AUIRLS4030-7P [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
AUIRLS4030-7P
型号: AUIRLS4030-7P
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:739K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96395A  
AUTOMOTIVE GRADE  
AUIRFS3107-7P  
HEXFET® Power MOSFET  
Features  
Advanced Process Technology  
D
VDSS  
75V  
UltraLowOn-Resistance  
Enhanced dV/dT and dI/dT capability  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
RDS(on) typ.  
2.1m  
2.6m  
260A  
Ω
Ω
max.  
ID (Silicon Limited)  
ID (Package Limited)  
G
240A  
S
Description  
D
Specifically designed for Automotive applications, this  
HEXFET® Power MOSFET utilizes the latest processing  
techniquestoachieveextremelylowon-resistancepersilicon  
area. Additional features of this design are a 175°C junction  
operating temperature, fast switching speed and improved  
repetitiveavalancherating. Thesefeaturescombinetomake  
this design an extremely efficient and reliable device for use  
in Automotive applications and a wide variety of other  
applications.  
S
S
S
S
S
G
D2Pak 7 Pin  
AUIRFS3107-7P  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the  
specificationsisnotimplied.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability.  
The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient  
temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
260  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
190  
A
240  
1060  
PD @TC = 25°C  
W
370  
Maximum Power Dissipation  
2.5  
Linear Derating Factor  
W/°C  
V
VGS  
EAS  
IAR  
± 20  
320  
Gate-to-Source Voltage  
mJ  
A
Single Pulse Avalanche Energy (Thermally Limited)  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
EAR  
mJ  
Repetitive Avalanche Energy  
13  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
Rθ  
Junction-to-Case  
JC  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
11/1/11  
AUIRFS3107-7P  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.083 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V(BR)DSS  
V
V
/ T  
(BR)DSS Δ  
Δ
J
RDS(on)  
VGS(th)  
gfs  
–––  
2.0  
2.1  
2.6  
4.0  
VGS = 10V, ID = 160A  
VDS = VGS, ID = 250μA  
VDS = 25V, ID = 160A  
m
V
Ω
–––  
Forward Transconductance  
260 ––– –––  
S
Ω
μA  
RG  
IDSS  
–––  
––– –––  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
2.1  
–––  
20  
V
V
DS = 75V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
DS = 75V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
GS = -20V  
V
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
––– 160 240  
Conditions  
Qg  
Total Gate Charge  
ID = 160A  
DS = 38V  
VGS = 10V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
38  
57  
–––  
–––  
V
nC  
ns  
Qgd  
Qsync  
––– 103 –––  
ID = 160A, VDS =0V, VGS = 10V  
VDD = 49V  
td(on)  
–––  
–––  
17  
80  
–––  
–––  
tr  
ID = 160A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
––– 100 –––  
––– 64 –––  
R = 2.7  
Ω
G
VGS = 10V  
Ciss  
Input Capacitance  
––– 9200 –––  
––– 850 –––  
––– 400 –––  
––– 1150 –––  
––– 1500 –––  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 50V  
pF ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
Crss  
Coss eff. (ER)  
Coss eff. (TR)  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 60V  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
––– –––  
MOSFET symbol  
D
S
260  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
A
G
ISM  
––– ––– 1060  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 160A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
IF = 160A  
di/dt = 100A/μs  
–––  
–––  
52  
63  
ns  
nC  
Qrr  
Reverse Recovery Charge  
––– 110 –––  
––– 160 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
3.8  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
temperature. Bond wire current limit is 240A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.026mH  
RG = 25Ω, IAS = 160A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering echniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
.
.
Š RθJC value shown is at time zero.  
„ ISD 160A, di/dt 1420A/μs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
AUIRFS3107-7P  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments:  
This part number(s) passed Automotive  
qualification. IR’s Industrial and Consumer qualification level is  
granted by extension of the higher Automotive level.  
7L-D2PAK  
MSL1  
Moisture Sensitivity Level  
Class M4(+/- 800V )†††  
Machine Model  
(per AEC-Q101-002)  
Class H3A(+/- 6000V )†††  
(per AEC-Q101-001)  
ESD  
Human Body Model  
Class C5(+/- 2000V )†††  
(per AEC-Q101-005)  
Charged Device Model  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††  
††† Highest passing voltage  
www.irf.com  
3
AUIRFS3107-7P  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
100  
