IDT72T51546 [IDT]

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits; 2.5V多队列流量控制器件( 32队列) 36位宽配置1,179,648位和2,359,296位
IDT72T51546
型号: IDT72T51546
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
2.5V多队列流量控制器件( 32队列) 36位宽配置1,179,648位和2,359,296位

控制器
文件: 总64页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
2.5V MULTI-QUEUE FLOW-CONTROL DEVICES  
(32 QUEUES) 36 BIT WIDE CONFIGURATION  
1,179,648 bits and 2,359,296 bits  
IDT72T51546  
IDT72T51556  
Direct or polled operation of flag status bus  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
– x36in to x36out  
– x18in to x36out  
– x9in to x36out  
– x36in to x18out  
– x36in to x9out  
FWFT mode of operation on read port  
Packet mode operation  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
Power Down Input provides additional power savings in HSTL  
and eHSTL modes.  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
FEATURES:  
Choose from among the following memory density options:  
IDT72T51546  
IDT72T51556  
Configurable from 1 to 32 Queues  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 256 x 36  
Independent Read and Write access per queue  
User programmable via serial port  
User selectable I/O: 2.5V LVTTL, 1.5V HSTL, 1.8V eHSTL  
Default multi-queue device configurations  
IDT72T51546 : 1,024 x 36 x 32Q  
IDT72T51556 : 2,048 x 36 x 32Q  
100% Bus Utilization, Read and Write on every clock cycle  
200 MHz High speed operation (5ns cycle time)  
3.6ns access time  
Echo Read Enable & Echo Read Clock Outputs  
Individual, Active queue flags (OV, FF, PAE, PAF, PR)  
8 bit parallel flag status on both read and write ports  
Shows PAE and PAF status of 8 Queues  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
RADEN  
ESTR  
Q0  
WADEN  
FSTR  
RDADD  
8
WRADD  
REN  
Q1  
Q2  
8
RCLK  
WEN  
EREN  
WCLK  
ERCLK  
OE  
Q
out  
D
in  
x36  
x36  
DATA IN  
DATA OUT  
OV  
PR  
FF  
PAF  
PAFn  
PAE  
Q31  
PAEn  
PRn  
8
8
5998 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
NOVEMBER 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5998/3  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueuesbetween1and32,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
Echo Read Enable, EREN and Echo Read Clock, ERCLK outputs are  
provided.TheseareoutputsfromthereadportoftheQueuethatarerequired  
forhighspeeddatacommunication,toprovidetightersynchronizationbetween  
thedatabeingtransmittedfromtheQnoutputsandthedatabeingreceivedby  
theinputdevice.Datareadfromthereadportisavailableontheoutputbuswith  
respecttoERENandERCLK,thisisveryusefulwhendataisbeingreadathigh  
speed.  
Themulti-queueflow-controldevicehasthecapabilityofoperatingitsIOin  
either2.5VLVTTL,1.5VHSTLor1.8VeHSTLmode.ThetypeofIOisselected  
viatheIOSELinput.Thecoresupplyvoltage(VCC)tothemulti-queueisalways  
2.5V,howevertheoutputlevelscanbesetindependentlyviaaseparatesupply,  
VDDQ.  
ThedevicesalsoprovideadditionalpowersavingsviaaPowerDownInput.  
This input disables the write port data inputs when no write operations are  
required.  
DESCRIPTION:  
TheIDT72T51546/72T51556multi-queueflow-controldevicesisasingle  
chipwithinwhichanywherebetween1and32discreteFIFOqueuescanbe  
setup.Allqueueswithinthedevicehaveacommondatainputbus,(writeport)  
andacommondataoutputbus,(readport).Datawrittenintothewriteportis  
directed to a respective queue via an internal de-multiplex operation, ad-  
dressedbytheuser.Datareadfromthereadportisaccessedfromarespective  
queueviaaninternalmultiplexoperation,addressedbytheuser.Datawrites  
andreadscanbeperformedathighspeedsupto200MHz,withaccesstimes  
of3.6ns.Datawriteandreadoperationsaretotallyindependentofeachother,  
aqueuemaybeselectedonthewriteportandadifferentqueueontheread  
portorbothportsmayselectthesamequeuesimultaneously.  
The device provides Full flag and Output Valid flag status for the queue  
selected for write and read operations respectively. Also a Programmable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two8bitprogrammableflagbussesareavailable,providingstatusofqueues  
notselectedforwriteorreadoperations.When8orlessqueuesareconfigured  
in the device these flag busses provide an individual flag per queue, when  
morethan8queuesareused,eitheraPolledorDirectmodeofbusoperation  
providestheflagbusseswithallqueuesstatus.  
Bus Matchingis availableonthis device,eitherportcanbe9bits,18bits  
or36bitswideprovidedthatatleastoneportis36bitswide.WhenBusMatching  
is usedthe device ensures the logicaltransferofdata throughputina Little  
Endianmanner.  
