CPV364M4F [INFINEON]

IGBT SIP MODULE; IGBT模块SIP
CPV364M4F
型号: CPV364M4F
厂家: Infineon    Infineon
描述:

IGBT SIP MODULE
IGBT模块SIP

双极性晶体管
文件: 总10页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -5040  
CPV364M4F  
PRELIMINARY  
IGBT SIP MODULE  
Fast IGBT  
1
Features  
• Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for medium operating (1 to 10 kHz)  
See Fig. 1 for Current vs. Frequency curve  
D 1  
D 3  
D 5  
D 6  
Q 1  
Q 2  
Q 3  
Q 4  
Q 5  
Q 6  
3
6
9
4
1 5  
1 0  
1 6  
D 2  
D 4  
1 2  
1 8  
Product Summary  
Output Current in a Typical 5.0 kHz Motor Drive  
7
1 3  
1 9  
18 ARMS per phase (4.6 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 115% (See Figure 1)  
Description  
The IGBT technology is the key to International Rectifier's advanced line of  
IMS (Insulated Metal Substrate) Power Modules. These modules are more  
efficient than comparable bipolar transistor modules, while at the same time  
having the simpler gate-drive requirements of the familiar power MOSFET.  
This superior technology has now been coupled to a state of the art materials  
system that maximizes power throughput with low thermal resistance. This  
package is highly suited to motor drive applications and where space is at a  
premium.  
IMS-2  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
600  
V
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current   
27  
IC @ TC = 100°C  
15  
80  
ICM  
A
ILM  
Clamped Inductive Load Current ‚  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
80  
IF @ TC = 100°C  
9.3  
IFM  
80  
VGE  
±20  
V
VRMS  
W
VISOL  
Isolation Voltage, any terminal to case, 1 minute  
Maximum Power Dissipation, each IGBT  
2500  
63  
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
25  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55-0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
2.0  
3.0  
Units  
°C/W  
g (oz)  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink, flat, greased surface  
θJC (DIODE)  
θCS (MODULE)  
–––  
0.10  
–––  
–––  
Wt  
Weight of module  
20 (0.7)  
12/30/96  
CPV364M4F  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
Collector-to-Emitter Breakdown Voltageƒ 600 ––– –––  
V
VGE = 0V, IC = 250µA  
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage ––– 0.69 ––– V/°C VGE = 0V, IC = 1.0mA  
VCE(on)  
Collector-to-Emitter Saturation Voltage ––– 1.35 1.5  
––– 1.60 –––  
IC = 15A  
VGE = 15V  
V
IC = 27A  
See Fig. 2, 5  
––– 1.35 –––  
IC = 15A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
Gate Threshold Voltage  
3.0 ––– 6.0  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage ––– -12 ––– mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance „  
9.2  
12 –––  
S
VCE = 100V, IC = 27A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
––– ––– 250  
––– ––– 2500  
––– 1.3 1.7  
––– 1.2 1.6  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
V
IC = 15A  
See Fig. 13  
IC = 15A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
––– ––– ±100 nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
––– 100 160  
IC = 15A  
Qge  
Qgc  
td(on)  
tr  
––– 15  
––– 37  
23  
56  
nC  
ns  
VCC = 400V  
VGE = 15V  
TJ = 25°C  
See Fig. 8  
––– 42 –––  
––– 18 –––  
––– 220 330  
––– 160 240  
––– 0.46 –––  
––– 0.86 –––  
––– 1.32 1.8  
––– 39 –––  
––– 19 –––  
––– 410 –––  
––– 290 –––  
––– 2.5 –––  
––– 2200 –––  
––– 140 –––  
––– 29 –––  
IC = 15A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
VGE = 15V, RG = 10Ω  
Energy losses include "tail" and  
diode reverse recovery.  
Eon  
Eoff  
Ets  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
