQS  
I/O  
I/O  
SSTL  
SSTL  
Data Strobe  
Note:Output with read data, input with write data. Edge aligned  
with read data, centered with write data. For the ×16, LDQS  
corresponds to the data on DQ[7:0]; UDQS corresponds to  
the data on DQ[15:8]. The datastrobes DQS, LDQS, UDQS  
may be used in single ended mode or paired with the  
optional complementary signals DQS, LDQS, UDQS to  
provide differential pair signaling to the system during both  
reads and writes. An EMRS(1) control bit enables or  
disables the complementary data strobe signals  
Data Strobe ×8 organisations  
B3  
A2  
RDQS  
RDQS  
I
I
SSTL  
SSTL  
Read Data Strobe  
Read Data Strobe  
Data Strobe ×16 organization  
B7  
UDQS  
I/O  
SSTL  
SSTL  
Data Strobe Upper Byte  
A8  
UDQS  
I/O  
F7  
E8  
LDQS  
LDQS  
I/O  
I/O  
SSTL  
SSTL  
Data Strobe Lower Byte  
Data Mask ×48 organizations  
Data Sheet  
12  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
B3  
DM  
I
SSTL  
Data Mask  
Note:DM is an input mask signal for write data. Input data is  
masked when DM is sampled HIGH coincident with that  
input data during a Write access. DM is sampled on both  
edges of DQS. Although DM pins are input only, the DM  
loading matches the DQ and DQS loading. LDM and UDM  
are the input mask signals for x16 components and control  
the lower or upper bytes. For x8 components the data mask  
function is disabled, when RDQS / RQDS are enabled by  
EMRS(1) command.  
Data Mask ×16 organization  
B3  
F3  
UDM  
LDM  
I
I
SSTL  
SSTL  
Data Mask Upper Byte  
Data Mask Lower Byte  
Power Supplies ×4/×816 organizations  
A9,C1,C3,C7, VDDQ  
PWR  
I/O Driver Power Supply  
C9  
A1  
VDD  
PWR  
PWR  
Power Supply  
Power Supply  
A7,B2,B8,D2, VSSQ  
D8  
A3,E3  
VSS  
PWR  
Power Supply  
Power Supplies ×4/×8 organizations  
E2  
VREF  
VDDL  
VDD  
AI  
I/O Reference Voltage  
Power Supply  
E1  
PWR  
PWR  
PWR  
PWR  
E9,H9,L1  
E7  
Power Supply  
VSSDL  
VSS  
Power Supply  
J1,K9  
Power Supply  
Power Supplies ×16 organization  
J2  
VREF  
VDDQ  
AI  
I/O Reference Voltage  
E9, G1, G3,  
G7, G9  
PWR  
I/O Driver Power Supply  
J1  
VDDL  
PWR  
PWR  
PWR  
Power Supply  
Power Supply  
Power Supply  
E1, J9, M9, R1 VDD  
E7, F2, F8, H2, VSSQ  
H8  
J7  
VSSDL  
VSS  
PWR  
PWR  
Power Supply  
Power Supply  
J3,N1,P9  
Not Connected ×4/×8 organizations  
G1, L3,L7, L8 NC  
NC  
Not Connected  
Note:No internal electrical connection is present  
Not Connected ×4 organization  
A2, B1, B9,  
D1, D9  
NC  
NC  
Not Connected  
Not Connected ×16 organization  
Data Sheet  
13  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
Table 3  
Pin Configuration of DDR SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
A2, E2, L1, R3, NC  
R7, R8  
NC  
Not Connected  
Other Pins ×4/×8 organizations  
F9 ODT  
I
SSTL  
On-Die Termination Control  
Note:ODT (registered HIGH) enables termination resistance  
internal to the DDR2 SDRAM. When enabled, ODT is  
applied to each DQ, DQS, DQS and DM signal for ×4 and  
DQ, DQS, DQS, RDQS, RDQS and DM for ×8  
configurations. For ×16 configuration ODT is applied to  
each DQ, UDQS, UDQS, LDQS, LDQS, UDM and LDM  
signal. The ODT pin will be ignored if the Extended Mode  
Register (EMRS(1)) is programmed to disable ODT.  
Other Pins ×16 organization  
K9  
ODT  
I
SSTL  
On-Die Termination Control  
Table 4  
Abbreviations for Pin Type  
Description  
Abbreviation  
I
Standard input-only pin. Digital levels.  
O
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
Table 5  
Abbreviation  
SSTL  
Abbreviations for Buffer Type  
Description  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
LV-CMOS  
CMOS  
OD  
CMOS Levels  
Open Drain. The corresponding pin has 2 operational states, active low and tristate, and  
allows multiple devices to share as a wire-OR.  
Data Sheet  
14  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1
2
3
4
5
6
7
8
9
A
VDD  
VSS  
VSSQ  
VDDQ  
NC  
DQS  
VSSQ  
VSSQ  
B
C
D
E
F
G
H
J
NC  
DM  
DQS  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQ1  
DQ0  
VSSQ  
VSSQ  
NC  
DQ3  
DQ2  
VSSDL  
RAS  
CAS  
A2  
NC  
VDDL  
VREF  
VSS  
VDD  
CK  
CK  
CKE  
BA0  
A10/AP  
A3  
WE  
BA1  
A1  
ODT  
NC  
CS  
VDD  
A0  
VSS  
A5  
A6  
A4  
VSS  
K
L
A7  
A9  
A11  
NC  
A8  
VDD  
A12  
NC  
NC/A13  
MPPT0020  
Figure 1  
Notes  
Pin Configuration for ×4 components, P-TFBGA-60 (top view)  
1. VDDL and VSSDL are power and ground for the 2. Ball position L8 is A13 for 512-Mbit and is Not  
DLL.They are connected on the device to VDD, and  
Connected on 256-Mbit  
VSS  
Data Sheet  
15  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1
2
3
4
5
6
7
8
9
A
VDD  
VSS  
VSSQ  
VDDQ  
NC/RDQS  
DQS  
VSSQ  
VSSQ  
B
C
D
E
F
G
H
J
DQ6  
DM/RDQS  
DQS  
DQ7  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQ1  
DQ0  
VSSQ  
VSSQ  
DQ4  
DQ3  
DQ2  
VSSDL  
RAS  
CAS  
A2  
DQ5  
VDDL  
VREF  
VSS  
VDD  
CK  
CK  
CKE  
BA0  
A10/AP  
A3  
WE  
BA1  
A1  
ODT  
NC  
CS  
VDD  
A0  
VSS  
A5  
A6  
A4  
VSS  
K
L
A7  
A9  
A11  
NC  
A8  
VDD  
A12  
NC  
NC/A13  
MPPT0090  
Figure 2  
Notes  
Pin Configuration for ×8 components, P-TFBGA-60 (top view)  
1. RDQS / RDQS are enabled by EMRS(1) command. 4. VDDL and VSSDL are power and ground for the DLL.  
2. If RDQS / RDQS is enabled, the DM function is  
They are connected on the device to VDD and VSS.  
5. Ball position L8 is A13 for 512-Mbit and is Not  
Connected on 256-Mbit.  
disabled  
3. When enabled, RDQS & RDQS are used as strobe  
signals during reads.  
Data Sheet  
16  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1
2
3
4
5
A
B
C
D
E
F
6
7
8
9
VDD  
NC  
VSS  
VSSQ  
VDDQ  
UDQS  
VSSQ  
VSSQ  
DQ14  
UDM  
UDQS  
DQ15  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQ9  
DQ8  
VSSQ  
VSSQ  
DQ12  
DQ11  
DQ10  
DQ13  
VDD  
VSS  
VSSQ  
VDDQ  
NC  
LDQS  
VSSQ  
VSSQ  
DQ6  
LDM  
LDQS  
DQ7  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
G
H
J
DQ1  
DQ0  
VSSQ  
VSSQ  
DQ4  
DQ3  
DQ2  
VSSDL  
RAS  
CAS  
A2  
DQ5  
VDDL  
VREF  
VSS  
VDD  
CK  
CK  
CS  
A0  
A4  
A8  
NC  
K
L
CKE  
BA0  
A10/AP  
A3  
WE  
BA1  
A1  
ODT  
NC  
VDD  
M
N
P
R
VSS  
A5  
A6  
VSS  
A7  
A9  
A11  
NC  
VDD  
A12  
NC  
MPPT0120  
Figure 3  
Notes  
Pin Configuration for ×16 components, P-TFBGA-84 (top view)  
1. UDQS/UDQS is data strobe for DQ[15:8], 3. VDDL and VDDSL are power and ground for the DLL.  
LDQS/LDQS is data strobe for DQ[7:0]  
2. LDM is the data mask signal for DQ[7:0], UDM is the  
data mask signal for DQ[15:8]  
They are connected on the device to VDD and VSS.  
Data Sheet  
17  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1.5  
256 Mbit DDR2 Addressing  
Table 6  
256 Mbit DDR2 Addressing  
Configuration  
Number of Banks  
Bank Address  
Auto-Precharge  
Row Address  
64 Mb x 4  
4
32 Mb x 8  
4
16 Mb x 16  
4
Note  
BA[0:1]  
A10 / AP  
A[12:0]  
A11, A[9:0]  
BA[0:1]  
A10 / AP  
A[12:0]  
A[9:0]  
10  
BA[0:1]  
A10 / AP  
A[12:0]  
A[8:0]  
10  
Column Address  
1)  
2)  
3)  
Number of Column Address Bits 11  
Number of I/Os  
4
8
16  
Page Size [Bytes]  
1024 (1K)  
1024 (1K)  
1024 (1K)  
1) Refered to as ’colbits’  
2) Refered to as ’org’  
org  
8
PageSize = 2colbits  
×
[Bytes]  
--------  
3)  
Data Sheet  
18  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
1.6  
Block Diagrams  
ODT Control  
Receivers  
Drivers  
Read Latch  
Row-Address MUX  
Refresh Counter  
Address Register  
MPBT0280  
Figure 4  
Notes  
Block Diagram 16 Mbit × 4 I/O × 4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 64Mb × 4 Organisation with 13 Row, 2 Bank and 11  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
19  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
ODT Control  
Receivers  
Drivers  
Read Latch  
Row-Address MUX  
Refresh Counter  
Address Register  
MPBT0270  
Figure 5  
Notes  
Block Diagram 8 Mbit × 8 I/O × 4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 32Mb × 8 Organisation with 13 Row, 2 Bank and 10  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
20  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Overview  
ODT Control  
Receivers  
Drivers  
Read Latch  
Row-Address MUX  
Refresh Counter  
Address Register  
MPBT0260  
Figure 6  
Notes  
Block Diagram 4 Mbit × 16 I/O × 4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 16Mb × 16 Organisation with 13 Row, 2 Bank and 9  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
21  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2
Functional Description  
2.1  
Simplified State Diagram  
Auto  
Refreshing  
CKEL  
Initialization  
Sequence  
Self  
Refresh  
tRFC  
CKEL  
PD_entry  
CKEH  
MRS  
Setting  
MRS or  
EMRS  
Precharge  
PD  
Idle  
tMRD  
Activating  
tRCD  
RL + BL/2 + tRTP  
Reading_AP  
WL + BL/2 + WR  
Writing_AP  
tRP  
Precharging  
Write  
Read  
Writing  
Reading  
CKEL  
PD_entry  
CKEH  
Automatic Sequence  
Command Sequence  
Bank  
Active  
Active PD  
MPFT0010  
Figure 7  
Simplified State Diagram  
Note:This Simplified State Diagram is intended to  
provide a floorplan of the possible state  
bank, enabling / disabling on-die termination,  
Power-Down entry / exit - among other things -  
are not captured in full detail.  
transitions and the commands to control them. In  
particular situations involving more than one  
Data Sheet  
22  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.2  
Basic Functionality  
Read and write accesses to the DDR2 SDRAM are The address bits registered coincident with the Read or  
burst oriented; accesses start at a selected location Write command are used to select the starting column  
and continue for the burst length of four or eight in a location for the burst access and to determine if the  
programmed sequence.  
Auto-Precharge command is to be issued.  
Accesses begin with the registration of an Activate Prior to normal operation, the DDR2 SDRAM must be  
command, which is followed by a Read or Write initialized. The following sections provide detailed  
command. The address bits registered coincident with information covering device initialization, register  
the activate command are used to select the bank and definition, command description and device operation.  
row to be accessed.  
2.2.1  
Power On and Initialization  
DDR2 SDRAM’s must be powered up and initialized in a predefined manner. Operational procedures other than  
those specified may result in undefined operation.  
Power-up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE below  
0.2 × VDDQ and ODT at a low state (all other inputs  
may be undefined). To guarantee ODT off, VREF  
must be valid and a low level must be applied to the  
ODT pin. Maximum power up interval for VDD / VDDQ  
is specified as 10.0 ms. The power interval is  
defined as the amount of time it takes for VDD / VDDQ  
to power-up from 0 V to 1.8 V ± 100 mV. At least  
one of these two sets of conditions must be met:  
3. Apply NOP or Deselect commands and take CKE  
high.  
4. Continue NOP or Deselect Commands for 400 ns,  
then issue a Precharge All command.  
5. Issue EMRS(2) command.  
6. Issue EMRS(3) command.  
7. Issue EMRS(1) command to enable DLL.  
8. Issue a MRS command for “DLL reset”.  
9. Issue Precharge-all command.  
VDD, VDDL and VDDQ are driven from a single 10. Issue 2 or more Auto-refresh commands.  
power converter output, AND  
VTT is limited to 0.95 V max, AND  
VREF tracks VDDQ/2  
11. Issue the final MRS command to turn the DLL on  
and to set the necessary operating parameter.  
12. At least 200 clocks after step 8, issue EMRS(1)  
commands to either execute the OCD calibration or  
select the OCD default. Issue the final EMRS(1)  
command to exit OCD calibration mode and set the  
necessary operating parameters.  
or  
– Apply VDD before or at the same time as VDDQ  
.
– Apply VDDQ before or at the same time as VTT  
VREF  
&
.
13. The DDR2 SDRAM is now ready for normal  
operation.  
2. Start clock (CK, CK) and maintain stable power and  
clock condition for a minimum of 200 µs.  
Data Sheet  
23  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
CK, CK  
CKE  
ODT "low"  
Follow OCD  
tMRS  
tMRS  
tRP  
tMRS  
tMRS  
tRP  
tRFC  
tRFC  
tMRS  
400 ns  
tMRS  
flowchart  
PRE  
ALL  
PRE  
ALL  
2nd Auto  
refresh  
1st Auto  
refresh  
Any  
Command  
EMRS(1)  
OCD  
EMRS(1)  
OCD  
NOP  
EMRS(2)  
EMRS(3)  
EMRS(1)  
MRS  
MRS  
min. 200 cycles to lock the DLL  
Extended  
Mode  
Register(1) Set  
with DLL enable  
Mode  
Mode  
Register  
Register  
Set with  
OCD Drive(1)  
or  
OCD  
calibration  
Set w/o  
DLL reset  
DLL reset  
OCD default  
mode exit  
Figure 8  
Initialization Sequence after Power Up  
2.2.2  
Programming the Mode Register and Extended Mode Registers  
For application flexibility, burst length, burst type, CAS All banks must be in a precharged state and CKE must  
latency, DLL reset function, write recovery time (WR) be high at least one cycle before the Mode Register Set  
are user defined variables and must be programmed Command can be issued. Either MRS or EMRS  
with  
a
Mode Register Set (MRS) command. Commands are activated by the low signals of CS,  
Additionally, DLL disable function, additive CAS RAS, CAS and WE at the positive edge of the clock.  
latency, driver impedance, On Die Termination (ODT),  
When bank addresses are 0, the DDR2 SDRAM  
single-ended strobe and Off Chip Driver impedance  
enables the MRS command. When the bank addresses  
adjustment (OCD) are also user defined variables and  
BA0 is 1 and BA1 0, the DDR2 SDRAM enables the  
must be programmed with an Extended Mode Register  
EMRS(1) command.  
Set (EMRS) command.  
The address input data during this cycle defines the  
Contents of the Mode Register (MR) or Extended Mode  
parameters to be set as shown in the MRS and EMRS  
Registers (EMR(1, 2, 3)) can be altered by re-executing  
the MRS and EMRS Commands. If the user chooses to  
modify only a subset of the MR or EMR variables, all  
MRS, EMRS and DLL Reset do not affect array  
variables must be redefined when the MRS or EMRS  
contents, which means reinitialization including those  
commands are issued.  
tables. A new command may be issued after the mode  
register set command cycle time (tMRD).  
can be executed any time after power-up without  
After initial power up, all MRS and EMRS Commands  
affecting array contents.  
must be issued before read or write cycles may begin.  
2.2.2.1  
DDR2 SDRAM Mode Register Set (MRS)  
The mode register stores the data for controlling the and clock cycle requirements during normal operation  
various operating modes of DDR2 SDRAM. It programs as long as all banks are in the precharged state. The  
CAS latency, burst length, burst sequence, test mode, mode register is divided into various fields depending  
DLL reset, Write Recovery (WR) and various vendor on functionality.  
specific options to make DDR2 SDRAM useful for  
various applications.  
Burst length is defined by A[2:0] with options of 4 and 8  
bit burst length. Burst address sequence type is defined  
The default value of the mode register is not defined, by A3 and CAS latency is defined by A[6:4]. A7 is used  
therefore the mode register must be written after for test mode and must be set to 0 for normal DRAM  
power-up for proper operation. The mode register is operation. A8 is used for DLL reset. A[11:9] are used for  
written by asserting low on CS, RAS, CAS, WE, write recovery time (WR) definition for Auto-Precharge  
BA[0:1], while controlling the state of address pins mode. With address bit A12 two Power-Down modes  
A[12:0]. The DDR2 SDRAM should be in all bank can be selected, a “standard mode” and a “low-power”  
precharged (idle) mode with CKE already high prior to Power-Down mode, where the DLL is disabled.  
writing into the mode register. The mode register set Address bit A13 and all “higher” address bits have to  
command cycle time (tMRD) is required to complete the be set to 0 for compatibility with other DDR2 memory  
write operation to the mode register. The mode register products with higher memory densities.  
contents can be changed using the same command  
Data Sheet  
24  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
MR  
Mode Register Definition  
(BA[2:0] = 000B)  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
01)  
0
0
02)  
PD  
WR  
DLL  
TM  
CL  
BT  
BL  
w
w
reg. addr  
w
w
w
w
w
1) BA2 is not available on 256 and 512 Mbit components  
2) A13 is not available for 256 Mbit and x16 512 Mbit configuration  
Field Bits Type1) Description  
BL  
BT  
CL  
[2:0]  
w
w
w
Burst Length  
010 4  
011 8  
3
Burst Type  
0
1
Sequential  
Interleaved  
[6:4]  
CAS Latency  
Note: All other bit combinations are illegal.  
010 2 2)  
011 3  
100 4  
101 5  
TM  
7
8
w
w
Test Mode  
0
1
Normal mode  
Vendor specific test mode  
DLL  
DLL Reset  
0
No  
1
Yes  
WR [11:9] w  
Write Recovery3)  
Note: All other bit combinations are illegal.  
001 2  
010 3  
011 4  
100 5  
101 6  
PD  
12  
w
Active Power-Down Mode Select  
0
1
Fast exit  
Slow exit  
1) w = write only register bits  
2) CAS Latency 2 is optional for Jedec compliant devices. This option is implemented in this device but is neither tested nor  
guaranteed.  
3) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns)  
by tCK (in ns) and rounding up to the next integer:  
WR[cycles] tWR(ns) / tCK(ns)  
The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing. WR.MIN is  
determined by tCK.MAX and WR.MAX is determined by tCK.MIN  
.
Data Sheet  
25  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.2.3  
DDR2 SDRAM Extended Mode Register Set (EMRS(1))  
The Extended Mode Register EMR(1) stores the data BA0, while controlling the state of the address pins. The  
for enabling or disabling the DLL, output driver DDR2 SDRAM should be in all bank precharge with  
strength, additive latency, OCD program, ODT, DQS CKE already high prior to writing into the extended  
and output buffers disable, RQDS and RDQS enable. mode register. The mode register set command cycle  
The default value of the extended mode register time (tMRD) must be satisfied to complete the write  
EMR(1) is not defined, therefore the extended mode operation to the EMR(1). Mode register contents can  
register must be written after power-up for proper be changed using the same command and clock cycle  
operation. The extended mode register is written by requirements during normal operation as long as all  
asserting low on CS, RAS, CAS, WE, BA1 and high on banks are in precharge state.  
EMR(1)  
Extended Mode Register Definition  
(BA[2:0] = 001B)  
A9 A8 A7  
BA2 BA1 BA0 A13 A12 A11 A10  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
01)  
0
1
02)  
Qoff RDQS DQS  
OCD Program  
Rtt  
AL  
Rtt  
DIC DLL  
reg. addr  
w
w
w
w
w
w
w
w
1) BA2 is not available on 256 and 512 Mbit components  
2) A13 is not available for 256 Mbit and x16 512 Mbit configuration.  
Field  
DLL  
Bits Type1) Description  
0
w
w
w
DLL Enable  
0
1
Enable  
Disable  
DIC  
RTT  
1
Off-chip Driver Impedance Control  
0
1
Normal (Driver Size = 100%)  
Weak (Driver Size = 60%)  
2,6  
Nominal Termination Resistance of ODT  
00 (ODT disabled)  
01 75 Ohm  
10 150 Ohm  
11 50 Ohm  
AL  
[5:3]  
w
Additive Latency  
Note: All other bit combinations are illegal.  
000 0  
001 1  
010 2  
011 3  
100 4  
OCD  
Program  
[9:7]  
10  
w
w
Off-Chip Driver Calibration Program  
000 OCD calibration mode exit, maintain setting  
001 Drive (1)  
010 Drive (0)  
100 Adjust mode  
111 OCD calibration default  
DQS  
Complement Data Strobe (DQS Output)  
0
1
Enable  
Disable  
Data Sheet  
26  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Field  
Bits Type1) Description (cont’d)  
RDQS  
11  
w
Read Data Strobe Output (RDQS, RDQS)  
0
1
Disable  
Enable  
Qoff  
12  
w
Output Disable  
0
1
Output buffers enabled  
Output buffers disabled  
1) w = write only register bits  
A0 is used for DLL enable or disable. A1 is used for Address bit A12 have to be set to 0 for normal  
enabling half-strength data-output driver. A2 and A6 operation. With A12 set to 1 the SDRAM outputs are  
enables On-Die termination (ODT) and sets the Rtt disabled and in Hi-Z. 1 on BA0 and 0 for BA1 have to  
value. A[5:3] are used for additive latency settings and be set to access the EMRS(1). A13 and all “higher”  
A[9:7] enables the OCD impedance adjustment mode. address bits have to be set to 0 for compatibility with  
A10 enables or disables the differential DQS and other DDR2 memory products with higher memory  
RDQS signals, A11 disables or enables RDQS. densities. Refer to EMR(1).  
Single-ended and Differential Data Strobe Signals  
Table 7 lists all possible combinations for DQS, DQS, If RDQS is enabled in ×8 components, the DM function  
RDQS, RQDS which can be programmed by A[11:10] is disabled. RDQS is active for reads and don’t care for  
address bits in EMRS. RDQS and RDQS are available writes.  
in ×8 components only.  
Table 7  
EMRS(1)  
A11  
Single-ended and Differential Data Strobe Signals  
Strobe Function Matrix  
Signaling  
A10  
RDQS/DM  