Apacketmodeofoperationisalsoprovidedwhenthedeviceisconfigured  
for36bitinputand36bitoutputportsizes.ThePacketmodeprovidestheuser  
withaflagoutputindicatingwhenatleastone(ormore)packetsofdatawithin  
a queue is available for reading. The Packet Ready provides the user with  
ameansbywhichtomarkthestartandendofpacketsofdatabeingpassed  
throughthequeues.Themulti-queuedevicethenprovidestheuserwithan  
internallygeneratedpacketreadystatusperqueue.  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehasa  
fullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
= TEOP  
= TSOP  
D
35  
34  
in  
x9, x18, x36  
- D  
D
2
D
0
35  
WCLK  
WEN  
TMS  
TDI  
INPUT  
DEMUX  
JTAG  
Logic  
TDO  
TCK  
8
WRADD  
WADEN  
Write Control  
Logic  
TRST  
Write Pointers  
PR  
Packet  
Mode Logic  
8
PAF  
PRn/PAEn  
FSTR  
PAFn  
8
General Flag  
Monitor  
FSYNC  
Upto 32  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
SI  
SO  
SCLK  
General Flag  
Monitor  
Serial  
Multi-Queue  
Program-  
ming  
ESTR  
ESYNC  
EXI  
SENI  
SENO  
EXO  
Read Pointers  
FM  
IW  
OW  
BM  
8
Reset  
Logic  
RDADD  
RADEN  
NULL-Q  
Read Control  
Logic  
MAST  
PKT  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
2
Offset  
Q
Q
= REOP  
= RSOP  
DFM  
35  
34  
OUTPUT  
REGISTER  
EREN  
PRS  
MRS  
ERCLK  
5998 drw02  
IOSEL  
Vref  
IO Level Control  
&
Power Down  
OE  
Q
- Q  
0
35  
PD  
Q
x9, x18, x36  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D17  
D20  
D23  
D26  
D29  
D32  
GND  
PD  
D13  
D16  
D12  
D11  
D19  
D22  
D25  
D28  
D31  
D34  
D35  
VREF  
D10  
D9  
Q9  
Q8  
Q7  
Q15  
Q19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID2  
ID1  
ID0  
Q3  
Q2  
Q1  
Q6  
Q5  
Q4  
Q12  
Q11  
Q10  
Q16  
Q24  
Q14  
Q13  
Q17  
Q21  
Q23  
B
C
D
E
F
D18  
D8  
TRST  
IOSEL  
Q0  
Q18  
Q20  
Q22  
D21  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
VDDQ  
VCC  
V
CC  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
D24  
VDDQ  
VCC  
VDDQ  
VCC  
GND  
VCC  
VDDQ  
D27  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q27  
Q30  
Q25  
Q28  
Q26  
Q29  
G
H
J
D30  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
D33  
VCC  
GND  
GND  
VCC  
Q33  
PKT  
GND  
Q32  
Q31  
Q34  
FM  
GND  
GND  
NULL-Q  
GND  
VCC  
VCC  
Q35  
K
L
ADVANCE  
VCC  
VCC  
VCC  
MAST  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SI  
VDDQ  
GND  
VCC  
DFM  
DF  
SO  
VCC  
GND  
VDDQ  
BM  
IW  
OW  
GND  
M
N
P
R
T
SENO  
SENI  
OE  
VDDQ  
RDADD0 RDADD1  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
WRADD1 WRADD0 SCLK  
RDADD2 RDADD3 RDADD4  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
V
DDQ  
VDDQ  
INFORMATION  
WRADD4 WRADD3 WRADD2 WADEN  
FF  
PAF  
PRS  
OV  
RDADD5 RDADD6 RDADD7  
PAF3  
PAF2  
PAF1  
PAF6  
PAF5  
WEN  
PAF7  
PAE  
PAE6  
PAE5  
PAE4  
PAE7  
EREN  
REN  
PAE3  
PAE2  
PAE1  
WRADD6 WRADD5 FSYNC  
ESTR ESYNC  
RADEN  
FSTR  
PR  
ERCLK  
RCLK  
PAF4  
EXO  
EXI  
WRADD7 FXI  
FXO  
MRS  
PAE0  
PAF0  
WCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
5998 drw03  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall32queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto32FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and32Queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
PROGRAMMABLE FLAG BUSSES  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis8bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis8bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 32 queues in the device.  
IntheIDT72T51546/72T51556multi-queueflow-controldevicestheuser  
has theoptionofutilizinganywherebetween1and32queues,thereforethe  
8bitflagstatusbussesaremultiplexedbetweenthe32queues,aflagbuscan  
onlyprovidestatusfor8ofthe32queuesatanymoment,thisisreferredtoas  
aQuadrant,suchthatwhenthebusisprovidingstatusofqueues1through  
8,thisisquadrant1,whenitisqueues9through16,thisisquadrant2andso  
onuptoquadrant4. Ifless than32queues are setupinthe device, there are  
still4quadrants,suchthatinPolled”modeofoperationtheflagbuswillstillcycle  
through4quadrants.Ifforexampleonly22queuesaresetup,quadrants1and  
2 will reflect status of queues 1 through 8 and 9 through 16 respectively.  
Quadrant3willreflectthestatusofqueues17through22ontheleastsignificant  
6bits,themostsignificant2bitsoftheflagbusaredontcareandthe4thquadrant  
outputswillbedontcarealso.  
