AUIRLS3036TRR [INFINEON]

Advanced Process Technology; 先进的工艺技术
AUIRLS3036TRR
型号: AUIRLS3036TRR
厂家: Infineon    Infineon
描述:

Advanced Process Technology
先进的工艺技术

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUTOMOTIVE GRADE  
PD - 97718A  
AUIRLS3036  
HEXFET® Power MOSFET  
Features  
D
S
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
60V  
1.9m  
2.4m  
270A  
Advanced Process Technology  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
G
195A  
D
Description  
SpecificallydesignedforAutomotiveapplications,thisHEXFET®  
Power MOSFET utilizes the latest processing techniques to  
achieveextremelylowon-resistancepersiliconarea. Additional  
features of this design are a 175°C junction operating  
temperature, fast switching speed and improved repetitive  
avalanche rating . These features combine to make this design  
an extremely efficient and reliable device for use in Automotive  
S
D
G
D2Pak  
AUIRLS3036  
applications and a wide variety of other applications.  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
Parameter  
Max.  
270  
190  
195  
1100  
380  
2.5  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
A
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
EAS  
IAR  
±16  
290  
Gate-to-Source Voltage  
mJ  
A
Single Pulse Avalanche Energy (Thermally Limited)  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
8.0  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
Operating Junction and  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
11  
RJC  
Junction-to-Case  
RJA  
–––  
Junction-to-Ambient (PCB Mount, steady state)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
12/05/11  
AUIRLS3036  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.061 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
V
/ T  
(BR)DSS   
Breakdown Voltage Temp. Coefficient  
J
–––  
–––  
1.0  
1.9  
2.2  
–––  
2.4  
2.8  
2.5  
VGS = 10V, ID = 165A  
RDS(on)  
Static Drain-to-Source On-Resistance  
m  
V
GS = 4.5V, ID = 140A  
VGS(th)  
Gate Threshold Voltage  
V
S
VDS = VGS, ID = 250μA  
gfs  
Forward Transconductance  
340 ––– –––  
VDS = 10V, ID = 165A  
RG(int)  
IDSS  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
–––  
2.0  
–––  
20  
––– –––  
VDS = 60V, VGS = 0V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 60V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
VGS = 16V  
nA  
VGS = -16V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
91  
31  
51  
40  
66  
140  
–––  
–––  
–––  
–––  
ID = 165A  
VDS = 30V  
VGS = 4.5V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
nC  
Qgd  
Qsync  
ID = 165A, VDS =0V, VGS = 4.5V  
VDD = 39V  
td(on)  
tr  
––– 220 –––  
––– 110 –––  
––– 110 –––  
––– 11210 –––  
––– 1020 –––  
––– 500 –––  
––– 1430 –––  
––– 1880 –––  
ID = 165A  
ns  
td(off)  
Turn-Off Delay Time  
Fall Time  
R = 2.1  
G
VGS = 4.5V  
tf  
Ciss  
Input Capacitance  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
Crss  
ƒ = 1.0MHz  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 48V  
VGS = 0V, VDS = 0V to 48V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– –––  
MOSFET symbol  
270  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
––– –––  
G
ISM  
1100  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 165A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
IF = 165A  
di/dt = 100A/μs  
–––  
–––  
62  
66  
ns  
Qrr  
Reverse Recovery Charge  
––– 310 –––  
––– 360 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
4.4  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Calcuted continuous current based on maximum allowable junction  
temperature Bond wire current limit is 195A. Note that current  
limitation arising from heating of the device leds may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time as  
Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniquea refer to applocation  
note # AN- 994 echniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH  
RG = 25, IAS = 165A, VGS =10V. Part not recommended for use  
above this value .  
„ ISD 165A, di/dt 430A/μs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400μs; duty cycle 2%.  
Š Limited by TJmax, see Fig. 14, 15, 22a, 22b for typical repetitive  
avalanche performance.  
RJC value shown is at time zero.  
11  
2
www.irf.com  
AUIRLS3036  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive  
qualification. IR’s Industrial and Consumer qualification level  
is granted by extension of the higher Automotive level.  
D2Pak  
MSL1  
Moisture Sensitivity Level  
Class M4 (+/- 800V)†††  
Machine Model  
AEC-Q101-002  
Class H3A (+/- 6000V)†††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000V)†††  
AEC-Q101-005  
Charged Device Model  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††† Highest passing voltage.  
www.irf.com  
3
AUIRLS3036  
1000  
100  
10  
1000  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
TOP  
TOP  
100  
10  
BOTTOM  
BOTTOM  
2.7V  
1