RDQS  
DQS  
DQS  
(RDQS Enable) (DQS Enable)  
0 (Disable)  
0 (Disable)  
1 (Enable)  
1 (Enable)  
0 (Enable)  
1 (Disable)  
0 (Enable)  
1 (Disable)  
DM  
Hi-Z  
DQS  
DQS  
DQS  
DQS  
DQS  
Hi-Z  
DQS  
Hi-Z  
differential DQS signals  
single-ended DQS signals  
differential DQS signals  
single-ended DQS signals  
DM  
Hi-Z  
RDQS  
RDQS  
RDQS  
Hi-Z  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL Any time the DLL is reset, 200 clock cycles must occur  
enable is required during power up initialization, and before a Read command can be issued to allow time for  
upon returning to normal operation after having the DLL the internal clock to be synchronized with the external  
disabled. The DLL is automatically disabled when clock. Failing to wait for synchronization to occur may  
entering Self-Refresh operation and is automatically re- result in a violation of the tAC or tDQSCK parameters.  
enabled and reset upon exit of Self-Refresh operation.  
Output Disable (Qoff)  
Under normal operation, the DRAM outputs are DRAM outputs allows users to measure IDD currents  
enabled during Read operation for driving data (Qoff bit during Read operations, without including the output  
in the EMR(1) is set to 0). When the Qoff bit is set to 1, buffer current and external load currents.  
the DRAM outputs will be disabled. Disabling the  
Data Sheet  
27  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.2.3.1  
EMR(2)  
The Extended Mode Registers EMR(2) and EMR(3) with CKE already high prior to writing into the extended  
are reserved for future use and must be programmed mode register. The mode register set command cycle  
when setting the mode register during initialization.  
time (tMRD) must be satisfied to complete the write  
operation to the EMR(2). Mode register contents can  
be changed using the same command and clock cycle  
requirements during normal operation as long as all  
banks are in precharge state.  
The extended mode register EMR(2) is written by  
asserting LOW on CS, RAS, CAS, WE, BA0 and HIGH  
on BA1, while controlling the states of the address pins.  
The DDR2 SDRAM should be in all bank precharge  
EMR(2) Programming  
Extended Mode Register Definition  
(BA[2:0] = 010B)  
A9 A8 A7  
BA2 BA1 BA0 A13 A12 A11 A10  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
01)  
1
0
02)3)  
reg.addr  
1) BA2 is not available on 256 and 512 Mbit components  
2) A13 is not available for 256 Mbit and x16 512 Mbit configuration.  
3) Must be programmed to “0”  
2.2.3.2  
EMR(3)  
The Extended Mode Register EMR(3) is reserved for initialization. The EMRS(3) is written by asserting low  
future use and all bits except BA0 and BA1 must be on CS, RAS, CAS, WE, BA2 and high on BA0 and BA1,  
programmed to 0 when setting the mode register during while controlling the state of the address pins.  
EMR(3) Programming  
Extended Mode Register Definition  
(BA[2:0] = 011B)  
A9 A8 A7  
BA2 BA1 BA0 A13 A12 A11 A10  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
01)  
1
1
02)3)  
reg. addr  
1) BA2 is not available on 256 and 512 Mbit components  
2) A13 is not available for 256 Mbit and x16 512 Mbit configuration  
3) Must be programmed to “0”  
Data Sheet  
28  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.3  
Off-Chip Driver (OCD) Impedance Adjustment  
DDR2 SDRAM supports driver calibration feature and command being issued. MRS should be set before  
the flow chart below is an example of the sequence. entering OCD impedance adjustment and On Die  
Every calibration mode command should be followed Termination (ODT) should be carefully controlled  
by “OCD calibration mode exit” before any other depending on system environment.  
Start  
EMRS: OCD calibration mode exit  
EMRS: Drive (1)  
DQ & DQS High; DQS Low  
EMRS: Drive (0)  
DQ & DQS Low; DQS High  
ALL OK  
ALL OK  
Test  
Test  
Need Calibration  
Need Calibration  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS:  
Enter Adjust Mode  
EMRS:  
Enter Adjust Mode  
BL = 4 code input to all DQs  
Inc, Dec or NOP  
BL = 4 code input to all DQs  
Inc, Dec or NOP  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
EMRS: OCD calibration mode exit  
End  
MPFT0020  
Figure 9  
OCD Impedance Adjustment Flow Chart  
Note:MR should be set before entering OCD impedance adjustment and ODT should be carefully controlled  
depending on system environment  
Data Sheet  
29  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Extended Mode Register Set for OCD impedance adjustment  
OCD impedance adjustment can be done using the temperature and voltage conditions. Output driver  
following EMRS(1) mode. In drive mode all outputs are characteristics for OCD calibration default are specified  
driven out by DDR2 SDRAM and drive of RDQS is in the following table. OCD applies only to normal full  
dependent on EMR(1) bit enabling RDQS operation. In strength output drive setting defined by EMR(1) and if  
Drive(1)mode, all DQ, DQS (and RDQS) signals are half strength is set, OCD default driver characteristics  
driven HIGH and all DQS (and RDQS) signals are are not applicable. When OCD calibration adjust mode  
driven LOW. InDrive(0) mode, all DQ, DQS (and is used, OCD default output driver characteristics are  
RDQS) signals are driven LOW and all DQS (and not applicable. After OCD calibration is completed or  
RDQS) signals are driven HIGH. In adjust mode, BL = driver strength is set to default, subsequent EMRS(1)  
4 of operation code data must be used. In case of OCD commands not intended to adjust OCD characteristics  
calibration default, output driver characteristics have a must specify A[9:7] as’000’ in order to maintain the  
nominal impedance value of 18 Ohms during nominal default or calibrated value.  
Table 8  
Off Chip Driver Program  
A9  
0
A8  
A7  
0
Operation  
0
0
1
0
1
OCD calibration mode exit  
0
1
Drive(1) DQ, DQS, (RDQS) high and DQS (RDQS) low  
Drive(0) DQ, DQS, (RDQS) low and DQS (RDQS) high  
Adjust mode  
0
0
1
0
1
1
OCD calibration default  
OCD impedance adjust  
To adjust output driver impedance, controllers must simultaneously and after OCD calibration, all DQs of a  
issue the ADJUST EMRS(1) command along with a 4 given DDR2 SDRAM will be adjusted to the same driver  
bit burst code to DDR2 SDRAM as in the following strength setting. The maximum step count for  
table. For this operation, Burst Length has to be set to adjustment is 16 and when the limit is reached, further  
BL = 4 via MRS command before activating OCD and increment or decrement code has no effect. The default  
controllers must drive the burst code to all DQs at the setting may be any step within the maximum step count  
same time. DT0 in the table means all DQ bits at bit range. When Adjust mode command is issued, AL from  
time 0, DT1 at bit time 1, and so forth. The driver output previously set value must be applied.  
impedance is adjusted for all DDR2 SDRAM DQs  
Table 9  
Off-Chip-Driver Adjust Program  
4 bit burst code inputs to all DQs  
Operation  
DT0  
0
DT1  
0
DT2  
0
DT3  
0
Pull-up driver strength  
NOP (no operation)  
Increase by 1 step  
Decrease by 1 step  
NOP  
Pull-down driver strength  
NOP (no operation)  
NOP  
0
0
0
1
0
0
1
0
NOP  
0
1
0
0
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Increase by 1 step  
Decrease by 1 step  
Decrease by 1 step  
1
0
0
0
NOP  
0
1
0
1
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Decrease by 1 step  
0
1
1
0
1
0
0
1
1
0
1
0
Other Combinations  
Data Sheet  
Illegal  
30  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
For proper operation of adjust mode, WL = RL - 1 = sequential or interleave). Burst length of 4 have to be  
AL + CL - 1 clocks and tDS / tDH should be met as shown programmed in the MRS for OCD impedance  
in Figure 10. Input data pattern for adjustment, DT[0:3] adjustment.  
is fixed and not affected by MRS addressing mode (i.e.  
CK, CK  
CMD  
NOP  
NOP  
NOP  
EMRS(1)  
NOP  
NOP  
NOP  
EMRS(1)  
NOP  
WL  
tWR  
DQS  
DQS_in  
tDS tDH  
DQ_in  
DM  
DT2  
DT3  
DT0  
DT1  
OCD1  
OCD calibration  
mode exit  
OCD adjust mode  
Figure 10 Timing Diagram Adjust Mode  
Drive Mode  
Both Drive(1) and Drive(0) are used for controllers to driven out tOIT after “enter drive mode” command and all  
measure DDR2 SDRAM Driver impedance before OCD output drivers are turned-off tOIT after “OCD calibration  
impedance adjustment. In this mode, all outputs are mode exit” command. See Figure 11.  
CK, CK  
CMD  
NOP  
NOP  
NOP  
EMRS(1)  
tOIT  
NOP  
EMRS(1)  
tOIT  
NOP  
NOP  
NOP  
DQS_in  
DQ_in  
DQS high & DQS low for Drive(1), DQS low & DQS high for Drive 0  
DQS high for Drive(1)  
DQS high for Drive(0)  
OCD calibration  
mode exit  
Enter Drive Mode  
Figure 11 Timing Diagram Drive Mode  
Data Sheet  
31  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.4  
On-Die Termination (ODT)  
On-Die Termination (ODT) is a new feature on DDR2 only when enabled in the EMRS(1) by address bit  
components that allows a DRAM to turn on/off termi- A10 = 0.  
nation resistance for each DQ, DQS, DQS, DM for ×4  
and DQ, DQS, DQS, DM, RDQS (DM/RDQS share the  
same pin) and RDQS for ×8 configuration via the ODT  
control pin. DQS and RDQS are only terminated when  
tance for any or all DRAM devices.  
enabled by EMR(1).  
The ODT feature is designed to improve signal integrity  
of the memory channel by allowing the DRAM  
controller to independently turn on/off termination resis-  
The ODT function can be used for all active and  
standby modes. ODT is turned off and not supported in  
Self-Refresh mode.  
For ×16 configuration ODT is applied to each DQ,  
UDQS, UDQS, LDQS, LDQS, UDM and LDM signal via  
the ODT control pin. UDQS and LDQS are terminated  
VDDQ  
VDDQ  
VDDQ  
sw2  
sw3  
sw1  
Rval2  
Rval3  
Rval1  
DRAM  
Input  
Buffer  
Input  
Pin  
Rval2  
sw2  
Rval3  
sw3  
Rval1  
sw1  
ODT_funct2  
VSSQ  
VSSQ  
VSSQ  
Figure 12 Functional Representation of ODT  
Switch 1, 2 or 3 are enabled by the ODT pin. Selection Target: Rval1 = Rval2 = 2 × Rtt  
between 1, 2 or 3 is determined by “Rtt (nominal)” in  
EMRS(1) address bits A6 & A2.  
The ODT pin will be ignored if the Extended Mode  
Register (EMRS(1)) is programmed to disable ODT.  
Data Sheet  
32  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
ODT Truth Tables  
The ODT Truth Table shows which of the input pins are organisations (×4, ×8 and ×16). To activate termination  
terminated depending on the state of address bit A10 of any of these pins, the ODT function has to be  
and A11 in the EMRS(1) for all three device enabled in the EMRS(1) by address bits A6 and A2.  
Table 10  
Input Pin  
ODT Truth Table  
EMRS(1)  
EMRS(1)  
Address Bit A10  
Address Bit A11  
x4 components  
DQ[3:0]  
DQS  
X
X
0
DQS  
X
DM  
X
x8 components  
DQ[7:0]  
DQS  
X
X
0
DQS  
X
1
1
0
RDQS  
X
0
RDQS  
DM  
X
x16 components  
DQ[7:0]  
DQ[15:8]  
LDQS  
X
X
X
0
LDQS  
X
X
UDQS  
X
0
UDQS  
LDM  
X
X
UDM  
Note:X = don’t care; 0 = bit set to low; 1 = bit set to high  
ODT timing modes  
Depending on the operating mode asynchronous or  
synchronous ODT timings apply.  
Slow Exit Active Power Down Mode (with MRS bit  
A12 is set to “1”)  
Precharge Power Down Mode  
Asynchronous ODT timings (tAOFPD, tAONPD) apply when  
the on-die DLL is disabled.  
Synchronous ODT timings (tAOND, tAOFD, tAON, tAOF  
)
apply for all other modes.  
These modes are:  
Data Sheet  
33  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T0  
T2  
CK, CK  
CKE  
t
t
IS  
IS  
t
IS  
ODT  
tAOND (2 tck)  
tAOFD (2.5 tck)  
Rtt  
DQ  
tAON(min)  
tAOF(min)  
tAOF(max)  
tAON(max)  
ODT01  
Figure 13 ODT Timing for Active and Standby (Idle) Modes (Synchronous ODT timings)  
Notes  
1. Synchronous ODT timings apply for Active Mode  
and Standby Mode with CKE HIGH and for the  
“Fast Exit” Active Power Down Mode (MRS bit A12  
to turn on. ODT turn on time max. (tAON.MAX) is when  
the ODT resistance is fully on. Both are measured  
from tA  
.
OND  
set to “0”). In all these modes the on-die DLL is 3. ODT turn off time min. (tAOF.MIN) is when the device  
enabled.  
starts to turn off the ODT resistance.ODT turn off  
2. ODT turn-on time (tAON.MIN) is when the device  
leaves high impedance and ODT resistance begins  
time max. (tAOF.MAX) is when the bus is in high  
impedance. Both are measured from tAOFD  
.
T
1
T
3
T
4
T
5
T
6
T
7
T
8
T
0
T
2
CK, CK  
CKE  
"low"  
t
IS  
ODT  
DQ  
t
IS  
tAOFPDmax  
tAOFPDmin  
Rtt  
tAONPD,min  
tAONPD,max  
ODT02  
Figure 14 ODT Timing for Precharge Power-Down and Active Power-Down Mode (with slow exit)  
(Asynchronous ODT timings)  
Note:Asynchronous ODT timings apply for Precharge Power-Down Mode and “Slow Exit” Active Power Down  
Mode (MRS bit A12 set to “1”), where the on-die DLL is disabled in this mode of operation.  
Data Sheet  
34  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
ODT timing mode switch  
When entering the Power Down Modes “Slow Exit” Active Power Down and Precharge Power Down two additional  
timing parameters (tANPD and tAXPD) define if synchronous or asynchronous ODT timings have to be applied.  
Mode entry  
As long as the timing parameter tANPD.MIN is satisfied can be applied. If tANPD.MIN is not satisfied,  
when ODT is turned on or off before entering these asynchronous timing parameters apply.  
power-down modes, synchronous timing parameters  
T-5  
T-4  
T-3  
T-2  
T-1  
T0  
T1  
T2  
CK, CK  
CKE  
tANPD (3 tck)  
tIS  
ODT turn-off, tANPD >= 3 tck :  
t
IS  
ODT  
Synchronous  
timings apply  
RTT  
tAOFD  
ODT turn-off, tANPD <3 tck :  
ODT  
Asynchronous  
timings apply  
RTT  
tAOFPDmax  
ODT turn-on, tANPD >= 3 tck :  
tIS  
tAOND  
ODT  
Synchronous  
timings apply  
RTT  
t
IS  
ODT turn-on, tANPD < 3 tck :  
tAONPDmax  
Asynchronous  
timings apply  
ODT  
RTT  
ODT03  
Figure 15 ODT Mode Entry Timing Diagram  
Data Sheet  
35  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Mode exit  
As long as the timing parameter tAXPD.MIN is satisfied applied. If tAXPD.MIN is not satisfied, asynchronous timing  
when ODT is turned on or off after exiting these power- parameters apply.  
down modes, synchronous timing parameters can be  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
CK,  
CK  
tIS  
tAXPD  
CKE  
tIS  
ODT turn-off, tAXPD >= tAXPDmin:  
ODT  
Synchronous  
timings apply  
Rtt  
tAOFD  
ODT turn-off, tAXPD < tAXPDmin:  
tIS  
ODT  
Asynchronous  
timings apply  
Rtt  
tAOFPDmax  
ODT turn-on, tAXPD >= tAXPDmin:  
Synchronous  
timings apply  
tIS  
ODT  
Rtt  
tAOND  
tIS  
ODT turn-on, tAXPD < tAXPDmin:  
ODT  
Asynchronous  
timings apply  
Rtt  
tAONPDmax  
ODT04  
Figure 16 ODT Mode Exit Timing Diagram  
Data Sheet  
36  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.5  
Bank Activate Command  
The Bank Activate command is issued by holding CAS latency must be programmed into the device to delay  
and WE HIGH with CS and RAS LOW at the rising edge the R/W command which is internally issued to the  
of the clock. The bank addresses BA[1:0] are used to device. The additive latency value must be chosen to  
select the desired bank. The row addresses A0 through assure tRCD.MIN is satisfied. Additive latencies of 0, 1, 2,  
A12 are used to determine which row to activate in the 3 and 4 are supported. Once a bank has been activated  
selected bank for ×4 and ×8 organized components. it must be precharged before another Bank Activate  
For ×16 components row addresses A0 through A12 command can be applied to the same bank. The bank  
have to be applied. The Bank Activate command must active and precharge times are defined as tRAS and tRP,  
be applied before any Read or Write operation can be respectively. The minimum time interval between  
executed. Immediately after the bank active command, successive Bank Activate commands to the same bank  
the DDR2 SDRAM can accept a read or write command is determined by tRC. The minimum time interval  
(with or without Auto-Precharge) on the following clock between Bank Active commands to different banks is  
cycle. If a R/W command is issued to a bank that has tRRD  
.
not satisfied the tRCD.MIN specification, then additive  
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1  
Tn+2  
Tn+3  
CK, CK  
Internal RAS-CAS delay tRCDmin.  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank B  
Col. Addr.  
Bank A  
Addr.  
Bank B  
Addr.  
Bank A  
Row Addr.  
NOP  
Address  
Bank A to Bank B delay tRRD.  
additive latency AL=2  
Read A  
Begins  
Posted CAS  
Bank A  
Activate Read A  
Posted CAS  
Read B  
Bank B  
Activate  
Bank A  
Precharge  
Bank B Bank A  
Precharge Activate  
NOP  
Command  
tRAS Row Active Time (Bank A)  
tCCD  
tRP Row Precharge Time (Bank A)  
tRC Row Cycle Time (Bank A)  
ACT  
Figure 17 Bank Activate Command Cycle: tRCD = 3, AL = 2, tRP = 3, tRRD = 2  
Data Sheet  
37  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.6  
Read and Write Commands and Access Modes  
After a bank has been activated, a read or write cycle Command (CA[11, 9:0]). The second, third and fourth  
can be executed. This is accomplished by setting RAS access will also occur within this segment, however,  
HIGH, CS and CAS LOW at the clock’s rising edge. WE the burst order is a function of the starting address, and  
must also be defined at this time to determine whether the burst sequence.  
the access cycle is a read operation (WE HIGH) or a  
write operation (WE LOW). The DDR2 SDRAM  
page length of 512 is divided into 64 uniquely  
provides a wide variety of fast access modes. A single  
In case of a 8-bit burst operation (burst length = 8) the  
addressable segments (8-bits × 16 I/O each). The 8-bit  
burst operation will occur entirely within one of the 64  
Read or Write Command will initiate a serial read or  
write operation on successive clock cycles at data rates  
segments (defined by CA[7:0]) beginning with the  
of up to 533 Mb/sec/pin for main memory. The  
column address supplied to the device during the Read  
boundary of the burst cycle is restricted to specific  
or Write Command (CA[11, 9:0]).  
segments of the page length.  
A new burst access must not interrupt the previous 4 bit  
burst operation in case of BL = 4 setting. Therefore the  
minimum CAS to CAS delay (tCCD) is a minimum of 2  
clocks for read or write cycles.  
For example, the 16Mbit × 16 chip has a page size of  
1024 kByte which corresponds to a page length of 512  
bits (defined by CA[11, 9:0]).  
In case of a 4-bit burst operation (burst length = 4) the  
For 8 bit burst operation (BL = 8) the minimum CAS to  
page length of 512 is divided into 128 uniquely  
CAS delay (tCCD) is 4 clocks for read or write cycles.  
addressable segments (4-bits × 16 I/O each). The 4-bit  
Burst interruption is allowed with 8 bit burst operation.  
burst operation will occur entirely within one of the 128  
For details see Chapter 2.6.6.  
segments (defined by CA[8:0]) starting with the column  
address supplied to the device during the Read or Write  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T12  
CK, C K  
CM D  
N O P  
tCCD  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
R E A D  
C
R E A D A  
N O P  
tCCD  
DQ S,  
DQ S  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout C0 Dout C1  
Dout C2 Dout C3  
DQ  
RB  
Figure 18 Read Burst Timing Example: (CL = 3, AL = 0, RL = 3, BL = 4)  
2.6.1  
Posted CAS  
Posted CAS operation is supported to make command latency (CL). Therefore if a user chooses to issue a  
and data bus efficient for sustainable bandwidths in Read/Write command before the tRCD.MIN, then AL  
DDR2 SDRAM. In this operation, the DDR2 SDRAM greater than 0 must be written into the EMR(1). The  
allows a Read or Write command to be issued Write Latency (WL) is always defined as RL - 1 (Read  
immediately after the bank activate command (or any Latency -1) where Read Latency is defined as the sum  
time during the RAS to CAS delay time, tRCD period). of Additive Latency plus CAS latency (RL=AL+CL). If a  
The command is held for the time of the Additive user chooses to issue a Read command after the  
Latency (AL) before it is issued inside the device. The tRCD.MIN period, the Read Latency is also defined as  
Read Latency (RL) is the sum of AL and the CAS RL = AL + CL.  
Data Sheet  
38  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
1
0
2
3
4
5
6
7
8
9
10 11  
CK, CK  
WL = RL -1 = 4  
Activate Read  
Bank A Bank A  
Write  
Bank A  
CMD  
AL = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0Dout1 Dout2Dout3  
Din0 Din1 Din2 Din3  
PostCAS  
Figure 19 Activate to Read Timing Example: Read followed by a write to the same bank, Activate to Read  
delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 4  
1
0
2
3
4
5
6
7
8
9
10 11 12  
CK, CK  
WL = RL -1 = 4  
Write  
Bank A  
Activate Read  
Bank A Bank A  
CMD  
AL = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0 Dout1Dout2 Dout3 Dout4 Dout5 Dout6 Dout7  
Din0 Din1 Din2 D
PostCAS3  
Figure 20 Read to Write Timing Example: Read followed by a write to the same bank, Activate to Read  
delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
CK, CK  
CMD  
AL = 0  
Activate  
Bank A  
Read  
Bank A  
Write  
Bank A  
CL = 3  
WL = RL -1 = 2  
DQS,  
DQS  
tRCD  
RL = AL + CL = 3  
DQ  
Dout0  
Dout1  
Dout2  
Dout3  
Din0  
Din1  
Din2  
Din3  
PostCAS2  
Figure 21 Read to Write Timing Example: Read followed by a write to the same bank, Activate to Read  
delay = tRCD.MIN: AL = 0, CL = 3, RL = (AL + CL) = 3, WL = (RL -1) = 2, BL = 4  
Data Sheet  
39  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
1
0
2
3
4
5
6
7
8
9
10 11 12 13  
CK, CK  
WL = 3  
Write  
Bank A  
Activate  
Bank A  
Read  
Bank A  
CMD  
tRCD > tRCDmin.  
DQS,  
DQS  
RL = 4  
DQ  
PostCAS5  
Figure 22 Read to Write Timing Example: Read followed by a write to the same bank, Activate to Read  
delay > tRCD.MIN: AL = 1, CL = 3, RL = 4, WL = 3, BL = 4  
2.6.2  
Burst Mode Operation  
Burst mode operation is used to provide a constant flow the MR. The burst type, either sequential or  
of data to memory locations (write cycle), or from interleaved, is programmable and defined by the  
memory locations (read cycle). The parameters that address bit 3 (A3) of the MR. Seamless burst read or  
define how the burst mode will operate are burst write operations are supported. Interruption of a burst  
sequence and burst length. The DDR2 SDRAM read or write operation is prohibited, when burst length  
supports 4 bit and 8 bit burst modes only. For 8 bit burst = 4 is programmed. For burst interruption of a read or  
mode, full interleave address ordering is supported, write burst when burst length = 8 is used, see the  
however, sequential address ordering is nibble based Chapter 2.6.6. A Burst Stop command is not supported  
for ease of implementation. The burst length is on DDR2 SDRAM devices.  
programmable and defined by the addresses A[2:0] of  
Table 11  
Burst Length and Sequence  
Burst Length  
Starting Address  
(A2 A1 A0)  
Sequential Addressing  
(decimal)  
Interleave Addressing  
(decimal)  
4
0 0 0  
0 0 1  
0 1 0  
0 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3  
0, 1, 2, 3  
1, 2, 3, 0  
1, 0, 3, 2  
2, 3, 0, 1  
2, 3, 0, 1  
3, 0, 1, 2  
3, 2, 1, 0  
8
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
Notes  
1. Page size for all 256 Mbit components is 1 kByte  
2. Order of burst access for sequential addressing is “nibble-based” and therefore different from SDR or DDR  
components  
Data Sheet  
40  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.6.3  
Read Command  
The Read command is initiated by having CS and CAS onto the data bus. The first bit of the burst is  
LOW while holding RAS and WE HIGH at the rising synchronized with the rising edge of the data strobe  
edge of the clock. The address inputs determine the (DQS). Each subsequent data-out appears on the DQ  
starting column address for the burst. The delay from pin in phase with the DQS signal in a source  
the start of the command until the data from the first cell synchronous manner. The RL is equal to an additive  
appears on the outputs is equal to the value of the read latency (AL) plus CAS latency (CL). The CL is defined  
latency (RL). The data strobe output (DQS) is driven by the Mode Register Set (MRS). The AL is defined by  
LOW one clock cycle before valid data (DQ) is driven the Extended Mode Register Set (EMRS(1)).  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
CLK, CLK  
t
DQS  
DQSCK  
t
AC  
DQS,  
DQS  
DQS  
t
RPST  
Dout  
t
RPRE  
t
t
HZ  
LZ  
DQ  
Dout  
Dout  
Dout  
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
DO-Read  
Figure 23 Basic Read Timing Diagram  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
<= t DQSCK  
DQS,  
DQS  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
BRead523  
Figure 24 Burst Operation Example 1: RL = 5 (AL = 2, CL = 3, BL = 4)  
Data Sheet  
41  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D A  
N O P  
N O P  
CMD  
<= tD Q S C K  
DQ S,  
DQ S  
C L =  
R L =  
3
3
DQ's  
Dout A0 Dout A1  
Dout A2 Dout A3  
Dout A4 Dout A5  
Dout A6 Dout A7  
BRead303  
Figure 25 Read Operation Example 2: RL = 3 (AL = 0, CL = 3, BL = 8)  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, C K  
CM D  
P osted C A S  
W R ITE A  
P osted C A S  
R E A D A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
BL/2 + 2  
DQ S,  
DQ S  
WL = RL - 1 = 4  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Din A0  
Din A1  
Din A2  
Din A3  
BRBW514  
Figure 26 Read followed by Write Example: RL = 5, WL = (RL-1) = 4, BL = 4  
The minimum time from the read command to the write command is defined by a read-to-write turn-around time,  
which is BL/2 + 2 clocks.  
Data Sheet  
42  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ B  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout B0  
Dout B1  
Dout B2  
Dout B3  
SBR523  
Figure 27 Seamless Read Operation Example 1: RL = 5, AL = 2, CL = 3, BL = 4  
The seamless read operation is supported by enabling a read command at every BL / 2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
T9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
Posted CAS  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
CL = 3  
RL = 3  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout A4  
Dout A5  
Dout A6  
Dout A7  
Dout B0  
Dout B1  
Dout B2  
Dout B3  
Dout B4  
SBR_BL8  
Figure 28 Seamless Read Operation Example 2: RL = 3, AL = 0, CL = 3, BL = 8 (non interrupting)  
The seamless, non interrupting 8-bit read operation is supported by enabling a read command at every BL/2  
number of clocks. This operation is allowed regardless of same or different banks as long as the banks are  
activated.  
Data Sheet  
43  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.6.4  
Write Command  
The Write command is initiated by having CS, CAS and successive edges of the DQS until the burst length is  
WE LOW while holding RAS HIGH at the rising edge of completed. When the burst has finished, any additional  
the clock. The address inputs determine the starting data supplied to the DQ pins will be ignored. The DQ  
column address. Write latency (WL) is defined by a signal is ignored after the burst write operation is  
read latency (RL) minus one and is equal to (AL + CL – complete. The time from the completion of the burst  
1). A data strobe signal (DQS) has to be driven LOW write to bank precharge is named “write recovery time”  
(preamble) a time tWPRE prior to the WL. The first data (tWR) and is the time needed to store the write data into  
bit of the burst cycle must be applied to the DQ pins at the memory array. tWR is an analog timing parameter  
the first rising edge of the DQS following the preamble. (see Chapter 5) and is not the programmed value for  
The tDQSS specification must be satisfied for write WR in the MRS.  
cycles. The subsequent burst bit data are issued on  
t DQSH  
DQS  
tDQSL  
DQS,  
DQS  
DQS  
t
t WPRE  
WPST  
Din  
Din  
Din  
Din  
t
DS  
t DH  
Figure 29 Basic Write Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge  
<= t DQSS  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW543  
Figure 30 Write Operation Example 1: RL = 5 (AL = 2, CL = 3), WL = 4, BL = 4  
Data Sheet  
44  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
<= t DQSS  
DQS,  
DQS  
tRP  
tWR  
WL = RL-1 = 2  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW322  
Figure 31 Write Operation Example 2: RL = 3 (AL = 0, CL = 3), WL = 2, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, CK  
CMD  
Write to Read = (CL - 1)+ BL/2 +tWTR(2) = 6  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
CL=3  
AL=2  
tWTR  
WL = RL - 1 = 4  
DQ  
DIN A0 DIN A1 DIN A2 DIN A3  
RL=5  
BWBR  
Figure 32 Write followed by Read Example: RL = 5 (AL = 2, CL = 3), WL = 4, tWTR = 2, BL = 4  
The minimum number of clocks from the write command to the read command is (CL - 1) +BL/2 + tWTR, where tWTR  
is the write-to-read turn-around time tWTR expressed in clock cycles. The tWTR is not a write recovery time (tWR) but  
the time required to transfer 4 bit write data from the input buffer into sense amplifiers in the array.  
Data Sheet  
45  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
WRITE A  
Posted CAS  
WRITE B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
WL = RL - 1 = 4  
DQ  
DIN B0  
DIN A0  
DIN B1 DIN B2 DIN B3  
DIN A1 DIN A2 DIN A3  
SBR  
Figure 33 Seamless Write Operation Example 1: RL = 5, WL = 4, BL = 4  
The seamless write operation is supported by enabling a write command every BL/2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
, CK  
D
NOP  
NOP  
NOP  
NOP  
WRITE A  
NOP  
NOP  
NOP  
WRITE B  
S,  
S
WL = RL - 1 = 2  
Q
DIN B4  
DIN B5 DIN B6 DIN B7  
DIN B0  
DIN B1 DIN B2 DIN B3  
DIN A0  
DIN A1 DIN A2 DIN A3  
DIN A4  
DIN A5 DIN A6 DIN A7  
SBW_BL8  
Figure 34 Seamless Write Operation Example 2: RL = 3, WL = 2, BL = 8, non interrupting  
The seamless write operation is supported by enabling a write command at every BL/2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
Data Sheet  
46  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.6.5  
Write Data Mask  
One write data mask input (DM) for ×4 and ×8 insure matched system timing. Data mask is not used  
components and two write data mask inputs (LDM, during read cycles. If DM is HIGH during a write burst  
UDM) for ×16 components are supported on DDR2 coincident with the write data, the write data bit is not  
SDRAM’s, consistent with the implementation on DDR written to the memory. For ×8 components the DM  
SDRAM’s. It has identical timings on write operations function is disabled, when RDQS / RDQS are enabled  
as the data bits, and though used in a uni-directional by EMRS(1).  
manner, is internally loaded identically to data bits to  
t
t
DQSL  
DQS  
DQS  
DQSH  
DQS,  
DQS  
t
t
WPRE  
Din  
WPST  
DQ  
DM  
Din  
Din  
Din  
t
t
DS  
DH  
don't care  
Figure 35 Write Data Mask Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, C K  
CM D  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
W R ITE A  
N O P  
P recharge  
N O P  
N O P  
<= tDQSS  
DQ S,  
DQ S  
WL = RL-1 = 2  
tR P  
tW R  
DQ  
DM  
DIN A0  
DIN A1 DIN A2 DIN A3  
DM  
Figure 36 Write Operation with Data Mask Example: RL = 3 (AL = 0, CL = 3), WL = 2, tWR = 3, BL = 4  
Data Sheet  
47  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.6.6  
Burst Interruption  
Interruption of a read or write burst is prohibited for 6. Read or Write burst with Auto-Precharge enabled is  
burst length of 4 and only allowed for burst length of 8  
under the following conditions:  
not allowed to be interrupted.  
7. Read burst interruption is allowed by a Read with  
Auto-Precharge command.  
8. Write burst interruption is allowed by a Write with  
Auto-Precharge command.  
1. A Read Burst can only be interrupted by another  
Read command. Read burst interruption by a Write  
or Precharge Command is prohibited.  
9. All command timings are referenced to burst length  
set in the mode register. They are not referenced to  
the actual burst. For example, Minimum Read to  
Precharge timing is AL + BL/2 where BL is the burst  
length set in the mode register and not the actual  
burst (which is shorter because of interrupt).  
Minimum Write to Precharge timing is WL + BL/ 2 +  
2. A Write Burst can only be interrupted by another  
Write command. Write burst interruption by a Read  
or Precharge Command is prohibited.  
3. Read burst interrupt must occur exactly two clocks  
after the previous Read command. Any other Read  
burst interrupt timings are prohibited.  
4. Write burst interrupt must occur exactly two clocks  
after the previous Write command. Any other Read  
burst interrupt timings are prohibited.  
5. Read or Write burst interruption is allowed to any  
bank inside the DDR2 SDRAM.  
t
WR, where tWR starts with the rising clock after the  
un-interrupted burst end and not from the end of the  
actual burst end.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
C K, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
N O P  
R E A D  
A
N O P  
DQ S,  
DQ S  
D Q  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout B4 Dout B5  
Dout B6 Dout B7  
RBI  
Figure 37 Read Interrupt Timing Example 1: (CL = 3, AL = 0, RL = 3, BL = 8)  
Data Sheet  
48  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
W R IT E  
A
N O P  
W R ITE  
B
N O P  
N O P  
N O P  
DQ S,  
DQ S  
D Q  
Din A0  
Din A1  
Din A2  
Din A3  
Din B0  
Din B1  
Din B2  
Din B3  
Dout B4 Din B5  
Din B6  
Din B7  
WBI  
Figure 38 Write Interrupt Timing Example 2: (CL = 3, AL = 0, WL = 2, BL = 8)  
2.7  
Precharge Command  
The Precharge Command is used to precharge or close The Pre-charge Command can be used to precharge  
a bank that has been activated. The Precharge each bank independently or all banks simultaneously. 3  
Command is triggered when CS, RAS and WE are address bits A10, BA[1:0] are used to define which  
LOW and CAS is HIGH at the rising edge of the clock. bank to precharge when the command is issued.  
Table 12  
Bank Selection for Precharge by Address Bits  
A10  
0
BA1  
BA0  
Precharge Bank(s)  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
all banks  
0
0
0
0
1
0
1
0
0
1
1
1
Don’t Care  
Don’t Care  
Note:The bank address assignment is the same for activating and precharging a specific bank.  
Data Sheet  
49  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.7.1  
Read Operation Followed by a Precharge  
The following rules apply as long as the tRTP timing clocks” after a Read Command, as long as the  
parameter - Internal Read to Precharge Command minimum tRAS timing is satisfied.  
delay time - is less or equal two clocks, which is the  
case for operating frequencies less or equal 266 Mhz  
same bank if the following two conditions are satisfied  
(DDR2 400 and 533 speed sorts).  
A new bank active command may be issued to the  
simultaneously:  
Minimum Read to Precharge command spacing to the  
same bank = AL + BL/2 clocks. For the earliest possible  
precharge, the Precharge command may be issued on  
the rising edge which is “Additive Latency (AL) + BL/2  
1. The RAS precharge time (tRP) has been satisfied  
from the clock at which the precharge begins.  
2. The RAS cycle time (tRC.MIN) from the previous bank  
activation has been satisfied.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
NOP  
AL + BL/2 clks  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P413  
Figure 39 Read Operation Followed by Precharge Example 1:  
RL = 4 (AL = 1, CL = 3), BL = 4, tRTP 2 clocks  
Data Sheet  
50  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
Bank A  
Activate  
NOP  
AL + BL/2 clks  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout A4  
Dout A5  
Dout A6  
Dout A7  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P413(8)  
first 4-bit prefetch  
second 4-bit prefetch  
Figure 40 Read Operation Followed by Precharge Example 2:  
RL = 4 (AL = 1, CL = 3), BL = 8, tRTP 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
NOP  
NOP  
tRP  
NOP  
NOP  
NOP  
NOP  
Precharge  
AL + BL/2 clks  
DQS,  
DQS  
AL = 2  
RL = 5  
CL = 3  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P523  
Figure 41 Read Operation Followed by Precharge Example 3:  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP 2 clocks  
Data Sheet  
51  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
Precharge  
A
NOP  
NOP  
NOP  
NOP  
NOP  
tRP  
NOP  
AL + BL/2 clocks  
DQS,  
DQS  
AL = 2  
RL = 6  
CL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 4  
>=tRC  
>=tRTP  
BR-P624  
Figure 42 Read Operation Followed by Precharge Example 4:  
RL = 6, (AL = 2, CL = 4), BL = 4, tRTP 2 clocks  
2.7.2  
Write followed by Precharge  
Minimum Write to Precharge command spacing to the to the Precharge command. No Precharge command  
same bank = WL + BL/2 + tWR. For write cycles, a delay should be issued prior to the tWR delay, as DDR2  
must be satisfied from the completion of the last burst SDRAM does not support any burst interrupt by a  
write cycle until the Precharge command can be Precharge command. tWR is an analog timing  
issued. This delay is known as a write recovery time parameter (see Chapter 7) and is not the programmed  
(tWR) referenced from the completion of the burst write value WR in the MR.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Precharge  
A
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = 3  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P3  
Figure 43 Write followed by Precharge Example 1: WL = (RL - 1) = 3, BL = 4, tWR = 3  
Data Sheet  
52  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Precharge  
A
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P4  
Figure 44 Write followed by Precharge Example 2: WL = (RL - 1) = 4, BL = 4, tWR = 3  
2.8  
Auto-Precharge Operation  
Before a new row in an active bank can be opened, the internally on the rising edge which is CAS Latency (CL)  
active bank must be precharged using either the Pre- clock cycles before the end of the read burst. Auto-  
charge Command or the Auto-Precharge function. Precharge is also implemented for Write Commands.  
When a Read or a Write Command is given to the The Precharge operation engaged by the Auto-  
DDR2 SDRAM, the CAS timing accepts one extra Precharge command will not begin until the last data of  
address, column address A10, to allow the active bank the write burst sequence is properly stored in the  
to automatically begin precharge at the earliest memory array. This feature allows the precharge  
possible moment during the burst read or write cycle. If operation to be partially or completely hidden during  
A10 is LOW when the Read or Write Command is burst read cycles (dependent upon CAS Latency) thus  
issued, then normal Read or Write burst operation is improving system performance for random data  
executed and the bank remains active at the access. The RAS lockout circuit internally delays the  
completion of the burst sequence. If A10 is HIGH when Precharge operation until the array restore operation  
the Read or Write Command is issued, then the Auto- has been completed so that the Auto-Precharge  
Precharge function is enabled. During Auto-Precharge, command may be issued with any read or write  
a Read Command will execute as normal with the command.  
exception that the active bank will begin to precharge  
2.8.1  
Read with Auto-Precharge  
If A10 is 1 when a Read Command is issued, the Read becomes AL + tRTP + tRP. For BL = 8 the time from Read  
with Auto-Precharge function is engaged. The DDR2 with Auto-Precharge to the next Activate command is  
SDRAM starts an Auto-Precharge operation on the AL + 2 + tRTP + tRP. Note that (tRTP + tRP) has to be  
rising edge which is (AL + BL/2) cycles later from the rounded up to the next integer value. In any event  
Read with AP command if tRAS.MIN and tRTP are internal precharge does not start earlier than two clocks  
satisfied. If tRAS.MIN is not satisfied at the edge, the start after the last 4-bit prefetch.  
point of Auto-Precharge operation will be delayed until  
A new bank active command may be issued to the  
same bank if the following two conditions are satisfied  
simultaneously:  
t
RAS,min is satisfied. If tRTP.MIN is not satisfied at the edge,  
the start point of Auto-Precharge operation will be  
delayed until tRTP.MIN is satisfied.  
1. The RAS precharge time (tRP) has been satisfied  
from the clock at which the Auto-Precharge begins.  
2. The RAS cycle time (tRC) from the previous bank  
activation has been satisfied.  
In case the internal precharge is pushed out by tRTP, tRP  
starts at the point where the internal precharge  
happens (not at the next rising clock edge after this  
event). So for BL = 4 the minimum time from Read with  
Auto-Precharge to the next Activate command  
Data Sheet  
53  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
AL + BL/2  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRAS  
tRCmin.  
BR-AP5231  
Figure 45 Read with Auto-Precharge Example 1, followed by an Activation to the Same Bank (tRC Limit):  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP 2 clocks  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
tRAS(min)  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRC  
BR-AP5232  
Figure 46 Read with Auto-Precharge Example 2, followed by an Activation to the Same Bank (tRAS Limit):  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP 2 clocks  
Data Sheet  
54  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
AL + BL/2  
tRP  
Auto-Precharge Begins  
DQ S,  
DQ S  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A4 Dout A5  
Dout A2 Dout A3  
Dout A6 Dout A7  
Dout A0 Dout A1  
>= tRTP  
BR-AP413(8)2  
second 4-bit prefetch  
first 4-bit prefetch  
Figure 47 Read with Auto-Precharge Example 3, followed by an Activation to the Same Bank:  
RL = 4 (AL = 1, CL = 3), BL = 8, tRTP 2 clocks  
Data Sheet  
55  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.8.2  
Write with Auto-Precharge  
If A10 is HIGH when a Write Command is issued, the 1. The last data-in to bank activate delay time (tDAL  