MEMORYORGANIZATION/ALLOCATION  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
256x36bits.Whentheuserisconfiguringthenumberofqueuesandindividual  
queuesizestheusermustallocatethememorytorespectivequeues,inunits  
ofblocks,thatis,asinglequeuecanbemadeupfrom0tomblocks,wherem  
isthetotalnumberofblocksavailablewithinadevice.Alsothetotalsizeofany  
given queue must be in increments of 256 x36. For the IDT72T51546 and  
IDT72T51556theTotalAvailableMemoryis128and256blocksrespectively  
(a blockbeing256x36). Queues canbe builtfromthese blocks tomake any  
size queue desired and any number of queues desired.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9,x18orx36bitswideprovidedthatatleastone  
of the ports is x36 bits wide, the read and write port widths being set  
independentlyofoneanother.Becausetheportsarecommontoallqueuesthe  
widthofthequeuesisnotindividuallyset,sothattheinputwidthofallqueues  
are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
The flag busses are available in two user selectable modes of operation,  
Polled”orDirect.Whenoperatinginpolledmodeaflagbusprovidesstatus  
ofeachquadrantsequentially,thatis,oneachrisingedgeofaclocktheflagbus  
isupdatedtoshowthestatusofeachquadrantinorder.Therisingedgeofthe  
writeclockwillupdatethealmostfullbusandarisingedgeonthereadclockwill  
updatethealmostemptybus.Themodeofoperationisalwaysthesameforboth  
thealmostfullandalmostemptyflagbusses.Whenoperatingindirectmode,the  
quadrantontheflagbusisselectedbytheuser.Sotheusercanactuallyaddress  
thequadranttobeplacedontheflagstatusbusses,theseflagbussesoperate  
independentlyofoneanother.Addressingofthealmostfullflagbusisdonevia  
thewriteportandaddressingofthealmostemptyflagbusisdoneviatheread  
port.  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as a  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
provides a user programmable almost full flag for all 32 queues and when a  
PACKETREADY  
Themulti-queueflow-controldevicealsooffersaPacketMode”operation.  
PacketModeisuserselectableandrequiresthedevicetobeconfiguredwith  
bothwriteandreadportsas36bitswide.Inpacketmode,userscandefinethe  
lengthofpacketsorframebyusingthetwomostsignificantbitsofthe36-bitword.  
Bit34isusedtomarktheStartofPacket(SOP)andbit35isusedtomarkthe  
EndofPacket(EOP)asshowninTable5).Whenwritingdataintoagivenqueue  
,thefirstwordbeingwrittenis marked,bytheusersettingbit34as theStart  
ofPacket”(SOP)andthelastwordwrittenismarkedastheEndofPacket”(EOP)  
withallwordswrittenbetweentheStartofPacket(SOP)marker(bit34)andthe  
Endofpacket(EOP)packetmarker(bit35)constitutingthe entire packet. A  
packetcanbeanylengththeuserdesires,uptothetotalavailablememoryin  
themulti-queuedevice.ThedevicemonitorstheSOP(bit34)andlooksforthe  
wordthatcontainstheEOP(bit35).Thereadportissuppliedwithanadditional  
5
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
statusflag,PacketReady.ThePacketReady(PR)flaginconjunctionwith memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe  
OutputValid(OV)indicateswhenatleastonepacketisavailabletoread.When depth of a queue. For example, depth expansion of 8 devices provides the  
inpacketmodethealmostemptyflagstatus,providespacketreadyflagstatus possibilityof8queuesof64Kx36deep,eachqueuebeingsetupwithinasingle  
forindividualqueues.  
deviceutilizingallmemoryblocksavailabletoproduceasinglequeue.Thisis  
thedeepestqueuethatcansetupwithinadevice.  
EXPANSION  
Forqueue expansiona maximumnumberof256(8x32)queues maybe  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe setup, each queue being 2K x36 deep, if less queues are setup, then more  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion memory blocks will be available to increase queue depths if desired. When  
or queue expansion. Depth Expansion means expanding the depths of connectingmulti-queuedevicesinexpansionmodeallrespectiveinputpins  
individual queues. Queue expansion means increasing the total number of (data&control)andoutputpins(data&flags),shouldbeconnected”together  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore betweenindividualdevices.  
6
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
BM  
(L14)  
BusMatching  
LVTTL  
INPUT  
ThispinissetupbeforeMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
alongwithIWandOWtosetupthemulti-queueflow-controldevicebuswidth.PleaserefertoTable3  
fordetails.  
D[35:0]  
DataInputBus HSTL-LVTTL These are the 36data inputpins. Data is writtenintothe device via these inputpins onthe risingedge  
Din  
INPUT  
ofWCLKprovidedthatWEN is LOW.Note,thatinPacketmodeD32-D35maybeusedas packet  
markers,pleaseseepacketreadyfunctionaldiscussionformoredetail.Duetobusmatchingnotallinputs  
maybe used, anyunusedinputs shouldbe tiedLOW.  
(See Pin No.  
tablefordetails)  
DF(1)  
(L3)  
DefaultFlag  
DefaultMode  
LVTTL  
INPUT  
Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
(L2)  
LVTTL  
INPUT  
The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ERCLK  
(R10)  
RCLK Echo  
HSTL-LVTTL ReadClockEchooutput,thisoutputgeneratesaclockbasedonthereadclockinput,thisisusedforSource  
OUTPUT SynchronousclockingwherethereceivingdevicesutilizestheERCLKtoclockdataoutputfromtheQueue.  
HSTL-LVTTL ReadEnableEchooutput,canbeusedinconjunctionwiththeERCLKoutputtoloaddataoutputfromthe  
EREN  
(R11)  
REN Echo  
OUTPUT  
Queueintothereceivingdevice.  
ESTR  
(R15)  
PAEn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
andtheRDADDbustoselectaquadrantofqueuestobeplacedontothePAEnbusoutputs.Aquadrant  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
(R16)  
PAEn Bus Sync HSTL-LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT  
duringPolledoperationofthePAEnbus.DuringPolledoperationeachquadrantofqueuestatusflagsis  
loadedontothePAEnbus outputs sequentiallybasedonRCLK. The firstRCLKrisingedge loads  
quadrant1ontoPAEn,thesecondRCLKrisingedgeloadsquadrant2andsoon.ThefifthRCLKrising  
edge will again load quadrant 1. During the RCLK cycle that quadrant 1 of a selected device is placed  
ontothePAEnbus,theESYNCoutputwillbeHIGH.Forallotherquadrantsofthatdevice,theESYNC  
outputwillbeLOW.  