2.7V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 165A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
1
2
3
4
5
6
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
5.0  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 165A  
D
V
V
= 48V  
= 30V  
DS  
DS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
rss  
oss  
gd  
4.0  
3.0  
2.0  
1.0  
0.0  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
20  
40  
60  
80  
100  
120  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRLS3036  
10000  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100μsec  
1msec  
T
= 25°C  
J
Limited by  
package  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
V
= 0V  
GS  
Single Pulse  
1
0.1  
0
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
75  
70  
65  
60  
55  
300  
Id = 5mA  
Limited By Package  
250  
200  
150  
100  
50  
0
-60 -40 -20 0 20 40 60 80 100120140160180  
25  
50  
75  
100  
125  
150  
175  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Case Temperature  
3.0  
1200  
I
D
TOP  
27A  
50A  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1000  
800  
600  
400  
200  
0
BOTTOM 165A  
-10  
0
10 20 30  
40 50 60 70  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRLS3036  
1
D = 0.50  
0.20  
0.1  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) i (sec)  
0.10  
0.05  
0.01115 0.000009  
J J  
C  
0.08360 0.000080  
0.18950 0.001295  
0.11519 0.006726  
11  
Ci= iRi  
2 2  
33  
44  
0.02  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 165A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRLS3036  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
14  
12  
10  
8
I = 110A  
F
V
= 51V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
6
4
2
-75 -50 -25  
0
25 50 75 100 125 150175 200  
0
100  
200  
300  
400  
500  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
12  
900  
I = 110A  
I = 165A  
F
F
800  
700  
600  
500  
400  
300  
200  
100  
V
= 51V  
V
= 51V  
R
R
10  
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
600  
I = 165A  
F
V
= 51V  
R
T = 25°C  
J
500  
400  
300  
200  
T = 125°C  
J
0
100  
200  
300  
400  
500  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRLS3036  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRLS3036  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
Part Number  
AULS3036  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
www.irf.com  
9
AUIRLS3036  
D2Pak Tape & Reel Information  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
AUIRLS3036  
Ordering Information  
Base part number Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRLS3036  
D2Pak  
Tube  
Tape and Reel Left  
Tape and Reel Right  
50  
800  
800  
AUIRLS3036  
AUIRLS3036TRL  
AUIRLS3036TRR  
www.irf.com  
11  
AUIRLS3036  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make  
corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or  
services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards  
to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order  
acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing  
and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government  
requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR  
components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all  
associatedwarranties, conditions, limitations, andnotices. Reproductionofthisinformationwithalterationsisanunfairanddeceptivebusinesspractice.  
IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and  
any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any  
such statements.  
IRproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orinotherapplications  
intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,  
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured  
to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR  
products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer’s own risk and that they are  
solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR  
as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use  
any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
12  
www.irf.com  

相关型号:

AUIRLS3114Z

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRLS3114ZTRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRLS3114ZTRR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRLS4030

HEXFETPower MOSFET
INFINEON

AUIRLS4030-7P

HEXFETPower MOSFET
INFINEON

AUIRLS4030-7TRL

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, D2PAK-7
INFINEON

AUIRLS4030-7TRR

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, D2PAK-7
INFINEON

AUIRLS4030TRL

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRLS4030TRR

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRLS8409-7P

Power Field-Effect Transistor,
INFINEON

AUIRLS8409-7TRL

Power Field-Effect Transistor,
INFINEON

AUIRLSL4030

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, ROHS COMPLIANT, PLASTIC, TO-262, 3 PIN
INFINEON