mJ See Fig. 9, 10, 11, 18  
td(on)  
tr  
td(off)  
tf  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
ns  
IC = 15A, VCC = 480V  
VGE = 15V, RG = 10Ω  
Energy losses include "tail" and  
Turn-Off Delay Time  
Fall Time  
Ets  
Total Switching Loss  
Input Capacitance  
mJ diode reverse recovery.  
VGE = 0V  
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
pF  
ns  
A
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
––– 42  
––– 74 120  
Diode Peak Reverse Recovery Charge ––– 4.0 6.0  
––– 6.5 10  
60  
TJ = 25°C See Fig.  
TJ = 125°C 14  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
IF = 15A  
VR = 200V  
Irr  
Qrr  
Diode Reverse Recovery Charge  
––– 80 180  
––– 220 600  
nC  
di/dt =200Aµs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
––– 188 ––– A/µs TJ = 25°C See Fig.  
––– 160 ––– TJ = 125°C 17  
CPV364M4F  
25  
20  
15  
10  
5
7.34  
T c = 9 0°C  
T j = 1 25 °C  
P ow er F ac tor = 0 .8  
M o d ula tio n D ep th = 1 .15  
V cc = 50 % o f R a ted Vo lta g e  
5.87  
4.40  
2.94  
1.47  
0
0.00  
0.1  
1
10  
100  
f, Frequency (KHz)  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
1 0 0  
1 0  
1
1 0 0  
TJ = 25°C  
T
J
= 150°C  
TJ = 150°C  
1 0  
TJ = 25°C  
V G E = 15V  
20µs PULSE WIDTH  
V C C = 50V  
5µs PULSE WIDTH  
A
A
1
1
1 0  
5
6
7
8
9
1 0  
V
, Collector-to-Emitter Voltage (V)  
V
, Gate-to-Emitter Voltage (V)  
C E  
GE  
Fig. 2 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
CPV364M4F  
30  
25  
20  
15  
10  
5
3.0  
2.0  
1.0  
V
= 15V  
GE  
I = 30A  
C
80 us PULSE WIDTH  
I = 15A  
C
I = 7.5A  
C
0
25  
50  
T
75  
100  
125  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
, Case Temperature ( C)  
°
T , Junction Temperature ( C)  
C
J
Fig. 4 - Maximum Collector Current vs. Case  
Fig. 5 - Typical Collector-to-Emitter Voltage  
Temperature  
vs.JunctionTemperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
P
D M  
0 .1  
t
1
0.02  
0.01  
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
N otes:  
1 . D uty factor D =  
t
/ t  
1
2
2. Peak T = P  
x Z  
+ T  
C
D M  
J
thJC  
1
0.01  
0.0000 1  
0.000 1  
0 .00 1  
0.01  
0.1  
10  
t
, Re c ta ng ula r Pu ls e D uratio n (se c)  
1
Fig. 6-MaximumEffectiveTransientThermalImpedance,Junction-to-Case  
CPV364M4F  
4 0 0 0  
3 0 0 0  
2 0 0 0  
1 0 0 0  
0
20  
16  
12  
8
VGE = 0V  
f = 1 MHz  
V
I
= 400V  
= 15A  
CC  
C
Cies = Cge + Cgc + Cce  
Cres = Cce  
SHORTED  
Coes = Cce + Cgc  
C
ies  
C
C
oes  
res  
4
A
0
1
1 0  
1 0 0  
0
20  
40  
60  
80  
100  
120  
Q , Total Gate Charge (nC)  
VC E , Collector-to-Emitter Voltage (V)  
G
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
1.45  
1.40  
1.35  
1.30  
10  
V
V
= 480V  
R
= 10O
= 15V  
= 480V  
CC  
GE  
G
= 15V  
V
GE  
I = 30A  
C
°
T
I
= 25  
C
V
CC  
J
C
= 15A  
I = 15A  
C
I = 7.5A  
C
1
0.1  
0
10  
20  
30  
40  
50  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
R
G
, Gate Resistance (Ohm)  
T , Junction Temperature ( C )  
J
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Junction Temperature  
CPV364M4F  
6.0  
1000  
100  
10  
V
T
= 20V  
= 125 C  
R
T
= 10O
G
J
GE  
J
o
°
= 150 C  
V
= 480V  
= 15V  
CC  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
GE  
SAFE OPERATING AREA  
10  
1
1
100  
1000  
0
5
10  
15  
20  
25  
30  
V
, Collector-to-Emitter Voltage (V)  
I
, Collector-to-emitter Current (A)  
CE  
C
Fig. 11 - Typical Switching Losses vs.  
Fig. 12 - Turn-Off SOA  
Collector-to-Emitter Current  
1 0 0  
1 0  
T
T
T
= 150°C  
= 125°C  
J
J
J
=
25°C  
1
0.8  
1.2  
1.6  
2.0  
2.4  
F orwa rd Volta ge Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