EXI  
(T16)  
PAEnBus  
ExpansionIn  
LVTTL  
INPUT  
The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAEn  
bus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The EXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the EXIinputmustbe tied  
LOWifthePAEnbusisoperatedindirectmode.IfthePAEnbusisoperatedinpolledmodetheEXIinput  
mustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
EXO  
(T15)  
PAEnBus  
ExpansionOut  
LVTTL  
OUTPUT  
EXOis anoutputthatis usedwhenmulti-queuedevices areconnectedinexpansionmodeandPolled  
PAEnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.This  
pinpulses whendevice Nhas placedits final(4th)quadrantontothe PAEnbus withrespecttoRCLK.  
This pulse (token) is then passed on to the next device in the chain N+1’ and on the next RCLK rising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAEnbus.Thiscontinuesthroughthechain  
andEXOofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
(P8)  
Full Flag  
HSTL-LVTTL This pinprovidesthefullflagoutputfortheactiveQueue,thatis,thequeueselectedontheinputport  
OUTPUT  
forwriteoperations,(selectedviaWCLK,WRADDbusandWADEN).OntheWCLKcycleafteraqueue  
selection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueueon  
thenextcycleprovidedFF is HIGH.This flaghas High-Impedancecapability,this is importantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
7
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Name  
I/OTYPE  
Description  
Pin No.  
(1)  
FM  
Flag Mode  
HSTL-LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
(K16)  
INPUT  
FMpinduringMasterResetwilldeterminewhetherthePAFnandPAEnflagbussesoperateineitherPolled  
orDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
(R4)  
PAFn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
andtheWRADDbustoselectaquadrantofqueuestobeplacedontothePAFnbusoutputs.Aquadrant  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
Polledoperations has beenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
(R3)  
PAFn Bus Sync  
LVTTL  
OUTPUT  
FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
duringPolledoperationofthePAFnbus.DuringPolledoperationeachquadrantofqueuestatusflags  
is loadedontothePAFnbus outputs sequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
quadrant1ontoPAFn,thesecondWCLKrisingedgeloadsquadrant2andsoon.ThefifthWCLKrising  
edgewillagainloadquadrant1.DuringtheWCLKcyclethatquadrant1ofaselecteddeviceis placed  
ontothePAFnbus,theFSYNCoutputwillbeHIGH.Forallotherquadrantsofthatdevice,theFSYNC  
outputwillbeLOW.  
FXI  
(T2)  
PAFnBus  
ExpansionIn  
LVTTL  
INPUT  
The FXI input is used when multi-queue devices are connected in expansion mode and Polled PAFn  
bus operation has been selected . FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe tied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
(T3)  
PAFnBus  
ExpansionOut  
LVTTL  
OUTPUT  
FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulseswhendeviceNhasplaceditsfinal(4th)quadrantontothePAFnbuswithrespecttoWCLK.  
This pulse (token)is thenpassedontothe nextdevice inthe chainN+1andonthe nextWCLKrising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAFnbus.Thiscontinuesthroughthechain  
andFXOofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
(1)  
ID[2:0]  
Device ID Pins HSTL-LVTTL Forthe32Qmulti-queuedevicetheWRADDandRDADDaddressbussesare8bitswide.Whenaqueue  
ID2-C9  
ID1-A10  
ID0-B10  
INPUT  
selectiontakes placethe3MSbs ofthis 8bitaddress bus areusedtoaddress thespecificdevice(the  
5 LSbs are used to address the queue within that device). During write/read operations the 3 MSbs  
oftheaddressarecomparedtothedeviceIDpins.Thefirstdeviceinachainofmulti-queues(connected  
in expansion mode), may be setup as 000, the second as 001’ and so on through to device 8 which  
is111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
IOSEL  
(C8)  
IOSelect  
LVTTL  
INPUT  
This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are  
required then IOSEL should be tied HIGH. If LVTTL I/O are required then it should be tied LOW.  
(1)  
IW  
InputWidth  
LVTTL  
INPUT  
ThispinisusedinconjunctionwithOWandBMtosetuptheinputandoutputbuswidthstobeacombination  
of x9, x18 or x36, (providing that one port is x36).  
(L15)  
(1)  
MAST  
MasterDevice HSTL-LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
(K15)  
INPUT  
Masterdevice ora Slave. Ifthis pinis HIGH, the device is the masterifitis LOWthenitis a Slave. The  
masterdeviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-  
Impedance,preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,this  
pinmustbesetHIGH.  
MRS  
MasterReset  
HSTL-LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
HSTL-LVTTL This pin is used on the read port when a Null-Q is required, it is used in conjunction with the RDADD  
(T9)  
NULL-Q  
(J2)  
NullQueue  
Select  
INPUT  
and RADEN address bus to address the Null-Q.  
8
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
OE  
(M14)  
OutputEnable HSTL-LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
INPUT  
dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
OutputValid  
Flag  
HSTL-LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-controldevice  
(P9)  
OUTPUT  
dataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.That  
is, there is a 2RCLKcycle delayfromthe time a givenqueue is selectedforreads, tothe time the OV  
flagrepresents the data inthatrespective queue. Whena selectedqueue onthe readportis readto  
empty,theOVflagwillgoHIGH,indicatingthatdataontheoutputbusisnotvalid.TheOVflagalsohas  
High-Impedancecapability,requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
(1)  
OW  
(L16)  
OutputWidth  
LVTTL  
INPUT  
ThispinissetupduringMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
inconjunctionwithIWandBMtosetupthedatainputandoutputbuswidthstobeacombinationofx9,  
x18 or x36, (providing that one port is x36).  