Write with Auto-Precharge function is engaged. The WR + tRP) has been satisfied.  
DDR2 SDRAM automatically begins precharge 2. The RAS cycle time (tRC) from the previous bank  
=
operation after the completion of the write burst plus the  
write recovery time delay (WR), programmed in the  
MRS register, as long as tRAS is satisfied. The bank  
undergoing Auto-Precharge from the completion of the  
write burst may be reactivated if the following two  
conditions are satisfied.  
activation has been satisfied.  
In DDR2 SDRAM’s the write recovery time delay (WR)  
has to be programmed into the MRS mode register. As  
long as the analog tWR timing parameter is not violated,  
WR can be programmed between 2 and 6 clock cycles.  
Minimum Write to Activate command spacing to the  
same bank = WL + BL/2 + tDAL  
.
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, C K  
CM D  
W R ITE  
w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Completion of the Burst Write  
Auto-Precharge Begins  
DQ S,  
DQ S  
WR  
tRP  
WL = RL-1 = 2  
tDAL  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
tRCmin.  
>=tRASmin.  
BW-AP223  
Figure 48 Write with Auto-Precharge Example 1 (tRC Limit): WL = 2, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T12  
T9  
CK, C K  
CM D  
P osted C A S  
W R ITE w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
Completion of the Burst Write  
A10 ="high"  
Auto-Precharge Begins  
DQ S,  
DQ S  
tRP  
WR  
tDAL  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
>=tRC  
>=tRAS  
BW-AP423  
Figure 49 Write with Auto-Precharge Example 2 (WR + tRP Limit): WL = 4, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
Data Sheet  
56  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.8.3  
Read or Write to Precharge Command Spacing Summary  
The following table summarizes the minimum Write w/AP to the Precharge commands to the same  
command delays between Read, Read w/AP, Write, banks and Precharge-All commands.  
Table 13  
Minimum Command Delays  
From Command  
To Command  
Minimum Delay between “From Unit Note  
Command” to “To Command”  
1)2)  
READ  
PRECHARGE (to same banks as  
READ)  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
tCK  
1)2)  
1)2)  
PRECHARGE-ALL  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
tCK  
tCK  
READ w/AP  
WRITE  
PRECHARGE (to same banks as  
READ w/AP)  
1)2)  
2)  
PRECHARGE-ALL  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
WL + BL/2 + tWR  
tCK  
tCK  
PRECHARGE (to same banks as  
WRITE)  
2)  
2)  
PRECHARGE-ALL  
WL + BL/2 + tWR  
tCK  
tCK  
WRITE w/AP  
PRECHARGE  
PRECHARGE (to same banks as  
WRITE w/AP)  
WL + BL/2 + WR  
2)  
2)  
PRECHARGE-ALL  
WL + BL/2 + WR  
1
tCK  
tCK  
PRECHARGE (to same banks as  
PRECHARGE)  
2)  
2)  
2)  
PRECHARGE-ALL  
1
1
1
tCK  
tCK  
tCK  
PRECHARGE-ALL PRECHARGE  
PRECHARGE-ALL  
1) RU{tRTP(ns) / tCK(ns)} must be used, where RU stands for “Round Up”  
2) For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge or precharge-  
all, issued to that bank. The precharge period is satisfied after tRP, depending on the latest precharge command issued to that bank  
Data Sheet  
57  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.8.4  
Concurrent Auto-Precharge  
DDR2 devices support the “Concurrent Auto- The minimum delay from a Read or Write command  
Precharge” feature. A Read with Auto-Precharge with Auto-Precharge enabled, to a command to a  
enabled, or a Write with Auto-Precharge enabled, may different bank, is summarized in Table 14. As defined,  
be followed by any command to the other bank, as long the WL = RL - 1 for DDR2 devices which allows the  
as that command does not interrupt the read or write command gap and corresponding data gaps to be  
data transfer, and all other related limitations (e.g. minimized.  
contention between Read data and Write data must be  
avoided externally and on the internal data bus).  
Table 14  
Command Delay Table  
From Command To Command (different bank, Minimum Delay with Concurrent Auto- Unit  
Note  
non-interrupting command)  
Read or Read w/AP  
Write or Write w/AP  
Precharge Support  
WRITE w/AP  
Read w/AP  
(CL -1) + (BL/2) + tWTR  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
BL/2  
1)  
1)  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
1
BL/2  
BL/2 + 2  
1
Precharge or Activate  
1) This rule only applies to a selective Precharge command to another bank, a Precharge-All command is illegal  
2.9  
Refresh  
DDR2 SDRAM requires a refresh of all rows in any rolling 64 ms interval. The necessary refresh can be generated  
in one of two ways: by explicit Auto-Refresh commands or by an internally timed Self-Refresh mode.  
2.9.1  
Auto-Refresh Command  
Auto-Refresh is used during normal operation of the external address bus is required once this cycle has  
DDR2 SDRAM’s. This command is non persistent, so it started.  
must be issued each time a refresh is required. The  
When the refresh cycle has completed, all banks of the  
refresh addressing is generated by the internal refresh  
SDRAM will be in the precharged (idle) state. A delay  
controller. This makes the address bits ”don’t care”  
between the Auto-Refresh Command and the next  
during an Auto-Refresh command. The DDR2 SDRAM  
Activate Command or subsequent Auto-Refresh  
requires Auto-Refresh cycles at an average periodic  
Command must be greater than or equal to the Auto-  
interval of tREFI.MAX  
.
Refresh cycle time (tRFC).  
When CS, RAS and CAS are held LOW and WE HIGH To allow for improved efficiency in scheduling and  
at the rising edge of the clock, the chip enters the Auto- switching between tasks, some flexibility in the  
Refresh mode. All banks of the SDRAM must be absolute refresh interval is provided. A maximum of  
precharged and idle for a minimum of the precharge eight Auto-Refresh commands can be posted to any  
time (tRP) before the Auto-Refresh Command can be given DDR2 SDRAM, meaning that the maximum  
applied. An internal address counter supplies the absolute interval between any Auto-Refresh command  
addresses during the refresh cycle. No control of the and the next Auto-Refresh command is 9 × tREFI  
.
Data Sheet  
58  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
CK, CK  
"high"  
CKE  
> = t  
> = t  
> = t  
RFC  
RP  
RFC  
A U TO  
R E FR E S H  
A U TO  
R E FR E S H  
CMD  
N O P  
N O P  
A N Y  
P recharge  
N O P  
N O P  
N O P  
AR  
Figure 50 Auto Refresh Timing  
2.9.2  
Self-Refresh Command  
The Self-Refresh command can be used to retain data, clock after Self-Refresh entry is registered, however,  
even if the rest of the system is powered down. When the clock must be restarted and stable before the  
in the Self-Refresh mode, the DDR2 SDRAM retains device can exit Self-Refresh operation.  
data without external clocking. The DDR2 SDRAM  
device has a built-in timer to accommodate Self-  
sequence of commands. First, the clock must be stable  
Refresh operation. The Self-Refresh Command is  
defined by having CS, RAS, CAS and CKE held LOW  
with WE HIGH at the rising edge of the clock. The  
device must be in idle state and ODT must be turned off  
the device to allow for any internal refresh in progress.  
before issuing Self Refresh command, by either driving  
ODT pin LOW or using EMRS(1) command. Once the  
command is registered, CKE must be held LOW to  
keep the device in Self-Refresh mode. The DLL is  
automatically disabled upon entering Self Refresh and  
is automatically enabled upon exiting Self Refresh.  
When the DDR2 SDRAM has entered Self-Refresh  
The procedure for exiting Self Refresh requires a  
prior to CKE going back HIGH. Once Self-Refresh Exit  
command is registered, a delay of at least tXSNR must  
be satisfied before a valid command can be issued to  
CKE must remain HIGH for the entire Self-Refresh exit  
period tXSRD for proper operation. Upon exit from Self  
Refresh, the DDR2 SDRAM can be put back into Self  
Refresh mode after tXSNR expires. NOP or deselect  
commands must be registered on each positive clock  
edge during the Self-Refresh exit interval tXSNR. ODT  
should be turned off during tXSNR  
.
mode all of the external control signals, except CKE,  
are “don’t care”. The DRAM initiates a minimum of one  
Auto Refresh command internally within tCKE period  
once it enters Self Refresh mode. The clock is internally  
disabled during Self-Refresh Operation to save power.  
The minimum time that the DDR2 SDRAM must remain  
in Self Refresh mode is tCKE. The user may change the  
external clock frequency or halt the external clock one  
The use of Self Refresh mode introduces the possibility  
that an internally timed refresh event can be missed  
when CKE is raised for exit from Self Refresh mode.  
Upon exit from Self Refresh, the DDR2 SDRAM  
requires a minimum of one extra auto refresh command  
before it is put back into Self Refresh Mode.  
Data Sheet  
59  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T4  
T0  
T5  
Tm  
Tr  
T1  
T2  
T3  
Tn  
CK/CK  
CKE  
tRP  
tis  
tis  
>=tXSRD  
tCKE  
tis  
tAOFD  
>= tXSNR  
ODT  
CMD  
Read  
Command  
Self Refresh  
Entry  
Non-Read  
Command  
NOP  
CK/CK may  
be halted  
CK/CK must  
be stable  
Figure 51 Self Refresh Timing  
Notes  
1. Device must be in the “All banks idle” state before 3. tXSNR has to be satisfied for any command except a  
entering Self Refresh mode. Read or a Read with Auto-Precharge command  
2. tXSRD (200 tCK) has to be satisfied for a Read or a 4. Since CKE is an SSTL input, VREF must be  
Read with Auto-Precharge command. maintained during Self Refresh.  
2.10  
Power-Down  
Power-down is synchronously entered when CKE is For Active Power-down two different power saving  
registered LOW, along with NOP or Deselect modes can be selected within the MRS register,  
command. CKE is not allowed to go LOW while mode address bit A12. When A12 is set to LOW this mode is  
register or extended mode register command time, or referred as “standard active power-down mode” and a  
read or write operation is in progress. CKE is allowed to fast power-down exit timing defined by the tXARD timing  
go LOW while any other operation such as row parameter can be used. When A12 is set to HIGH this  
activation, Precharge, Auto-Precharge or Auto-Refresh mode is referred as a power saving “low power active  
is in progress, but power-down IDD specification will not power-down mode”. This mode takes longer to exit  
be applied until finishing those operations.  
from the power-down mode and the tXARDS timing  
parameter has to be satisfied.  
The DLL should be in a locked state when power-down  
is entered. Otherwise DLL should be reset after exiting Entering power-down deactivates the input and output  
power-down mode for proper read operation. DRAM buffers, excluding CK, CK, ODT and CKE. Also the DLL  
design guarantees it’s DLL in a locked state with any is disabled upon entering Precharge Power-down or  
CKE intensive operations as long as DRAM controller slow exit active power-down, but the DLL is kept  
complies with DRAM specifications.  
enabled during fast exit active power-down. In power-  
down mode, CKE LOW and a stable clock signal must  
be maintained at the inputs of the DDR2 SDRAM, and  
all other input signals are “Don’t Care”. Power-down  
duration is limited by 9 times tREFI of the device.  
If power-down occurs when all banks are precharged,  
this mode is referred to as Precharge Power-down; if  
power-down occurs when there is a row active in any  
bank, this mode is referred to as Active Power-down.  
Data Sheet  
60  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Power-Down Entry  
Active Power-down mode can be entered after an Active Power-down mode entry is prohibited as long as  
Activate command. Precharge Power-down mode can a Write Burst and the internal write recovery is in  
be entered after a Precharge, Precharge-All or internal progress. In case of a write command, active power-  
precharge command. It is also allowed to enter power- down mode entry is allowed when WL + BL/2 + tWTR is  
mode after an Auto-Refresh command or MRS / satisfied.  
EMRS(1) command when tMRD is satisfied.  
In case of a write command with Auto-Precharge,  
Active Power-down mode entry is prohibited as long as Power-down mode entry is allowed after the internal  
a Read Burst is in progress, meaning CKE should be precharge command has been executed, which is WL  
kept HIGH until the burst operation is finished. + BL/2 + WR starting from the write with Auto-  
Therefore Active Power-Down mode entry after a Read Precharge command. In this case the DDR2 SDRAM  
or Read with Auto-Precharge command is allowed after enters the Precharge Power-down mode.  
RL + BL/2 is satisfied.  
Power-Down Exit  
The power-down state is synchronously exited when applied with power-down exit latency, tXP, tXARD or  
CKE is registered HIGH (along with a NOP or Deselect  
tXARDS, after CKE goes HIGH. Power-down exit  
command). A valid, executable command can be latencies are defined in Table 42.  
T0  
T1  
T2  
Tn  
Tn+1  
Tn+2  
CK, CK  
V alid  
C om m and  
CM D  
CKE  
N O P  
N O
N O P  
Activate  
N O P  
P  
tIS  
tIS  
tXARD or  
tXARDS *)  
Act.PD 0  
Active  
Power-Down  
Exit  
Active  
Power-Down  
Entry  
Figure 52 Active Power-Down Mode Entry and Exit after an Activate Command  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
Data Sheet  
61  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
CK, CK  
V alid  
C om m and  
R E A D  
R EA D w /A P  
CM D  
C KE  
N O P  
N
N O P  
N O P  
N O P  
N O P  
O P  
N O P  
N O P  
N O P  
tIS  
RL + BL/2  
tIS  
D Q S,  
D Q S  
CL = 3  
RL = 4  
tXARD or  
tXARDS *)  
AL = 1  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 1  
Figure 53 Active Power-Down Mode Entry and Exit Example after a Read Command:  
RL = 4 (AL = 1, CL =3), BL = 4  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, CK  
V alid  
C om m and  
CM D  
C KE  
N O P  
N O P  
N O P  
N O P  
N O P  
O P  
W RITE  
N
N O P  
N O P  
N O P  
tIS  
WL + BL/2 + tWTR  
tIS  
D Q S,  
D Q S  
WL = RL - 1 = 2  
tWTR  
tXARD or  
tXARDS *)  
D Q  
DIN A0  
DIN A1 DIN A2 DIN A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 2  
Figure 54 Active Power-Down Mode Entry and Exit Example after a Write Command:  
WL = 2, tWTR = 2, BL = 4  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
Data Sheet  
62  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
CK, CK  
V alid  
C om m and  
W R ITE  
w /A P  
C M D  
CKE  
N O P  
N O P  
N O P  
N O P  
N O P  
O P  
N
N O P  
N O P  
N O P  
WL + BL/2 + WR  
tIS  
tIS  
D Q S,  
D Q S  
WL = RL - 1 = 2  
WR  
tXARD or  
tXARDS *)  
D Q  
DIN A0  
DIN A1 DIN A2 DIN A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 3  
Figure 55 Active Power-Down Mode Entry and Exit Example after a Write Command with AP:  
WL = 2, WR = 3, BL = 4  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12. WR is the programmed value in the MRS mode register.  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
CK, CK  
Valid  
Command  
CMD  
CKE  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
N
NOP  
tIS  
tIS  
tXP  
tRP  
Precharge  
Power-Down  
Entry  
Precharge  
Power-Down  
Exit  
Figure 56 Precharge Power Down Mode Entry and Exit  
Note:"Precharge" may be an external command or an internal precharge following Write with AP.  
Data Sheet  
63  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
Tn  
CK, CK  
tRFC  
Valid  
Command  
Auto  
Refresh  
CM D  
CKE  
tXP  
tis  
CKE can go low one clock after an Auto-Refresh command  
ARPD  
When tRFC expires the DRAM is in Precharge Power-Down Mode  
Figure 57 Auto-Refresh command to Power-Down entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, CK  
MRS or  
EMRS  
CM D  
CKE  
t
MRD  
Enters Precharge Power-Down Mode  
MRS_PD  
Figure 58 MRS, EMRS command to Power-Down entry  
Data Sheet  
64  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.11  
Other Commands  
2.11.1  
No Operation Command  
The No Operation Command (NOP) should be used in registered when CS is LOW with RAS, CAS, and WE  
cases when the SDRAM is in a idle or a wait state. The held HIGH at the rising edge of the clock. A No  
purpose of the No Operation Command is to prevent Operation Command will not terminate a previous  
the SDRAM from registering any unwanted commands operation that is still executing, such as a burst read or  
between operations. A No Operation Command is write cycle.  
2.11.2  
Deselect Command  
The Deselect Command performs the same function as when CS is brought HIGH, the RAS, CAS, and WE  
a No Operation Command. Deselect Command occurs signals become don’t care.  
2.12  
Input Clock Frequency Change  
During operation the DRAM input clock frequency can cycles after tRP and tAOFD have been satisfied the input  
be changed under the following conditions:  
clock frequency can be changed. A stable new clock  
frequency has to be provided, before CKE can be  
changed to a HIGH logic level again. After tXP has been  
satisfied a DLL RESET command via EMRS(1) has to  
be issued. During the following DLL re-lock period of  
200 clock cycles, ODT must remain off. After the DLL-  
re-lock period the DRAM is ready to operate with the  
new clock frequency.  
During Self-Refresh operation  
DRAM is in Precharge Power-down mode and ODT  
is completely turned off.  
In the Precharge Power-down mode the DDR2-  
SDRAM has to be in Precharged Power-down mode  
and idle. ODT must be already turned off and CKE must  
be at a logic LOW state. After a minimum of two clock  
Ty+2  
Tz  
Ty+3  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx+1  
Ty  
Ty+1  
CK, C K  
D LL  
R E SET  
Valid  
C om m and  
C M D  
CKE  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
tRP  
tAOFD  
tXP  
200 clocks  
Minimum 2 clocks  
required before  
changing the frequency  
Frequency Change  
occurs here  
Stable new clock  
before power-down exit  
ODT is off during  
DLL RESET  
Frequ.Ch.  
Figure 59 Input Frequency Change Example during Precharge Power-Down mode  
Data Sheet  
65  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Functional Description  
2.13  
Asynchronous CKE LOW Reset Event  
In a given system, Asynchronous Reset event can occurs, the memory controller must satisfy a time delay  
occur at any time without prior knowledge. In this (tDELAY) before turning off the clocks. Stable clocks must  
situation, memory controller is forced to drop CKE exist at the input of DRAM before CKE is raised HIGH  
asynchronously LOW, immediately interrupting any again. The DRAM must be fully re-initialized as  
valid operation. DRAM requires CKE to be maintained described the initialization sequence (Chapter 2.2.1,  
HIGH for all valid operations as defined in this data step 4 through 13). DRAM is ready for normal operation  
sheet. If CKE asynchronously drops LOW during any after the initialization sequence. See Chapter 7 for  
valid operation, the DRAM is not guaranteed to  
preserve the contents of the memory array. If this event  
tDELAY specification.  
stable clocks  
CK, CK  
tdelay  
CKE  
CKE drops low due to an  
asynchronous reset event  
Clocks can be turned off after  
this point  
Figure 60 Asynchronous Low Reset Event  
Data Sheet  
66  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Truth Tables  
3
Truth Tables  
Command Truth Table  
CKE  
Table 15  
Function  
CS RAS CAS WE BA0 A[12:11] A10 A[9:0] Note1)2)3)  
BA1  
Previous Current  
Cycle  
Cycle  
4)5)  
(Extended) Mode  
Register Set  
H
H
L
L
L
L
BA  
OP Code  
4)  
Auto-Refresh  
H
H
L
H
L
L
L
H
L
L
L
L
L
L
L
L
H
H
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
4)6)  
4)6)7)  
Self-Refresh Entry  
Self-Refresh Exit  
L
L
H
X
H
L
X
H
H
H
H
L
4)5)  
Single Bank Precharge H  
H
H
H
H
H
BA  
X
X
X
L
X
X
4)  
Precharge all Banks  
Bank Activate  
Write  
H
H
H
H
L
L
H
4)5)  
L
H
L
BA  
BA  
BA  
Row Address  
4)5)8)  
4)5)8)  
H
H
Column  
Column  
L
Column  
Column  
Write with Auto-  
Precharge  
L
L
H
4)5)8)  
4)5)8)  
Read  
H
H
H
H
L
L
H
H
L
L
H
H
BA  
BA  
Column  
Column  
L
Column  
Column  
Read with Auto-  
Precharge  
H
4)  
No Operation  
H
H
H
X
X
L
L
H
X
X
H
X
H
H
X
X
H
X
H
H
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
4)  
Device Deselect  
Power Down Entry  
H
H
L
4)9)  
4)9)  
Power Down Exit  
L
H
H
L
X
X
X
X
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
2) “X” means “H or L (but a defined logic level)”.  
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.  
5) Bank addresses (BAx) determine which bank is to be operated upon. For (E)MRS BAx selects an (Extended) Mode  
Register.  
6) VREF must be maintained during Self Refresh operation.  
7) Self Refresh Exit is asynchronous.  
8) Burst reads or writes at BL = 4 cannot be terminated. See Chapter 2.6.6 for details.  
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the  
refresh requirements outlined in Chapter 2.7  
Data Sheet  
67  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
 