CPV364M4F  
1 0 0  
1 0 0  
1 0  
1
VR = 200 V  
TJ = 125 °C  
TJ = 25°C  
VR = 200 V  
TJ = 125 °C  
TJ = 25°C  
8 0  
I
= 30A  
F
I
= 30A  
F
I
= 15A  
F
6 0  
I
= 15A  
F
I
= 5.0A  
F
4 0  
I
= 5.0A  
F
2 0  
1 0 0  
1 0 0 0  
1 0 0  
1 0 0 0  
d i /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
8 0 0  
1 0 0 0  
VR = 200V  
TJ = 1 25 °C  
TJ = 2 5°C  
VR = 2 00V  
TJ = 1 25°C  
TJ = 2 5°C  
6 0 0  
I
= 30A  
F
I
= 5.0A  
F
4 0 0  
2 0 0  
0
I
= 15A  
I
= 15A  
F
F
I
= 30A  
F
I
= 5.0A  
F
1 0 0  
1 0 0  
1 0 0  
1 0 0 0  
1 0 0 0  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
CPV364M4F  
90% Vge  
+Vg e  
Same type  
device as  
D.U.T.  
Vce  
90% Ic  
10 % Vce  
Ic  
Ic  
5% Ic  
430µF  
80%  
of Vce  
D.U.T.  
td (off)  
tf  
t1 +5µ S  
Eoff =  
Vce ic d t  
t1  
Fig. 18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
G ATE VO LTAGE D .U .T.  
Qrr =  
Ic  
1 0% +Vg  
+Vg  
tx  
10 % Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AN D C URR ENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
9 0% Ic  
Ic  
DIODE RECOVERY  
W AVEFORM S  
5% Vce  
td(on)  
tr  
t2  
Eon = Vce ie dt  
t1  
t4  
Erec =  
Vd id d t  
t3  
DIOD E REVERSE  
REC OVER Y EN ER GY  
t1  
t2  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
CPV364M4F  
Vg  
GATE SIGN AL  
DEVICE UNDER TEST  
CURR EN T D .U .T.  
VOL TAGE IN D.U.T.  
CURR EN T IN D1  
t0  
t1  
t2  
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit  
480V  
4 X IC @25°C  
D.U.T.  
L
RL=  
10 00V  
V *  
c
0 - 480V  
50V  
60 00µF  
100 V  
Figure 20. Pulsed Collector Current  
Figure 19. Clamped Inductive Load Test  
Test Circuit  
Circuit  
CPV364M4F  
Notes:  
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)  
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 10(figure 19)  
ƒPulse width 80µs; duty factor 0.1%.  
„Pulse width 5.0µs, single shot.  
Case Outline — IMS-2  
62.43 (2.458)  
53.85 (2.120)  
7.87 (.310)  
5.46 (.215)  
3.91 (.154)  
2X  
NOTES:  
1. Tolerance unless otherwise  
specified ± 0.254 (.010).  
2. Controlling D imension: Inch.  
3. Dimensions are shown in  
Millimeter (Inches).  
21.97 (.865)  
4. Term inal numbers are shown  
for reference only.  
1
2
3
4
5
6
7
8
9
10 1 1 1 2 13 14 1 5 1 6 17 18 19  
0.38 (.015)  
3.94 (.155)  
1.27 (.050)  
3.05 ± 0.38  
(.120 ± .015)  
1.27 (.050)  
13X  
4.06 ± 0.51  
(.160 ± .020)  
2.54 (.100)  
6X  
0.76 (.030)  
13X  
0.51 (.020)  
5.08 (.200)  
6X  
6.10 (.240)  
IMS-2 Package Outline (13 Pins)  
D im ens ion s in M illim ete rs and (Inc he s)  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331  
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020  
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897  
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590  
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111  
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086  
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371  
http://www.irf.com/  
Data and specifications subject to change without notice.  
12/96  

相关型号:

CPV364M4K

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

IGBT SIP MODULE
INFINEON

CPV364M4KPBF

CPV364M4KPBF (Short Circuit Rated Ultrafast IGBT)
VISHAY

CPV364M4U

IGBT SIP MODULE
INFINEON

CPV364M4UPBF

IGBT SIP Module (Ultrafast IGBT)
VISHAY

CPV364MF

IGBT SIP MODULE Fast IGBT
INFINEON

CPV364MK

IGBT SIP MODULE Short Circuit Rated UltraFast IGBT
INFINEON

CPV364MM

Short Circuit Rated Fast IGBT
INFINEON

CPV364MU

IGBT SIP MODULE Ultra-Fast IGBT
INFINEON
FERROXCUBE
FERROXCUBE

CPVS-ER9.5-1S-8P-Z

ER cores and acces sories
FERROXCUBE