PAE  
(P10)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-EmptyflagstatusfortheQueuethathasbeenselectedontheoutputport  
Almost-Empty  
Flag  
OUTPUT  
for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
Queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn/PRn  
(PAE7-P11  
PAE6-P12  
PAE5-R12  
PAE4-T12  
PAE3-P13  
PAE2-R13  
PAE1-T13  
PAE0-T14)  
Programmable HSTL-LVTTL Onthe 32Qdevice the PAEn/PRnbus is 8bits wide. Duringa MasterResetthis bus is setupforeither  
Almost-Empty  
OUTPUT  
AlmostEmptymodeorPacketmode.ThisoutputbusprovidesPAE/PRnstatusof8queues(1quadrant),  
withinaselecteddevice,havingatotalof4quadrants.DuringQueueread/writeoperationstheseoutputs  
provideprogrammableemptyflagstatusorpacketreadystatus,ineitherdirectorpolledmode.Themode  
offlagoperationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbusiscapableof  
High-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirectoperation  
thePAEn/PRnbusisupdatedtoshowthePAE/PRstatusofaquadrantofqueueswithinaselecteddevice.  
Selection is made using RCLK, ESTR and RDADD. During Polled operation the PAEn/PRn bus is  
loadedwiththePAE/PRnstatusofmulti-queueflow-controlquadrantssequentiallybasedontherising  
edge ofRCLK. PAE orPR operationis determinedbythe state ofPKTduringmasterreset.  
FlagBus/Packet  
ReadyFlag Bus  
PAF  
(R8)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-FullflagstatusfortheQueuethathasbeenselectedontheinputportfor  
Almost-FullFlag OUTPUT  
writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselected  
Queueisalmost-full.ThisflagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagis  
synchronizedtoWCLK.  
PAFn  
Programmable HSTL-LVTTL Onthe 32Qdevice the PAFnbus is 8bits wide. Atanyone time this outputbus provides PAF status  
(PAF7-P7  
PAF6-P6  
PAF5-R6  
PAF4-R7  
PAF3-P5  
PAF2-R5  
PAF1-T5  
PAF0-T4)  
Almost-FullFlag OUTPUT  
Bus  
of 8 queues (1 quadrant), within a selected device, having a total of 4 quadrants. During Queue read/  
writeoperationstheseoutputsprovideprogrammablefullflagstatus,ineitherdirectorpolledmode.The  
modeofflagoperationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbusis  
capableofHigh-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirect  
operationthePAFnbus is updatedtoshowthe PAF status ofaquadrantofqueues withinaselected  
device.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.DuringPolledoperationthePAFn  
busisloadedwiththePAFstatusofmulti-queueflow-controlquadrantssequentiallybasedontherising  
edgeofWCLK.  
PD  
(K1)  
Power Down  
PacketMode  
HSTL  
INPUT  
This inputis usedtoprovide additionalpowersavings. Whenthe device I/Ois setupforHSTL/eHSTL  
modeaHIGHonthePDinputdisablesthedatainputsonthewriteportonly,providingsignificantpower  
savings. In LVTTL mode this pin has no operation  
(1)  
PKT  
(J14)  
LVTTL  
INPUT  
ThestateofthispinduringaMasterResetwilldeterminewhetherthepartisoperatinginPacketmode  
providingbothaPacketReady(PR)outputandaProgrammableAlmostEmpty(PAE)discreteoutput,  
or standard mode, providing a (PAE) output only. If this pin is HIGH during Master Reset the part will  
operateinpacketmode,ifitisLOWthenalmostemptymode.Ifpacketmodehasbeenselectedtheread  
portflagbusbecomespacketreadyflagbus,PRnandthediscretepacketreadyflag,PRisfunctional.  
Ifalmostemptyoperationhasbeenselectedthentheflagbusprovidesalmostemptystatus,PAEnand  
9
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
(1)  
Name  
I/OTYPE  
Description  
PKT  
PacketMode  
LVTTL  
INPUT  
thediscretealmostemptyflag,PAEisfunctional,thePRflagisinactiveandshouldnotbeconnected.  
PacketReadyutilizesusermarkedlocationstoidentifystartandendofpacketsbeingwrittenintothe  
device.PacketModecanonlybeselectedifboththeinputportwidthandoutputportwidthare36bits.  
(Continued)  
(J14)  
PR  
(R9)  
PacketReady HSTL-LVTTL IfpacketmodehasbeenselectedthisflagoutputprovidesPacketReadystatusoftheQueueselected  
Flag  
OUTPUT  
forreadoperations.DuringamasterresetthestateofthePKTinputdetermineswhetherPacketmode  
ofoperationwillbeused.IfPacketmodeisselected,thentheconditionofthePRflagandOVsignalare  
assertedindicatesapacketisreadyforreading.Theusermustmarkthestartofapacketandtheendof  
apacketwhenwritingdataintoaqueue.UsingtheseStartOfPacket(SOP)andEndOfPacket(EOP)  
markers,themulti-queuedevicesetsPRLOWifoneormorecomplete”packetsareavailableinthequeue.  
Acompletepacket(s)mustbewrittenbeforetheuserisallowedtoswitchqueues.  
PRS  
(T8)  
PartialReset  
HSTL-LVTTL APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.BeforeaPartial  
INPUT  
Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRSLOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[35:0]  
DataOutputBus HSTL-LVTTL Thesearethe36dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
Qout  
(See Pin No.  
tablefordetails)  
OUTPUT  
ofRCLKprovidedthatRENisLOW,OEisLOWandtheQueueisselected.Note,thatinPacketReady  
modeQ32-Q35maybeusedaspacketmarkers,pleaseseepacketreadyfunctionaldiscussionformore  
detail.Duetobusmatchingnotalloutputsmaybeused,anyunusedoutputsshouldnotbeconnected.  