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Truth Tables  
Table 16  
Current State1) CKE  
Previous Cycle6) Current Cycle6)  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Command (N)2) 3) Action (N)2)  
Note4)5)  
RAS, CAS, WE, CS  
(N-1)  
(N)  
7)8)11)  
Power-Down  
Self Refresh  
L
L
L
L
H
L
X
Maintain Power-Down  
7)9)10)11)  
8)11)12)  
H
L
DESELECT or NOP Power-Down Exit  
X
Maintain Self Refresh  
9)12)13)14)  
7)9)10)11)15)  
H
L
DESELECT or NOP Self Refresh Exit  
Bank(s)  
Active  
DESELECT or NOP Active Power-Down Entry  
9)10)11)15)  
All Banks Idle  
H
H
L
DESELECT or NOP Precharge Power-Down  
Entry  
7)11)14)16)  
17)  
L
AUTOREFRESH  
Self Refresh Entry  
Any State other H  
than  
H
Refer to the Command Truth Table  
listed above  
1) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
2) Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)  
3) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
See Chapter 2.4.  
4) CKE must be maintained HIGH while the device is in OCD calibration mode.  
5) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by  
the refresh requirements  
8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven  
HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).  
9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid  
input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not  
transition from its valid level during the time period of tIS + 2×tCKE + tIH.  
12) VREF must be maintained during Self Refresh operation.  
13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR  
period. Read commands may be issued only after tXSRD (200 clocks) is satisfied.  
14) Valid commands for Self Refresh Exit are NOP and DESELCT only.  
15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations,  
Precharge or Refresh operations are in progress. See Chapter 2.10 and Chapter 2.9.2 for a detailed list of restrictions.  
16) Self Refresh mode can only be entered from the All Banks Idle state.  
17) Must be a legal command as defined in the Command Truth Table.  
Table 17  
Data Mask (DM) Truth Table  
Name (Function)  
Write Enable  
DM  
L
DQs  
Valid  
X
Note  
1)  
1)  
Write Inhibit  
H
1) Used to mask write data; provided coincident with the corresponding data.  
Data Sheet  
68  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
 