4.5V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 160A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
= 25V  
J
1
V
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
V
, Gate-to-Source Voltage (V)  
J
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 160A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
12.0  
C
= C  
V
V
= 60V  
= 38V  
rss  
gd  
DS  
DS  
C
= C + C  
ds gd  
oss  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
oss  
C
rss  
100  
1
10  
100  
1000  
0
25 50 75 100 125 150 175 200 225  
, Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
Q
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFS3107-7P  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100μsec  
T
= 25°C  
10msec  
J
1msec  
DC  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
300  
250  
200  
150  
100  
50  
95  
90  
85  
80  
75  
70  
Id = 5mA  
Limited By Package  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1400  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
28A  
50A  
BOTTOM 160A  
-10  
0
10 20 30 40 50 60 70 80  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
www.irf.com  
5
AUIRFS3107-7P  
1
D = 0.50  
0.1  
0.01  
0.20  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.10  
0.05  
Ri (°C/W) τi (sec)  
0.01083  
0.05878  
0.15777  
0.17478  
0.00001  
τ
τ
J τJ  
τ
Cτ  
0.000086  
0.001565  
0.011192  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.02  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Δ
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
ΔΤ  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 160A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFS3107-7P  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
30  
25  
20  
15  
10  
5
I = 106A  
F
V
= 64V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
30  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
I
= 160A  
= 64V  
I
= 106A  
= 64V  
F
F
V
V
25  
20  
15  
10  
5
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1000  
I
= 160A  
= 64V  
F
900  
800  
700  
600  
500  
400  
300  
200  
V
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFS3107-7P  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFS3107-7P  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak - 7 Pin Part Marking Information  
PartNumber  
AUFS3107-7P  
DateCode  
Y= Year  
WW= Work Week  
A=Automotive,LeadFree  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFS3107-7P  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFS3107-7P  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Tube  
Tape and Reel Left  
Tape and Reel Right  
Complete Part Number  
Quantity  
75  
AUIRFS3107-7P  
D2Pak -7Pin  
AUIRFS3107-7P  
AUIRFS3107-7TRL  
AUIRFS3107-7TRR  
800  
800  
www.irf.com  
11  
AUIRFS3107-7P  
IMPORTANTNOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at  
any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompaniedbyallassociatedwarranties,conditions,limitations,andnotices. Reproductionofthisinformationwithalterations  
isanunfairanddeceptivebusinesspractice. IRisnotresponsibleorliableforsuchaltereddocumentation. Informationof third  
parties may be subject to additional restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservice  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledgeandagreethatanyuseofIRproductsnotcertifiedbyDLAasmilitary-grade,inapplicationsrequiringmilitarygrade  
products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and regulatory  
requirements in connection with such use.  
IRproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificIRproducts  
are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”.  
Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel:(310)252-7105  
12  
www.irf.com  

相关型号:

AUIRLS4030-7TRL

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, D2PAK-7
INFINEON

AUIRLS4030-7TRR

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, D2PAK-7
INFINEON

AUIRLS4030TRL

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRLS4030TRR

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3
INFINEON

AUIRLS8409-7P

Power Field-Effect Transistor,
INFINEON

AUIRLS8409-7TRL

Power Field-Effect Transistor,
INFINEON

AUIRLSL4030

Power Field-Effect Transistor, 180A I(D), 100V, 0.0043ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, ROHS COMPLIANT, PLASTIC, TO-262, 3 PIN
INFINEON

AUIRLU024N

Advanced Planar Technology Low On-Resistance Fully Avalanche Rated
INFINEON

AUIRLU024Z

Power Field-Effect Transistor, 16A I(D), 55V, 0.058ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-251AA, ROHS COMPLIANT, PLASTIC, IPAK-3
INFINEON

AUIRLU2905

Power Field-Effect Transistor, 42A I(D), 55V, 0.03ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, IPAK-3
INFINEON

AUIRLU3110Z

AUTOMOTIVE GRADE
INFINEON

AUIRLU3114Z

Advanced Process Technology
INFINEON