RADEN  
(R14)  
ReadAddress HSTL-LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
Enable  
INPUT  
bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthe  
parthas beencompletedandSENO has goneLOW.  
RCLK  
(T10)  
ReadClock  
HSTL-LVTTL When enabledbyREN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
INPUT  
bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
PAEn/PRnflagquadranttobeplacedonthePAEn/PRnbusduringdirectflagoperation.Duringpolled  
flagoperationthePAEn/PRnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronized  
toRCLK.ThePAE,PRandOVoutputsareallsynchronizedtoRCLK.DuringdeviceexpansiontheEXO  
and EXI signals are based on RCLK. RCLK must be continuous and free-running.  
RDADD  
ReadAddress HSTL-LVTTL Forthe32QdevicetheRDADDbus is 8bits.TheRDADDbus is adualpurposeaddress bus.Thefirst  
[7:0]  
Bus  
INPUT  
functionofRDADDistoselectaQueuetobereadfrom.Theleastsignificant5bitsofthebus,RDADD[4:0]  
areusedtoaddress 1of32possiblequeueswithinamulti-queuedevice.Themostsignificant3bits,  
RDADD[7:5]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSB’s will address a device with the matching ID code. The address present on the  
RDADDbus willbe selectedona risingedge ofRCLKprovidedthatRADENis HIGH, (note, thatdata  
canbeplacedontotheQoutbus,readfromthepreviouslyselectedqueueonthisRCLKedge).Onthe  
next rising RCLK edge after a read queue select, a data word from the previous queue will be placed  
ontotheoutputs,Qout,regardless oftheREN input.TwoRCLKrisingedges afterreadqueueselect,  
datawillbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENduetothe  
firstwordfallthrougheffect.  
(RDADD7-P16  
RDADD6-P15  
RDADD5-P14  
RDADD4-N16  
RDADD3-N15  
RDADD2-N14  
RDADD1-M16  
RDADD0-M15)  
The secondfunctionofthe RDADDbus is toselectthe quadrantofqueues tobe loadedontothe  
PAEn/PRnbusduringstrobedflagmode.Theleastsignificant2bits,RDADD[1:0]areusedtoselectthe  
quadrantofadevicetobeplacedonthePAEnbus.Themostsignificant3bits,RDADD[7:5]areagain  
usedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.Address  
bitsRDADD[4:2]aredontcareduringquadrantselection.ThequadrantaddresspresentontheRDADD  
buswillbeselectedontherisingedgeofRCLKprovidedthatESTRisHIGH,(note,thatdatacanbeplaced  
ontotheQoutbus,readfromthepreviouslyselectedQueueonthisRCLKedge).PleaserefertoTable2  
fordetails onRDADDbus.  
10  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
REN  
(T11)  
ReadEnable  
HSTL-LVTTL The REN input enables read operations from a selected Queue based on a rising edge of RCLK.  
INPUT  
A queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless  
ofthestateofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecond  
RCLKcycle afterqueue selectionregardless ofREN due tothe FWFToperation. Areadenable is not  
requiredtocyclethe PAEn/PRnbus(inpolledmode)ortoselectthePAEnquadrant,(indirectmode).  
SCLK  
(N3)  
SerialClock  
HSTL-LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT  
clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
(M2)  
SerialInput  
Enable  
HSTL-LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT  
part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,its SENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
(M1)  
SerialOutput  
Enable  
HSTL-LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENO output  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENO willgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedthe SENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
HSTL-LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
(L1)  
INPUT  
Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
(M3)  
SerialOut  
HSTL-LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
(A8)  
JTAGClock  
LVTTL  
INPUT  
ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
operationsofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedge  
ofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneeds  
tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL  
INPUT  
OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,IDRegister  
andBypassRegister.Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
(B9)  
(2)  
TDO  
(A9)  
JTAGTestData  
Output  
LVTTL  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
OUTPUT operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whilein  
SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
(B8)  
JTAGMode  
Select  
LVTTL  
INPUT  
TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
(C7)  
JTAGReset  
LVTTL  
INPUT  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, thenTRST can be tied with MRS to ensure  
11  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Name  
I/OTYPE  
Description  
Pin No.  
(2)  
TRST  
JTAGReset  
LVTTL  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
(Continued)  
WADEN  
(P4)  
WriteAddress HSTL-LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
Enable  
INPUT  
bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).WADEN  
shouldnotbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,  
thatawritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
WCLK  
(T7)  
WriteClock  
HSTL-LVTTL WhenenabledbyWEN,therisingedgeofWCLKwrites dataintotheselectedQueueviatheinput  
INPUT  
bus, Din. The Queue to be written to is selected via the WRADD address bus and a rising edge of  
WCLKwhile WADENis HIGH. Arisingedge ofWCLKinconjunctionwithFSTRandWRADDwillalso  
selectthe flagquadranttobe placedonthePAFnbus duringdirectflagoperation. Duringpolledflag  
operationthePAFnbusiscycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.  
The PAFn, PAF and FF outputs are allsynchronizedtoWCLK. Duringdevice expansionthe FXOand  
FXIsignals are basedonWCLK. The WCLKmustbe continuous andfree-running.  