 
 
 
 
 
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Absolute Maximum Ratings  
4
Absolute Maximum Ratings  
Table 18  
Symbol  
VDD  
Absolute Maximum Ratings  
Parameter  
Rating  
Unit  
V
Note  
1)  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
–1.0 to +2.3  
–0.5 to +2.3  
–0.5 to +2.3  
–0.5 to +2.3  
–55 to +100  
1)  
VDDQ  
V
1)  
VDDL  
V
1)  
VIN, VOUT  
TSTG  
V
1)2)  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
Data Sheet  
69  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
5
Electrical Characteristics  
Table 19  
Symbol  
TOPER  
DRAM Component Operating Temperature Range  
Parameter  
Rating  
Unit  
oC  
Note  
1)2)3)4)  
Operating Temperature  
0 to 95  
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.  
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation,  
the DRAM case temperature must be maintained between 0 - 95 oC under all other specification parameters.  
3) Above 85 oC case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs.  
4) Self-Refresh period is hard-coded in the chip and therefore it is imperative that the system ensures the DRAM is below  
85oC case temperature before initiating self-refresh operation.  
5.1  
DC Characteristics  
Table 20  
Symbol  
Recommended DC Operating Conditions (SSTL_18)  
Parameter  
Rating  
Min.  
Unit  
Note  
Typ.  
1.8  
Max.  
1.9  
1)  
VDD  
Supply Voltage  
1.7  
V
V
V
V
V
1)  
VDDDL  
VDDQ  
VREF  
VTT  
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
1)  
1.7  
1.8  
1.9  
2)3)  
4)  
0.49 × VDDQ  
0.5 × VDDQ  
VREF  
0.51 × VDDQ  
V
REF – 0.04  
VREF + 0.04  
1) VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
2) The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is  
expected to be about 0.5 × VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
3) Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)  
.
4) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal  
to VREF, and must track variations in die dc level of VREF  
.
Table 21  
ODT DC Electrical Characteristics  
Parameter / Condition  
Symbol  
Min.  
Nom.  
Max.  
Unit  
Note  
1)  
Termination resistor impedance value for  
EMRS(1)[A6,A2] = [0,1]; 75 Ohm  
Rtt1(eff)  
60  
75  
90  
1)  
1)  
2)  
Termination resistor impedance value for  
EMRS(1)[A6,A2] =[1,0]; 150 Ohm  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
120  
40  
150  
50  
180  
%
Termination resistor impedance value for  
EMRS(1)(A6,A2)=[1,1]; 50 Ohm  
60  
Deviation of VM with respect to VDDQ / 2  
–6.00  
+ 6.00  
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac  
respectively. Rtt(eff) = (VIH(ac) VIL(ac)) /(I(VIHac) I(VILac)).  
)
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load:  
delta VM = ((2 x VM / VDDQ) 1) x 100%  
Data Sheet  
70  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
Table 22  
Symbol  
IIL  
Input and Output Leakage Currents  
Parameter / Condition  
Min.  
–2  
Max.  
+2  
Unit  
µA  
Note  
1)  
Input Leakage Current; any input 0 V < VIN < VDD  
Output Leakage Current; 0 V < VOUT < VDDQ  
2)  
IOL  
–5  
+5  
µA  
1) all other pins not under test = 0 V  
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off  
5.2  
DC & AC Characteristics  
DDR2 SDRAM pin timing are specified for either single relative to the rising or falling edges of DQS crossing at  
ended or differential mode depending on the setting of REF. In differential mode, these timing relationships  
V
the EMRS(1) “Enable DQS” mode bit; timing are measured relative to the crosspoint of DQS and its  
advantages of differential mode are realized in system complement, DQS. This distinction in timing methods is  
design. The method by which the DDR2 SDRAM pin verified by design and characterization but not subject  
timing are measured is mode dependent. In single to production test. In single ended mode, the DQS (and  
ended mode, timing relationships are measured RDQS) signals are internally disabled and don’t care.  
Table 23  
Symbol  
VIH(dc)  
DC & AC Logic Input Levels  
Parameter  
Min.  
Max.  
Unit  
V
DC input logic high  
DC input low  
V
REF + 0.125  
V
V
DDQ + 0.3  
REF – 0.125  
VIL(dc)  
–0.3  
V
VIH(ac)  
AC input logic high  
AC input low  
V
REF + 0.250  
V
VIL(ac)  
V
REF – 0.250  
V
Table 24  
Symbol  
VREF  
Single-ended AC Input Test Conditions  
Condition  
Value  
Unit  
V
Note  
1)  
Input reference voltage  
0.5 x VDDQ  
1.0  
1)  
VSWING.MAX  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum Slew Rate  
V
2)3)  
1.0  
V / ns  
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the  
range from VREF to VIL(ac).MAX for falling edges as shown in Figure 61  
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to  
V
IL(ac) on the negative transitions.  
Data Sheet  
71  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
Start of Falling Edge Input Timing  
Start of Rising Edge Input Timing  
V
V
V
DDQ  
.MIN  
IH (ac)  
IH (dc) .MIN  
REF  
V
SWING.MAX  
V
V
V
.MAX  
IL (dc)  
IL (ac) .MAX  
SS  
V
delta TF  
V
delta TR  
- V  
V
V
REF  
IL (ac).MAX  
IH(ac).MIN - REF  
Falling Slew =  
Rising Slew =  
delta TR  
delta TF  
Figure 61 Single-ended AC Input Test Conditions Diagram  
Table 25  
Symbol  
VIN(dc)  
Differential DC and AC Input and Output Logic Levels  
Parameter  
Min.  
Max.  
Unit  
V
Note  
1)  
DC input signal voltage  
DC differential input voltage  
AC differential input voltage  
–0.3  
V
V
V
DDQ + 0.3  
2)  
3)  
4)  
VID(dc)  
0.25  
DDQ + 0.6  
DDQ + 0.6  
VID(ac  
0.5  
)
VIX(ac)  
AC differential cross point input  
voltage  
0.5 × VDDQ – 0.175  
0.5 × VDDQ + 0.175  
V
5)  
VOX(ac)  
AC differential cross point output  
voltage  
0.5 × VDDQ – 0.125  
0.5 × VDDQ + 0.125  
V
1) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.  
2) VID(dc) specifies the input differential voltage VTRVCP required for switching. The minimum value is equal to VIH(dc) VIL(dc)  
3) VID(ac) specifies the input differential voltage VTR VCP required for switching. The minimum value is equal to VIH(ac) VIL(ac)  
.
.
4) The value of VIX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VIX(ac) is expected to track variations in  
DDQ. VIX(ac) indicates the voltage at which differential input signals must cross.  
V
5) The value of VOX(ac) is expected to equal 0.5 × VDDQ of the transmitting device and VOX(ac) is expected to track variations in  
V
DDQ. VOX(ac) indicates the voltage at which differential input signals must cross.  
VDDQ  
VSSQ  
VTR  
Crossing Point  
VID  
VIX or VOX  
VCP  
SSTL18_3  
Figure 62 Differential DC and AC Input and Output Logic Levels Diagram  
Data Sheet  
72  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
5.3  
Output Buffer Characteristics  
Table 26  
Symbol  
IOH  
SSTL_18 Output DC Current Drive  
Parameter  
SSTL_18  
–13.4  
Unit  
mA  
mA  
Note  
1)2)  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
2)3)  
IOL  
13.4  
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUTVDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and  
DDQ 280 mV.  
V
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability  
to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual  
current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient  
current for measurement.  
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.  
Table 27  
Symbol  
VOH  
SSTL_18 Output AC Test Conditions  
Parameter  
SSTL_18  
Unit  
V
Note  
1)  
Minimum Required Output Pull-up  
Maximum Required Output Pull-down  
Output Timing Measurement Reference Level  
VTT + 0.603  
VTT – 0.603  
0.5 × VDDQ  
1)  
VOL  
V
VOTR  
V
1) SSTL_18 test load for VOH and VOL is different from the referenced load described in Chapter 8.1. The SSTL_18 test load  
has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that  
± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With an  
additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput  
device (13.4 mA × 45 Ohm = 603 mV).  
Table 28  
OCD Default Characteristics  
Description  
Symbol  
Min.  
12.6  
0
Nominal  
Max.  
23.4  
4
Unit  
Note  
1)2)  
Output Impedance  
18  
Ohms  
Ohms  
Ohms  
1)2)3)  
4)  
Pull-up / Pull down mismatch  
Output Impedance step size  
for OCD calibration  
0
1.5  
1)5)6)7)8)  
SOUT  
Output Slew Rate  
1.5  
5.0  
V / ns  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV;  
(VOUTVDDQ) / I must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance  
measurement OcHondition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than  
23.4 Ohms for values of VOUT between 0 V and 280 mV.  
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.  
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process  
parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved  
if the OCD impedance is 18 ± 0.75 Ohms under nominal conditions.  
5) Slew Rates according to Chapter 8.2.1 VIL(ac) to VIH(ac) with the load specified in Figure 67.  
6) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as  
measured from AC to AC. This is verified by design and characterization but not subject to production test.  
7) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included  
in tDQSQ and tQHS specification.  
8) DRAM output Slew Rate specification applies to 400 and 533 MT/s speed bins.  
Data Sheet  
73  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
 
