AUIRFB3207 [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
AUIRFB3207
型号: AUIRFB3207
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总11页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96322  
AUTOMOTIVE GRADE  
AUIRFB3207  
HEXFET® Power MOSFET  
Features  
V(BR)DSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
D
S
75V  
l
l
l
l
l
l
l
Advanced Process Technology  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
3.6m  
4.5m  
170A  
G
75A  
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to achieve  
extremely low on-resistance per silicon area. Additional features of  
this design are a 175°C junction operating temperature, fast  
switching speed and improved repetitive avalanche rating . These  
features combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a wide variety  
of other applications.  
S
D
G
TO-220AB  
AUIRFB3207  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings  
only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not  
implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and  
power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise  
specified.  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
170  
120  
A
75  
720  
PD @TC = 25°C  
W
300  
Maximum Power Dissipation  
2.0  
Linear Derating Factor  
W/°C  
V
VGS  
EAS  
IAR  
± 20  
910  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy (Thermally limited)  
mJ  
A
Avalanche Current  
See Fig. 14, 15, 16a, 16b,  
EAR  
Repetitive Avalanche Energy  
Peak Diode Recovery  
mJ  
5.8  
dV/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface , TO-220  
Junction-to-Ambient, TO-220  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
07/21/10  
AUIRFB3207  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
75 ––– –––  
––– 0.069 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
gfs  
V
–––  
2.0  
3.6  
4.5  
4.0  
VGS = 10V, ID = 75A  
VDS = VGS, ID = 250µA  
VDS = 50V, ID = 75A  
f = 1MHz, open drain  
mΩ  
V
–––  
Forward Transconductance  
150 ––– –––  
S
RG  
Gate Input Resistance  
–––  
1.2  
–––  
20  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
VDS = 75V, VGS = 0V  
VDS = 75V, VGS = 0V, TJ = 125°C  
VGS = 20V  
V
µA  
nA  
––– ––– 250  
––– ––– 200  
––– ––– -200  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
GS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
––– 180 260  
Conditions  
Qg  
Total Gate Charge  
ID = 75A  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
–––  
–––  
–––  
48  
68  
29  
–––  
–––  
–––  
VDS = 60V  
nC  
ns  
Qgd  
VGS = 10V  
td(on)  
VDD = 48V  
ID = 75A  
tr  
Rise Time  
––– 120 –––  
td(off)  
Turn-Off Delay Time  
–––  
–––  
68  
74  
–––  
–––  
RG = 2.6Ω  
VGS = 10V  
VGS = 0V  
tf  
Fall Time  
Ciss  
Input Capacitance  
––– 7600 –––  
––– 710 –––  
––– 390 –––  
––– 920 –––  
––– 1010 –––  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz  
pF  
Coss eff. (ER)  
Coss eff. (TR)  
V
GS = 0V, VDS = 0V to 60V , See Fig.11  
GS = 0V, VDS = 0V to 60V , See Fig. 5  
V
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
IS  
––– ––– 170  
A
(Body Diode)  
showing the  
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
––– ––– 720  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
63  
V
TJ = 25°C, IS = 75A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 64V,  
–––  
–––  
–––  
–––  
–––  
42  
49  
65  
92  
2.6  
ns  
IF = 75A  
di/dt = 100A/µs  
74  
Qrr  
Reverse Recovery Charge  
98  
nC  
A
140  
–––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
as Coss while VDS is rising from 0 to 80% VDSS  
.
temperature. Package limitation current is 75A.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.33mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
ˆ Rθ is measured at TJ approximately 90°C.  
„ ISD 75A, di/dt 500A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
AUIRFB3207  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
3L-TO-220  
N/A  
Machine Model  
Class M4(425V)  
(per AEC-Q101-002)  
Class H2(4000V)  
(per AEC-Q101-001)  
Class C5 (1125V)  
(per AEC-Q101-005)  
Yes  
Human Body Model  
ESD  
Charged Device  
Model  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRFB3207  
1000  
TOP  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
TOP  
10V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
100  
BOTTOM  
BOTTOM  
10  
4.5V  
4.5V  
1
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000.0  
100.0  
10.0  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 50V  
DS  
60µs PULSE WIDTH  
1.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
V
= 60V  
= C + C , C SHORTED  
DS  
iss  
gs  
gd ds  
VDS= 38V  
C
= C  
rss  
gd  
16  
12  
8
C
= C + C  
ds  
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFB3207  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
T
= 25°C  
J
1msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
, Source-to-Drain Voltage (V)  
0.1  
0.1  
1
10  
100  
1000  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
100  
90  
200  
150  
100  
50  
Limited By Package  
80  
70  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
4000  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
12A  
16A  
75A  
3000  
2000  
1000  
0
BOTTOM  
25  
50  
75  
100  
125  
150  
175  
20  
30  
V
40  
50  
60  
70  
80  
Starting T , Junction Temperature (°C)  
Drain-to-Source Voltage (V)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
www.irf.com  
5
AUIRFB3207  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
R1  
R1  
R2  
R2  
0.05  
Ri (°C/W) τi (sec)  
0.2151 0.001175  
τ
J τJ  
τ
0.02  
0.01  
τ
Cτ  
1τ1  
Ci= τi/Ri  
τ
2τ2  
0.2350 0.017994  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
1000  
800  
600  
400  
200  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)  
is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFB3207  
16  
14  
12  
10  
8
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
I
= 30A  
6
F
V
= 64V  
R
4
T
T
= 125°C  
= 25°C  
J
J
2
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900 1000  
T
di / dt - (A / µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
16  
14  
12  
10  
8
400  
300  
200  
I
= 45A  
= 64V  
I
= 30A  
= 64V  
6
4
2
F
F
100  
0
V
T
V
T
R
R
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
400  
300  
200  
100  
0
I
= 45A  
= 64V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFB3207  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
AUIRFB3207  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
Part Number  
AUIRFB3207  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFB3207  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRFB3207  
TO-220  
Tube  
50  
AUIRFB3207  
10  
www.irf.com  
AUIRFB3207  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make  
corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any  
product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific  
requirements with regards to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions  
of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty.  
Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by  
government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications  
using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating  
safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by  
all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive  
business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservicevoidsallexpress  
and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or  
liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer  
shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,  
costs, damages, andexpenses, andreasonableattorneyfeesarisingoutof, directlyorindirectly, anyclaimofpersonalinjuryordeathassociated  
with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically  
designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military specifications. Buyers  
acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that  
they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated  
by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree  
that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
11  

相关型号:

AUIRFB4410

Advanced Process Technology
INFINEON

AUIRFB4610

AUTOMOTIVE GRADE
INFINEON

AUIRFB8405

New Ultra Low On-Resistance, Fast Switching
INFINEON

AUIRFB8407

Advanced Process Technology New Ultra Low On-Resistance
INFINEON

AUIRFB8409

AUTOMOTIVE GRADE
INFINEON

AUIRFI3205

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFL014N

Power Field-Effect Transistor, 1.9A I(D), 55V, 0.16ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-261AA, ROHS COMPLIANT PACKAGE-4
INFINEON

AUIRFL024N

Small Signal Field-Effect Transistor, 0.0028A I(D), 55V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-261AA, ROHS COMPLIANT PACKAGE-4
INFINEON

AUIRFL024NTR

Small Signal Field-Effect Transistor, 0.0028A I(D), 55V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-261AA, ROHS COMPLIANT PACKAGE-4
INFINEON

AUIRFN7107

Advanced Process Technology
INFINEON

AUIRFN7107TR

Advanced Process Technology
INFINEON

AUIRFN8401

Advanced Process Technology
INFINEON