WEN  
(T6)  
WriteEnable  
HSTL-LVTTL The WEN input enables write operations to a selected Queue based on a rising edge of WCLK. A  
INPUT  
queue tobe writtentocanbe selectedvia WCLK, WADENandthe WRADDaddress bus regardless  
ofthestateofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLK  
cycleafterqueueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFn  
bus (in polled mode) or to select the PAFn quadrant , (in direct mode).  
WRADD  
WriteAddress HSTL-LVTTL For the 32Q device the WRADD bus is 8 bits. The WRADD bus is a dual purpose address bus. The  
[7:0]  
Bus  
INPUT  
firstfunctionofWRADDistoselectaQueuetobewrittento. The leastsignificant5bits ofthe bus,  
WRADD[4:0]areusedtoaddress1of32possiblequeueswithinamulti-queuedevice.Themostsignificant  
3bits,WRADD[7:5]areusedtoselect1of8possiblemulti-queuedevices thatmaybeconnectedin  
expansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheWRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,that  
data presentonthe Dinbus canbe writtenintothe previouslyselectedqueue onthis WCLKedge and  
on the nextrisingWCLKalso, providingthatWEN is LOW). TwoWCLKrisingedges afterwrite queue  
select,datacanbewrittenintothenewlyselectedqueue.  
ThesecondfunctionoftheWRADDbusistoselectthequadrantofqueuestobeloadedontothePAFn  
busduringstrobedflagmode.Theleastsignificant2bits,WRADD[1:0]areusedtoselectthequadrant  
ofa device tobe placedonthePAFnbus. The mostsignificant3bits, WRADD[7:5]are againusedto  
select1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.Addressbits  
WRADD[4:2]aredontcareduringquadrantselection.Thequadrantaddress presentontheWRADD  
bus will be selected on the rising edge of WCLK provided that FSTR is HIGH, (note, that data can be  
writtenintothepreviouslyselectedqueueonthisWCLKedge).PleaserefertoTable1fordetailsonthe  
WRADDbus.  
(WRADD7-T1  
WRADD6-R1  
WRADD5-R2  
WRADD4-P1  
WRADD3-P2  
WRADD2-P3  
WRADD1-N1  
WRADD0-N2)  
VCC  
(See pg. 13)  
+2.5VSupply  
Power  
Power  
These are VCC power supply pins and must all be connected to a +2.5V supply rail.  
VDDQ  
(See pg. 13)  
O/PRailVoltage  
Thesepinsmustbetiedtothedesiredoutputrailvoltage.ForLVTTLI/Othesepinsmustbeconnected  
to+2.5V,forHSTLthesepinsmustbeconnectedto+1.5VandforeHSTLthesepinsmustbeconnected  
to+1.8V.  
GND  
GroundPin  
Ground  
These are Ground pins and must all be connected to the GND supply rail.  
(See pg. 13)  
Vref  
(K3)  
Reference  
Voltage  
HSTL  
INPUT  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable  
"RecommendedDCOperatingConditions". The inputprovides the reference levelforHSTL/eHSTL  
inputs. ForLVTTLI/Omode this inputshouldbe tiedtoGND.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 59-62 and Figures 36-38.  
12  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PIN NUMBER TABLE  
Symbol  
Name  
I/OTYPE  
Pin Number  
D[35:0]  
Din  
DataInputBus HSTL-LVTTL D35-J3, D(34-32)-H(3-1), D(31-29)-G(3-1), D(28-26)-F(3-1), D(25-23)-E(3-1), D(22-20)-D(3-1),  
INPUT  
D(19-17)-C(3-1), D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5,  
D5-C5, D4-A6, D3-B6, D2-C6, D1-A7, D0-B7  
Q[35:0]  
Qout  
DataOutputBus HSTL-LVTTL Q(35,34)-J(15,16), Q(33-31)-H(14-16), Q(30-28)-G(14-16), Q(27-25)-F(14-16), Q(24-22)-E(14-16),  
OUTPUT Q(21,20)-D(15,16), Q19-B16, Q(18,17)-C(16,15), Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14,  
Q11-B14, Q10-C14, Q9-A13, Q8-B13, Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11,  
Q(1,0)-C(11,10)  
VCC  
+2.5VSupply  
O/PRailVoltage  
GroundPin  
Power  
Power  
Ground  
D(7-10),E(6,7,10,11),F(5,12),G(4,5,12,13),H(4,13),J(4,13),K(4,5,12,13),L(5,12),M(6,7,10,11),N(7-10)  
D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)  
VDDQ  
GND  
E(8-9), F(6-11), G(6-11), H(5-12), J(1,5-12), K(2,6-11,14), L(6-11), M(8-9)  
13  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Rating  
Commercial  
–0.5to+3.6(2)  
Unit  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
VTERM  
TerminalVoltage  
with respect to GND  
V
(2,3)  
CIN  
Input  
Capacitance  
VIN = 0V  
10(3)  
pF  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
Capacitance  
VOUT = 0V  
15  
pF  
NOTES:  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF  
(HSTL only)  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
14  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
ILI  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
µA  
µA  
V
V
V
InputLeakageCurrent  
OutputLeakageCurrent  
ILO  
10  
(3)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
ICC1(1,2)  
ICC2(1)  
ICC3(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
80  
150  
150  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
25  
100  
100  
mA  
mA  
mA  
Standby VCC Current in Power Down mode(VCC = 2.5V) I/O = LVTTL  
50  
50  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
(1,2)  
IDDQ  
ActiveVDDQ Current (VDDQ =2.5VLVTTL)  
(VDDQ = 1.5V HSTL)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
10  
10  
10  
mA  
mA  
mA  
(VDDQ = 1.8V eHSTL)  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz.  