 
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
5.4  
Default Output V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined show the driver characteristics graphically and the  
for full strength default operation as selected by the tables show the same data suitable for input into  
EMRS(1) bits A[9:7] =’111’. Figure 63 and Figure 64 simulation tools.  
Table 29  
Full Strength Default Pull-up Driver Characteristics  
Pull-up Driver Current [mA]  
Voltage (V)  
Min.1)  
Nominal Default low2) Nominal Default high2) Max.3)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
–8.5  
–11.1  
–16.0  
–20.3  
–24.0  
–27.2  
–29.8  
–31.9  
–33.4  
–34.6  
–35.5  
–36.2  
–36.8  
–37.2  
–37.7  
–38.0  
–38.4  
–38.6  
–11.8  
–17.0  
–22.2  
–27.5  
–32.4  
–36.9  
–40.8  
–44.5  
–47.7  
–50.4  
–52.5  
–54.2  
–55.9  
–57.1  
–58.4  
–59.6  
–60.8  
–15.9  
–23.8  
–31.8  
–39.7  
–47.7  
–55.0  
–62.3  
–69.4  
–75.3  
–80.5  
–84.6  
–87.7  
–90.8  
–92.9  
–94.9  
–97.0  
–99.1  
–101.1  
–12.1  
–14.7  
–16.4  
–17.8  
–18.6  
–19.0  
–19.3  
–19.7  
–19.9  
–20.0  
–20.1  
–20.2  
–20.3  
–20.4  
–20.6  
1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow–slow process  
2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process  
3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast–fast process  
Data Sheet  
74  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
0
-20  
-40  
Minimum  
Nominal Default Low  
Nominal Default High  
Maximum  
-60  
-80  
-100  
-120  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
1,4  
1,6  
1,8  
2
VDDQ to VOUT (V)  
Figure 63 Full Strength Default Pull-up Driver Diagram  
Table 30  
Full Strength Default Pull–down Driver Characteristics  
Pull-down Driver Current [mA]  
Voltage (V)  
Min.1)  
Nominal Default low2) Nominal Default high2) Max.3)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
8.5  
11.3  
16.5  
21.2  
25.0  
28.3  
30.9  
33.0  
34.5  
35.5  
36.1  
36.6  
36.9  
37.1  
37.4  
37.6  
37.7  
37.9  
11.8  
16.8  
22.1  
27.6  
32.4  
36.9  
40.9  
44.6  
47.7  
50.4  
52.6  
54.2  
55.9  
57.1  
58.4  
59.6  
60.9  
15.9  
23.8  
31.8  
39.7  
47.7  
55.0  
62.3  
69.4  
75.3  
80.5  
84.6  
87.7  
90.8  
92.9  
94.9  
97.0  
99.1  
101.1  
12.1  
14.7  
16.4  
17.8  
18.6  
19.0  
19.3  
19.7  
19.9  
20.0  
20.1  
20.2  
20.3  
20.4  
20.6  
1) The driver characteristics evaluation conditions are Minimum 95 oC (TCASE), VDDQ = 1.7 V, slow-slow process,  
2) The driver characteristics evaluation conditions are Nominal Default 25 oC (TCASE), VDDQ = 1.8 V, typical process,  
3) The driver characteristics evaluation conditions are Maximum 0 oC (TCASE). VDDQ = 1.9 V, fast-fast process  
Data Sheet  
75  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
T
120  
100  
80  
60  
40  
20  
0
Minimum  
Nominal Default Low  
Nominal Default High  
Maximum  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
VOUT to VSSQ (V)  
Figure 64 Full Strength Default Pull–down Driver Diagram  
5.4.1  
Calibrated Output Driver V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined looking at one DQ only. If the calibration procedure is  
for full strength calibrated operation as selected by the used, it is possible to cause the device to operate  
procedure outlined in the Off-Chip Driver (OCD) outside the bounds of the default device characteristics  
Impedance Adjustment. The Table 31 and Table 32 tables and figure. In such a situation, the timing  
show the data in tabular format suitable for input into parameters in the specification cannot be guaranteed.  
simulation tools. The nominal points represent a device It is solely up to the system application to ensure that  
at exactly 18 ohms. The nominal low and nominal high the device is calibrated between the minimum and  
values represent the range that can be achieved with a maximum default values at all times. If this can’t be  
maximum 1.5 ohms step size with no calibration error guaranteed by the system calibration procedure, re-  
at the exact nominal conditions only (i.e. perfect calibration policy and uncertainty with DQ to DQ  
calibration procedure, 1.5 ohm maximum step size variation, it is recommended that only the default  
guaranteed by specification). Real system calibration values to be used. The nominal maximum and  
error needs to be added to these values. It must be minimum values represent the change in impedance  
understood that these V-I curves are represented here from nominal LOW and HIGH as a result of voltage and  
or in supplier IBIS models need to be adjusted to a temperature change from the nominal condition to the  
wider range as a result of any system calibration error. maximum and minimum conditions. If calibrated at an  
Since this is a system specific phenomena, it cannot be extreme condition, the amount of variation could be as  
quantified here. The values in the calibrated tables much as from the nominal minimum to the nominal  
represent just the DRAM portion of uncertainty while maximum or vice versa.  
Data Sheet  
76  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
Table 31  
Full Strength Calibrated Pull-down Driver Characteristics  
Voltage (V)  
Calibrated Pull-down Driver Current [mA]  
Nominal Minimum1) Nominal Low2) Nominal3)  
Nominal High2) Nominal  
(17.25 Ohms)  
(21 Ohms)  
(18.75 Ohms)  
(18 ohms)  
Maximum4)  
(15 Ohms)  
0.2  
0.3  
0.4  
9.5  
10.7  
16.0  
21.0  
11.5  
16.6  
21.6  
11.8  
17.4  
23.0  
13.3  
20.0  
27.0  
14.3  
18.7  
1) The driver characteristics evaluation conditions are Nominal Minimum 95 oC (TCASE). VDDQ = 1.7 V, any process  
o
2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 C (TCASE), VDDQ = 1.8V, any  
process  
3) The driver characteristics evaluation conditions are Nominal 25 oC (TCASE), VDDQ = 1.8 V, typical process  
4) The driver characteristics evaluation conditions are Nominal Maximum 0 oC (TCASE), VDDQ = 1.9 V, any process  
Table 32  
Full Strength Calibrated Pull-up Driver Characteristics  
Calibrated Pull-up Driver Current [mA]  
Voltage (V)  
Nominal  
Nominal Low2)  
(18.75 Ohms)  
Nominal  
Nominal High2) Nominal  
(17.25 Ohms)  
Minimum1)  
(21 Ohms)  
(18 ohms)3)  
Maximum4)  
(15 Ohms)  
0.2  
0.3  
0.4  
–9.5  
–10.7  
–16.0  
–21.0  
–11.4  
–16.5  
–21.2  
–11.8  
–17.4  
–23.0  
–13.3  
–20.0  
–27.0  
–14.3  
–18.3  
1) The driver characteristics evaluation conditions are Nominal Minimum 95 oC (TCASE). VDDQ = 1.7 V, any process  
o
2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 C (TCASE), VDDQ = 1.8V, any  
process  
3) The driver characteristics evaluation conditions are Nominal 25 oC (TCASE), VDDQ = 1.8 V, typical process  
4) The driver characteristics evaluation conditions are Nominal Maximum 0 oC (TCASE), VDDQ = 1.9 V, any process  
5.5  
Input / Output Capacitance  
Table 33  
Symbol  
CCK  
Input / Output Capacitance  
Parameter  
Min.  
1.0  
Max.  
2.0  
Unit  
pF  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
CDCK  
CI  
0.25  
2.0  
pF  
1.0  
pF  
CDI  
0.25  
4.0  
pF  
CIO  
Input/output capacitance,  
2.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
0.5  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
Data Sheet  
77  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
5.6  
Power & Ground Clamp V-I Characteristics  
Power and Ground clamps are provided on address The V-I characteristics for pins with clamps is shown in  
(A[12:0], BA[1:0]), RAS, CAS, CS, WE, and ODT pins. Table 34.  
Table 34  
Power & Ground Clamp V-I Characteristics  
Voltage across clamp (V)  
Minimum Power Clamp  
Current (mA)  
Minimum Ground Clamp Current (mA)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
Data Sheet  
78  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
5.7  
Overshoot and Undershoot Specification  
Table 35  
AC Overshoot / Undershoot Specification for Address and Control Pins  
Parameter  
DDR2–400  
0.9  
DDR2–533  
Unit  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDD  
Maximum undershoot area below VSS  
0.9  
0.9  
0.9  
V
0.75  
0.56  
0.56  
V.ns  
V.ns  
0.75  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 65 AC Overshoot / Undershoot Diagram for Address and Control Pins  
Table 36  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins  
Parameter  
DDR2–400 DDR2–533  
Unit  
V
Maximum peak amplitude allowed for overshoot area  
Maximum peak amplitude allowed for undershoot area  
Maximum overshoot area above VDDQ  
Maximum undershoot area below VSSQ  
0.9  
0.9  
0.9  
0.9  
V
0.38  
0.38  
0.28  
0.28  
V.ns  
V.ns  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 66 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins  
Data Sheet  
79  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
IDD Specifications and Conditions  
6
IDD Specifications and Conditions  
Table 37  
IDD Measurement Conditions  
Parameter  
Symbol Note  
1)2)3)4)5)6)  
Operating Current - One bank Active - Precharge  
CK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid  
IDD0  
t
commands. Address and control inputs are switching; Databus inputs are switching.  
1)2)3)4)5)6)  
Operating Current - One bank Active - Read - Precharge  
IDD1  
I
OUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0,  
CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control  
inputs are switching; Databus inputs are switching.  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Precharge Power-Down Current  
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data  
bus inputs are floating.  
IDD2P  
Precharge Standby Current  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are  
switching, Data bus inputs are switching.  
IDD2N  
Precharge Quiet Standby Current  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are  
stable, Data bus inputs are floating.  
IDD2Q  
IDD3P(0)  
IDD3P(1)  
IDD3N  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data  
bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data  
bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);  
Active Standby Current  
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH  
between valid commands. Address inputs are switching; Data Bus inputs are switching;  
Operating Current  
IDD4R  
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD)  
;
t
CK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA.  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Operating Current  
IDD4W  
IDD5B  
IDD5D  
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD)  
;
t
CK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching;  
Burst Refresh Current  
t
CK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH  
between valid commands, Other control and address inputs are switching, Data bus inputs  
are switching.  
Distributed Refresh Current  
t
CK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH  
between valid commands, Other control and address inputs are switching, Data bus inputs  
are switching.  
Data Sheet  
80  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
IDD Specifications and Conditions  
Table 37  
IDD Measurement Conditions  
Parameter  
Symbol Note  
1)2)3)4)5)6)  
Self-Refresh Current  
IDD6  
CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are  
floating, Data bus inputs are floating.  
1)2)3)4)5)6)7)  
All Bank Interleave Read Current  
IDD7  
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL=CL(IDD), AL = tRCD(IDD) -1 × tCK(IDD)  
;
tCK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address bus inputs are stable during deselects; Data bus is switching.  
2. Timing pattern:  
– DDR2-400: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D  
– DDR2-533: A0 RA0 D A1 RA1 A2 RA2 A3 RA3 D D D D D  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
2) IDD specifications are tested after the device is properly initialized.  
3) IDD parameter are specified with ODT disabled.  
4) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.  
5) Definitions for IDD  
low is defined as VIN VIL(ac).MAX  
high is defined as VIN VIH(ac).MIN  
:
;
;
stable is defined as inputs are stable at a HIGH or LOW level;  
floating is defined as inputs are VREF = VDDQ / 2;  
switching is defined as: Inputs are changing between high and low every other clock (once per two clocks) for  
address and control signals, and inputs changing between high and low every other clock (once per clock)  
for DQ signals not including mask or strobes.  
6) Timing parameter minimum and maximum values for IDD current measurements are defined in Table 38.  
7) A = Activate, RA = Read with Auto-Precharge, D=DESELECT  
Table 38  
IDD Specification  
Product Type Speed Code  
–3.7  
–5  
Unit  
Notes  
Speed Grade  
Symbol  
IDD0  
DDR2–533  
DDR2–400  
Max.  
55  
60  
35  
4
Max.  
50  
55  
28  
4
mA  
mA  
mA  
mA  
mA  
IDD1  
IDD2N  
IDD2P  
1)  
IDD2Q  
25  
20  
1)  
IDD3N  
IDD3P  
35  
16  
4
30  
13  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1)2)  
1)3)  
IDD4R  
IDD4W  
70  
80  
85  
100  
85  
6
60  
70  
70  
90  
80  
6
×4/×8  
×16  
×4/×8  
×16  
1)  
IDD5B  
IDD5D  
1)  
Data Sheet  
81  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
IDD Specifications and Conditions  
Table 38  
IDD Specification  
Product Type Speed Code  
–3.7  
–5  
Unit  
Notes  
Speed Grade  
Symbol  
IDD6  
DDR2–533  
DDR2–400  
Max.  
Max.  
1)4)  
4
4
mA  
IDD7  
135  
150  
125  
140  
mA  
mA  
×4/×8  
×16  
1) IDD6: 0 TCASE 85 oC  
2) MRS(12)=0  
3) MRS(12)=1  
4) standard products  
Data Sheet  
82  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
IDD Specifications and Conditions  
6.1  
IDD Test Conditions  
For testing the IDD parameters, the following timing parameters are used:  
Table 39  
IDD Measurement Test Condition  
Parameter  
Symbol  
-3.7  
-5  
Unit  
Note  
DDR2–533 4–4–4 DDR2–400 3–3–3  
CAS Latency  
CL(IDD)  
tCK(IDD)  
tRCD(IDD)  
4
3
tCK  
ns  
ns  
ns  
Clock Cycle Time  
3.75  
15  
60  
5
Active to Read or Write delay  
15  
55  
Active to Active / Auto-Refresh command tRC(IDD)  
period  
1)  
2)  
Active bank A to Active bank B command tRRD(IDD)  
delay  
7.5  
10  
7.5  
10  
ns  
ns  
ns  
ns  
ns  
ns  
Active to Precharge Command  
tRAS.MIN(IDD) 45  
40  
tRAS.MAX(IDD) 70000  
70000  
15  
Precharge Command Period  
tRP.MIN  
15  
75  
Auto-Refresh to Active / Auto-Refresh  
command period  
tRFC(IDD)  
75  
1) ×4 & ×8 (1 kB page size)  
2) ×16 (2 kB page size); not on 256M component  
6.2  
On Die Termination (ODT) Current  
The ODT function adds additional current consumption current consumption for any terminated input pin  
to the DDR2 SDRAM when enabled by the EMRS(1). depends on whether the input pin is in tri-state or  
Depending on address bits A6 & A2 in the EMRS(1) a driving “0” or “1”, as long a ODT is enabled during a  
“weak” or “strong” termination can be selected. The given period of time.. See Table 40  
.
Table 40  
ODT current per terminated input pin  
ODT Current  
EMRS(1) State  
A6 = 0, A2 = 1  
A6 = 1, A2 = 0  
A6 = 1, A2 = 1  
A6 = 0, A2 = 1  
A6 = 1, A2 = 0  
A6 = 1, A2 = 0  
Min. Typ.  
Max. Unit  
Enabled ODT current per DQ  
added IDDQ current for ODT enabled;  
ODT is HIGH; Data Bus inputs are floating  
IODTO  
5
6
7.5  
mA/DQ  
mA/DQ  
2.5  
7.5  
10  
5
3
3.75  
9
11.25 mA/DQ  
Active ODT current per DQ  
IODTT  
12  
6
15  
mA/DQ  
mA/DQ  
mA/DQ  
added IDDQ current for ODT enabled;  
ODT is HIGH; worst case of Data Bus inputs are  
stable or switching.  
7.5  
22.5  
15  
18  
Note:For power consumption calculations the ODT duty cycle has to be taken into account  
Data Sheet  
83  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
7
Electrical Characteristics  
Table 41  
Speed Grade Definition Speed Bins  
Speed Grade  
DDR2–533C  
–3.7  
DDR2–400B  
–5  
Unit  
Note  
IFX Sort Name  
CAS-RCD-RP latencies  
Parameter  
4–4–4  
3–3–3  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Symbol  
tCK  
Min.  
5
Max.  
Min.  
5
Max.  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
8
8
@ CL = 4  
@ CL = 5  
tCK  
3.75  
3.75  
45  
8
5
8
tCK  
8
5
8
RAS-CAS-Delay  
Row Precharge Time  
Row Active Time  
Row Cycle Time  
tRAS  
tRC  
tRCD  
tRP  
70000  
40  
55  
15  
15  
70000  
60  
15  
15  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the  
“Reference Load for Timing Measurements” according to Chapter 8.1 only.  
2) The CK CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS,  
RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals  
other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.  
5) tRAS(max) is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is  
equal to 9 x tREFI  
.
Table 42  
Timing Parameter by Speed Grade - DDR2-400 & DDR2-533  
Parameter  
Symbol  
–3.7  
–5  
Unit Note  
1)2)3)4)5)6)  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
Min.  
Max.  
Min.  
Max.  
DQ output access time from CK / tAC  
–500  
+500  
–600  
+600  
ps  
CK  
CAS A to CAS B command  
period  
tCCD  
2
2
tCK  
CK, CK high-level width  
tCH  
0.45  
3
0.55  
0.45  
3
0.55  
tCK  
tCK  
CKE minimum high and low  
pulse width  
tCKE  
CK, CK low-level width  
tCL  
0.45  
0.55  
0.45  
0.55  
tCK  
tCK  
7)  
8)  
Auto-Precharge write recovery + tDAL  
WR + tRP  
WR + tRP  
precharge time  
Minimum time clocks remain ON tDELAY  
after CKE asynchronously drops  
LOW  
tIS + tCK  
tIH  
+
––  
tIS + tCK  
tIH  
+
ns  
9)  
9)  
DQ and DM input hold time  
(differential data strobe)  
tDH(base) 225  
tDH1(base) –25  
––  
275  
25  
––  
ps  
ps  
DQ and DM input hold time  
(single ended data strobe)  
Data Sheet  
84  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
Table 42  
Timing Parameter by Speed Grade - DDR2-400 & DDR2-533  
Parameter  
Symbol  
–3.7  
–5  
Unit Note  
1)2)3)4)5)6)  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
Min.  
Max.  
Min.  
Max.  
DQ and DM input pulse width  
(each input)  
tDIPW  
0.35  
0.35  
tCK  
ps  
tCK  
ps  
DQS output access time from CK tDQSCK  
/ CK  
–450  
0.35  
+450  
–500  
0.35  
+500  
DQS input low (high) pulse width tDQSL,H  
(write cycle)  
10)  
DQS-DQ skew (for DQS &  
associated DQ signals)  
tDQSQ  
tDQSS  
tDS(base) 100  
DS1(base) –25  
300  
350  
Write command to 1st DQS  
latching transition  
WL – 0.25 WL + 0.25 WL – 0.25 WL + 0.25 tCK  
9)  
9)  
DQ and DM input setup time  
(differential data strobe)  
150  
25  
ps  
ps  
tCK  
tCK  
DQ and DM input setup time  
(single ended data strobe)  
t
DQS falling edge hold time from tDSH  
CK (write cycle)  
0.2  
0.2  
0.2  
0.2  
DQS falling edge to CK setup  
time (write cycle)  
tDSS  
tFAW  
11)12)  
13)12)  
14)  
Four Activate Window period  
37.5  
50  
37.5  
50  
ns  
ns  
Clock half period  
tHP  
tHZ  
MIN. (tCL, tCH)  
tAC.MAX  
MIN. (tCL, tCH)  
15)  
Data-out high-impedance time  
from CK / CK  
tAC.MAX  
ps  
ps  
tCK  
9)  
Address and control input hold  
time  
tIH(base) 375  
475  
0.6  
Address and control input pulse tIPW  
0.6  
width  
(each input)  
9)  
Address and control input setup tIS(base) 250  
time  
350  
ps  
ps  
ps  
tCK  
ns  
15)  
15)  
DQ low-impedance time from CK tLZ(DQ)  
2 × tAC.MIN tAC.MAX  
2 × tAC.MIN tAC.MAX  
/ CK  
DQS low-impedance from CK / tLZ(DQS)  
tAC.MIN  
tAC.MAX  
tAC.MIN  
tAC.MAX  
CK  
Mode register set command  
cycle time  
tMRD  
tOIT  
2
2
OCD drive mode output delay  
0
12  
0
12  
Data output hold time from DQS tQH  
t
HP tQHS  
t
HPQ tQHS  
Data hold skew factor  
tQHS  
75  
400  
7.8  
3.9  
75  
450  
7.8  
3.9  
ps  
µs  
µs  
ns  
16)17)  
16)18)  
19)  
Average periodic refresh Interval tREFI  
Auto-Refresh to Active/Auto-  
Refresh command period  
tRFC  
Data Sheet  
85  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
Table 42  
Timing Parameter by Speed Grade - DDR2-400 & DDR2-533  
Parameter  
Symbol  
–3.7  
–5  
Unit Note  
1)2)3)4)5)6)  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
Min.  
0.9  
Max.  
1.1  
0.60  
Min.  
0.9  
Max.  
1.1  
0.60  
15)  
Read preamble  
Read postamble  
tRPRE  
tRPST  
tCK  
tCK  
ns  
ns  
ns  
15)  
0.40  
7.5  
0.40  
7.5  
11)20)  
13)20)  
Active bank A to Active bank B tRRD  
command period  
10  
10  
Internal Read to Precharge  
command delay  
tRTP  
7.5  
7.5  
Write preamble  
Write postamble  
tWPRE  
tWPST  
tWR  
0.25  
0.40  
15  
0.25  
0.40  
15  
tCK  
tCK  
ns  
21)  
0.60  
0.60  
Write recovery time for write  
without Auto-Precharge  
Write recovery time for write with WR  
Auto-Precharge  
t
WR/tCK  
t
WR/tCK  
tCK  
ns  
22)  
23)  
Internal Write to Read command tWTR  
delay  
7.5  
2
10  
2
Exit power down to any valid  
command  
tXARD  
tCK  
(other than NOP or Deselect)  
23)  
Exit active power-down mode to tXARDS  
Read command (slow exit, lower  
power)  
6 – AL  
2
6 – AL  
2
tCK  
Exit precharge power-down to  
any valid command (other than  
NOP or Deselect)  
tXP  
tCK  
Exit Self-Refresh to non-Read  
command  
tXSNR  
tXSRD  
t
RFC +10  
t
RFC +10  
ns  
Exit Self-Refresh to Read  
command  
200  
200  
tCK  
1) VDDQ = 1.8V ± 0.1V; VDD = 1.8V ± 0.1 V. See notes 3)4)5)6)  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be  
powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1  
= 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only.  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross.  
The DQS / DQS, RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3 of this data  
sheet.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements.  
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock  
frequency change during power-down, a specific procedure is required as describes in Chapter 2.12.  
Data Sheet  
86  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Electrical Characteristics  
9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8  
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle.  
11) ×4 & ×8 (1k page size)  
12) 8 bank device Sequential Activation Restriction. No more than 4 banks may be activated in a rolling tFAW window.  
13) ×16 (2k page size), not on 256 Mbit component  
14) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e.  
this value can be greater than the minimum specification limits for tCL and tCH).  
15) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is  
no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows  
as valid data transitions.These parameters are verified by design and characterization, but not subject to production test.  
16) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85 °C and 95 °C.  
17) 0 TCASE 85 °C  
18) 85 °C < TCASE 95 °C  
19) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
20) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5  
21) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter,  
but system performance (bus turnaround) degrades accordingly.  
22) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.  
23) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard  
active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down  
mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
Table 43  
ODT AC Electrical Characteristics and Operating Conditions  
Symbol Parameter / Condition  
Min.  
2
Max.  
Unit  
tCK  
Note  
tAOND  
tAON  
ODT turn-on delay  
2
1)  
ODT turn-on  
tAC.MIN  
t
AC.MAX + 1 ns  
ns  
tAONPD  
tAOFD  
tAOF  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
t
AC.MIN + 2 ns 2 tCK + tAC.MAX + 1 ns ns  
2.5  
2.5  
AC.MAX + 0.6 ns  
tCK  
2)  
ODT turn-off  
tAC.MIN  
t
ns  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns  
ODT to Power Down Mode Entry Latency 3  
ODT Power Down Exit Latency  
tCK  
tCK  
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time  
max is when the ODT resistance is fully on. Both are measure from tAOND  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in  
high impedance. Both are measured from tAOFD  
.
.
Note:For product nomenclature see Chapter 10 of this data sheet  
Data Sheet  
87  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
8
AC Timing Measurement Conditions  
8.1  
Reference Load for Timing Measurements  
Figure 67 represents the timing reference load used in transmission line terminated at the tester electronics.  
defining the relevant timing parameters of the device. It This reference load is also used for output Slew Rate  
is not intended to either a precise representation of the characterization. The output timing reference voltage  
typical system environment nor a depiction of the actual level for single ended signals is the crosspoint with VTT.  
load presented by a production tester. System  
The output timing reference voltage level for differential  
designers should use IBIS or other simulation tools to  
signals is the crosspoint of the true (e.g. DQS) and the  
correlate the timing reference load to a system  
complement (e.g. DQS) signal.  
environment. Manufacturers correlate to their  
production test conditions, generally  
a
coaxial  
VDDQ  
DQ  
DQS  
DQS  
RDQS  
RDQS  
CK, CK  
DUT  
V
TT = VDDQ / 2  
25 Ohm  
Timing Reference Points  
Figure 67 Reference Load for Timing Measurements  
8.2  
Slew Rate Measurement Conditions  
Output Slew Rate  
8.2.1  
For DQ and single ended DQS signals output Slew DQS – DQS = + 500 mV. Output Slew Rate is defined  
Rate for falling and rising edges is measured between with the reference load according to Figure 67 and  
V
TT – 250 mV and VTT + 250 mV.  
verified by design and characterization, but not subject  
to production test.  
For differential signals (DQS / DQS) output Slew Rate  
is measured between DQS - DQS = –500 mV and  
8.2.2  
Input Slew Rate - Differential signals  
Input Slew Rate for differential signals (CK / CK, DQS / from CK – CK = +250 mV to CK – CK = –500mV for  
DQS, RDQS / RDQS) for rising edges are measured falling edges.  
from CK - CK = –250 mV to CK – CK = +500 mV and  
Data Sheet  
88  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
8.3  
Input and Data Setup and Hold Time  
Definition for Input Setup (tIS) and Hold Time (tIH)  
8.3.1  
Address and control input setup time (tIS) is referenced (tIH) is referenced from the input signal crossing at the  
from the input signal crossing at the VIH(ac) level for a VIL(dc) level for a rising signal and VIH(dc) for a falling  
rising signal and VIL(ac) for a falling signal applied to the signal applied to the device under test.  
device under test. Address and control input hold time  
.
CK  
CK  
t
t
t
t
IS  
IH  
IS IH  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
Figure 68 Input Setup and Hold Time  
8.3.2  
Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes  
Data input setup time (tDS) with differential data strobe differential data strobe enabled MR[bit10]=0, is  
enabled MR[bit10]=0, is referenced from the input referenced from the input signal crossing at the VIL(dc)  
signal crossing at the VIH(ac) level to the differential data level to the differential data strobe crosspoint for a  
strobe crosspoint for a rising signal, and from the input rising signal and VIH(dc) to the differential data strobe  
signal crossing at the VIL(ac) level to the differential data crosspoint for a falling signal applied to the device  
strobe crosspoint for a falling signal applied to the under test.  
device under test.  
DQS/DQS signals must be monotonic between  
DQS/DQS signals must be monotonic between  
V
IL(dc).MAX and VIH(dc.MIN  
.
V
IL(dc).MAX and VIH(dc).MIN. Data input hold time (tDH) with  
DQS  
DQS  
t
t
t
t
DS DH  
DS DH  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
Figure 69 Data Setup and Hold Time (Differential Data Strobes)  
Data Sheet  
89  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
8.3.3  
Definition for Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes  
Data input setup time (tDS1) with single-ended data input signal crossing at the VIH(dc) level to the single-  
strobe enabled MR[bit10]=1, is referenced from the ended data strobe crossing VIH/L(ac) at the end of its  
input signal crossing at the VIH(ac) level to the single- transition for a rising signal and from the input signal  
ended data strobe crossing VIH/L(dc) at the start of its crossing at the VIL(dc) level to the single-ended data  
transition for a rising signal, and from the input signal strobe crossing VIH/L(ac) at the end of its transition for a  
crossing at the VIL(ac) level to the single-ended data falling signal applied to the device under test.  
strobe crossing VIH/L(dc) at the start of its transition for a  
falling signal applied to the device under test.  
The DQS signal must be monotonic between VIL(dc.MAX  
and VIH(dc).MIN  
.
Data input hold time (tDH1) with single-ended data  
strobe enabled MR[bit10]=1, is referenced from the  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
DQS  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
t
t
DS  
t
DS  
t
DH  
DH  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
DQ  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
Figure 70 Data Setup and Hold Time (Single Ended Data Strobes)  
Data Sheet  
90  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
8.3.4  
Slew Rate Definition for Input and Data Setup and Hold Times  
Setup (tIS & tDS) nominal Slew Rate for a rising signal is level is used for derating value.(see Figure 72) Hold  
defined as the Slew Rate between the last crossing of (tIH & tDH) nominal Slew Rate for a rising signal is  
V
REF(dc) and the first crossing of VIH(ac).MIN. Setup (tIS & defined as the Slew Rate between the last crossing of  
tDS) nominal Slew Rate for a falling signal is defined as VIL(dc).MAX and the first crossing of VREF(dc). Hold (tIH  
&
the Slew Rate between the last crossing of VREF(dc) and tDH) nominal Slew Rate for a falling signal is defined as  
the first crossing of VIL(ac).MAX. If the actual signal is the Slew Rate between the last crossing of VIH(dc).MIN  
always earlier than the nominal Slew Rate line between and the first crossing of VREF(dc). If the actual signal is  
shaded ‘VREF(dc) to ac region’, use nominal Slew Rate always later than the nominal Slew Rate line between  
for derating value (see Figure 71). If the actual signal shaded ‘dc to VREF region’, use nominal Slew Rate for  
is later than the nominal Slew Rate line anywhere derating value (see Figure 71). If the actual signal is  
between shaded ‘VREF(dc) to ac region’, the Slew Rate of earlier than the actual signal from the dc level to VREF  
a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 72)  
.
CK, CK for tIS and tIH  
DQS, DQS for tDS and tDH  
tIS  
tDS  
tIH  
tDH  
t
IH  
t
DS  
IS  
t
t
DH  
V
V
DDQ  
min  
IH(ac)  
VREF to ac  
region  
V
min  
IH(dc)  
dc to VREF  
region  
V
REF  
dc to VREF  
region  
V
IL(dc)max  
VREF to ac  
region  
V
IL(ac)max  
V
SS  
Delta TFS  
Delta TRH Delta TRS  
Delta TFH  
VREF(dc) - VIL(ac)max  
Delta TFS  
falling signal  
rising signal  
Setup Slew Rate =  
Setup Slew Rate =  
VIH(ac)min - VREF(dc)  
Delta TRS  
VREF(dc) - VIL(dc)max  
Delta TRH  
rising signal  
falling signal  
Hold Slew Rate  
Hold Slew Rate  
=
=
VIH(dc)min - VREF(dc)  
Delta TFH  
Figure 71 Slew Rate Definition Nominal  
Data Sheet  
91  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
CK, CK for tIS and tIH  
DQS, DQS for tDS and tDH  
t
t
t
t
IH  
IS  
IS IH  
t
t
t
t
DH  
DS  
DS DH  
V
V
V
DDQ  
min  
min  
IH(ac)  
IH(dc)  
VREF to ac  
region  
dc to Vref  
region  
V
REF  
dc to Vref  
region  
V
V
max  
max  
IL(dc)  
IL(ac)  
VREF to ac  
region  
V
SS  
Delta TFH  
Delta TFS  
Delta TRH Delta TRS  
tangent line  
nominal line  
tangent line [VREF(dc) - VIL(ac)max]  
Delta TFS  
falling  
signal  
Setup Slew Rate =  
Setup Slew Rate =  
tangent line [VIH(ac)min - VREF(dc)]  
Delta TRS  
rising  
signal  
tangent line [VREF(dc) - VIL(dc)max]  
Delta TRH  
rising  
signal  
Hold Slew Rate  
Hold Slew Rate  
=
=
tangent line [VIH(dc)min - VREF(dc)]  
Delta TFH  
falling  
signal  
Figure 72 Slew Rate Definition Tangent  
Data Sheet  
92  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
8.3.5  
Setup (tIS) and Hold (tIH) Time Derating Tables  
1. For all input signals the total input setup time and  
input hold time required is calculated by adding the  
data sheet value to the derating value respectively.  
Example: tIS(total setup tine) = tIS(base) + tIS  
2. For slow Slew Rate the total setup time might be  
negative (i.e. a valid input signal will not have  
reached VIH(ac) / VIL(ac) at the time of the rising clock)  
a valid input signal is still required to complete the  
transition and reach VIH(ac) / VIL(ac). For Slew Rates  
in between the values listed in the next tables, the  
derating values may be obtained by linear  
interpolation. These values are not subject to  
production test. They are verified only by design  
and characterization.  
Table 44  
Input Setup (tIS) and Hold (tIH) Time Derating Values  
Command / Address  
Slew Rate (V/ns)  
Unit  
Note  
CK, CK Differential Slew Rate  
2.0 V/ns  
tIS  
1.5 V/ns  
tIS  
1.0 V/ns  
tIS  
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIH  
+124  
+119  
+113  
+105  
+75  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
+51  
0
+30  
+60  
–11  
–14  
+19  
+16  
+49  
+46  
–25  
–31  
+5  
–1  
+35  
+29  
–43  
–54  
–13  
–24  
+17  
+6  
–67  
–83  
–37  
–53  
–7  
–23  
–110  
–175  
–285  
–350  
–525  
–800  
–1450  
–125  
–188  
–292  
–375  
–500  
–708  
–1125  
–80  
–95  
–50  
–65  
–145  
–255  
–320  
–495  
–770  
–1420  
–158  
–262  
–345  
–470  
–678  
–1095  
–115  
–225  
–290  
–465  
–740  
–1390  
–128  
–232  
–315  
–440  
–648  
–1065  
1) For all input signals tIS(total) = tIS(base) + tIS and tIH(total) = tIH(base) + tIH  
Data Sheet  
93  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
 
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
AC Timing Measurement Conditions  
Table 45  
Data Setup (tDS) and Hold Time (tDH) Derating Values for Differential DQS/DQS1)2)  
DQS, DQS Differential Slew Rate  
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS  
tDH tDS  
tDH tDS  
tDH tDS tDH tDS tDH tDS tDH tDS  
tDH tDS  
tDH tDS  
tDH  
2.0 +125 +45 +125 +45 +125 +45 —  
–11  
1.5 +83 +21 +83 +21 +83 +21 +95 +33 —  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
0
0
0
0
+12 +12 +24 +24 —  
–11 –14 –11 –14 +1 –2 +13 +10 +25 +22 —  
–25 –31 –13 –19 –1 –7 +11 +5 +23 +17  
–31 –42 –19 –30 –7 –18 +5  
–6  
+17 +6  
–43 –49 –31 –47 –19 –35 –7  
–23 +5  
–74 –89 –62 –77 –50 –65 –38 –53  
–127 –140 –115 –128 –103 –116  
1) All units in ps.  
2) For all input signals tDS(total) = tDS(base) + tDS and tDH(total) = tDH(base) + tDH  
Table 46  
DQS Single-ended Slew Rate  
2.0 V/ns 1.5 V/ns 1.0 V/ns  
Data Setup (tDS) and Hold Time (tDH) Derating Values for Single Ended DQS1)2)3)  
0.9 V/ns 0.8 V/ns 0.7 V/ns 0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
tD1  
tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1  
2.0 +125 +45 +125 +45 +125 +45 -  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5 +83  
1.0 0  
0.9 -  
0.8 -  
0.7 -  
0.6 -  
0.5 -  
0.4 -  
+21 +83 +21 +83 +21 +95 +33 -  
-
0
-
-
-
-
-
-
0
0
0
0
+12 +12 +24 +24 -  
-
-11  
-14 -11  
-14 +1 -2  
+13 +10 +25 +22 -  
-
-
-
-
-
-
-
-
-
-
-
-25  
-31 -13 -19 -1  
-7  
+11 +5 +23 +17  
-18 +5 -6  
-43 -49 -31 -47 -19 -35 -7  
-
-
-
-
-
-
-
-
-
-31 -42 -19 -30 -7  
+17 +6  
-
-
-
-
-
-
-
-23 +5  
-11  
-
-
-
-
-74 -89 -62 -77 -50 -65 -38 -53  
-127 -140 -115 -128 -103 -116  
-
-
1) All units in ps.  
2) For all input signals tDS1(total) = tDS1(base) + tDS1 and tDH1(total) = tDH1(base) + tDH1  
3) For slow Slew Rate the total setup time might be negative (i.e. a valid input signal will not have reached VIH(ac) / VIL(ac) at  
the time of the rising DQS) a valid input signal is still required to complete the transition and reach VIH(ac) / VIL(ac). For Slew  
Rates in between the values listed in the table, the derating values may be obtained by linear interpolation. These values  
are not subject to production test. They are verified only by design and characterization.  
Data Sheet  
94  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Package Dimensions  
9
Package Dimensions  
10.5  
11 x 0.8 = 8.8  
0.8  
0.18 MAX.  
0.2  
2)  
B
2)  
1)  
5)  
4) 3)  
A
0.1  
C
0.1  
C
60x  
ø0.15  
ø0.08  
±0.05  
ø0.46  
M
M
SEATING PLANE  
C
A B  
C
1) Dummy pads without ball  
2) Middle of packages edges  
3) Package orientation mark A1  
4) Bad unit marking (BUM)  
5) Die sort fiducial  
Figure 73 Package Pinout PG-TFBGA-60 (top view)  
Data Sheet  
95  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
Package Dimensions  
12.5  
14 x 0.8 = 11.2  
0.8  
0.18 MAX.  
0.2  
2)  
B
2)  
1) 5)  
4)  
3)  
A
0.1  
C
0.1  
C
84x  
ø0.15  
ø0.08  
±0.05  
ø0.46  
M
A B  
SEATING PLANE  
C
C
M
1) Dummy pads without ball  
2) Middle of packages edges  
3) Package orientation mark A1  
4) Bad unit marking (BUM)  
5) Die sort fiducial  
Figure 74 Package Outline PG-TFBGA-84 (top view)  
Data Sheet  
96  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF–[3.7/5]  
256-Mbit Double-Data-Rate-Two SDRAM  
DDR2 Component Nomenclature  
10  
DDR2 Component Nomenclature  
Table 47  
Nomenclature Fields and Examples  
Field Number  
Example for  
1
2
3
4
5
6
7
8
9
10  
11  
DDR2 DRAM  
HYB  
18  
T
256  
16  
0
A
C
–5  
Table 48  
Field  
1
DDR2 DRAM Nomenclature  
Description  
Values  
Coding  
INFINEON  
HYB  
Constant  
Component Prefix  
2
3
4
Interface Voltage [V]  
DRAM Technology  
18  
T
SSTL1.8  
DDR2  
256 Mbit  
512 Mbit  
1 Gbit  
2 Gbit  
×4  
Component Density [Mbit]  
256  
512  
1G  
2G  
40  
80  
16  
0 .. 9  
A
5+6  
Number of I/Os  
×8  
×16  
7
8
Product Variations  
Die Revision  
look up table  
First  
B
Second  
9
Package,  
C
FBGA,  
Lead-Free Status  
lead-containing  
F
FBGA, lead-free  
DDR2-533  
10  
11  
Speed Grade  
–3.7  
–5  
DDR2-400  
N/A for Components  
Data Sheet  
97  
Rev. 1.1, 2004-09  
09112003-LZPT-I17F  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYB18T256400AF-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-3S

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

DDR DRAM, 64MX4, 0.6ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AFL-3

256 Mbi t DDR2 SDRAM
INFINEON
QIMONDA

HYB18T256400AFL-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AFL-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AFL-3S

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AFL-5

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400BF

256-Mbit Double-Data-Rate-Two SDRAM
QIMONDA

HYB18T256400BF-2.5

256-Mbit Double-Data-Rate-Two SDRAM
QIMONDA