2. Data inputs toggling at 10MHz.  
3. Total Power consumed: PT = [(VCC x ICC) + (VDDQ x IDDQ)].  
4. Outputs are not 3.3V tolerant.  
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care and should be at a known state.  
15  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
V
DDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
InputRise/FallTimes  
50Ω  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
VDDQ/2  
I/O  
5998 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
200  
Capacitance (pF)  
5998 drw04a  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
Figure 2b. Lumped Capacitive Load, Typical Derating  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
OL  
V
CC/2  
100mV  
100mV  
100mV  
V
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
5998 drw04b  
NOTE:  
1. REN is HIGH.  
16  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51546L5  
IDT72T51556L5  
IDT72T51546L6  
IDT72T51556L6  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
5
200  
3.6  
3.6  
3.6  
3.6  
10  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
Clock High Time  
2.3  
2.3  
1.5  
0.5  
1.5  
0.5  
30  
2.7  
2.7  
2.0  
0.5  
2.0  
0.5  
30  
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
ResetPulseWidth  
tRSS  
tRSR  
tPRSS  
tPRSH  
ResetSetupTime  
15  
15  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
1.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
tOE  
fC  
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
20  
3.7  
3.7  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
20  
20  
1.5  
1.0  
1.5  
0.5  
1.5  
1.0  
0.6  
0.6  
0.6  
0.6  
2.5  
1.5  
2.0  
0.5  
2.0  
0.5  
0.6  
0.6  
0.6  
0.6  
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
PAE/PAF Strobe Setup  
PAE/PAF Strobe Hold  
QueueSetup  
tSTH  
tQS  
tQH  
QueueHold  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
17  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51546L5  
IDT72T51556L5  
IDT72T51546L6  
IDT72T51556L6  
Symbol  
Parameter  
RCLK to Echo RCLK Output  
Min.  
Max.  
Min.  
Max.  
Unit  
tERCLK  
tCLKEN  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4
4.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
4.2  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK to Echo REN Output  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
(2)  
tPAEHZ  
(2)  
tPAFLZ  
(2)  
tPAFHZ  
(2)  
tFFHZ  
(2)  
tFFLZ  
WCLKtoFullFlagtoLow-Impedance  
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
(2)  
tOVHZ  
tFSYNC  
tFXO  
tESYNC  
tEXO  
RCLK to PAE Bus Expansion to Output  
RCLK to Packet Ready Flag  
tPR  
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tSKEW5  
tXIS  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for PR and OV  
SKEW time between RCLK and WCLK for OV when in Packet Mode  
ExpansionInputSetup  
5
5
6
5
6
8
10  
1.0  
0.5  
1.0  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
18  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtotheSENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENO ofthefinaldevicegoesLOW.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
PKT–PacketMode  
FM – Flag bus Mode  
IW,OW,BMBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 5, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72T51546/72T51556devicesrequire  
atotalnumberofseriallyloadedbitsperdevicetocompleteserialprogramming,  
(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]whereQisthe  
numberofqueues the userwishes tosetupwithinthe device, where nis the  
numberofdevices inthechain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 6, PartialReset for relevant timing.  
SeeFigure7,SerialPortConnectionandFigure8,SerialProgrammingfor  
connectionandtiminginformation.  
SERIAL PROGRAMMING  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid-  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethas takenplace. Internallythe multi-queue device has setupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72T51546/72T51556 devices are capable of up to 32 queues and  
thereforecontain32setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port. For the IDT72T51546/72T51556 devices the serial programming re-  
quiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycleswithSENI  
enabled),calculatedby:19+(Qx72)whereQisthenumberofqueuestheuser  
wishestosetupwithinthedevice.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevice,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
For the IDT72T51546/72T51556 devices the default mode will setup 32  
queues,eachqueuebeing1024x36and2048x36deeprespectively.Forboth  
devicesthevalueofthePAE/PAFoffsetsisdeterminedatmasterresetbythe  
stateoftheDFinput.IfDFisLOWthenboththe PAE&PAF offsetwillbe8,if  
HIGH then the value is 128.  
WhenconfiguringtheIDT72T51546/72T51556devicesindefaultmodethe  
usersimplyhastoapplyWCLKcyclesafteramasterreset,untilSENO goes  
LOW,thissignalsthatdefaultprogrammingiscomplete.Theseclockcyclesare  
requiredforthedevicetoloaditsinternalsetupregisters.Whenasinglemulti-  
queuedeviceisused,thecompletionofdeviceprogrammingissignaledbythe  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
19  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SENO outputofadevicegoingfromHIGHtoLOW.Note,thatSENImustbe selection. The queue selectionrequires 1WCLKcycle. Allsubsequentdata  
heldLOWwhenadeviceissetupfordefaultprogrammingmode.  
writeswillbetothisqueueuntilanotherqueueisselected.  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof  
Standardmodeoperationisdefinedasindividualwordswillbewrittentothe  
the first device in a chain can be held LOW. The SENO of a device should deviceasopposedtoPacketModewherecompletepacketsmaybewritten.  
connecttotheSENIofthenextdeviceinthechain.TheSENOofthefinaldevice Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained.This  
isusedtoindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthe means that data can be written into the device on every WCLK rising edge  
finalSENOgoesLOWnormaloperationsmaybegin.Again,alldeviceswillbe includingthe cycle thata newqueue is beingaddressed.  
programmedwiththeirmaximumnumberofqueuesandthememorydivided  
equally between them. Please refer to Figure 9, DefaultProgramming.  
Changingqueues requires aminimumof3WCLKcycles onthewriteport  
(seeFigure10,WriteQueueSelect,WriteOperationandFullflagOperation).  
WADENgoeshighsignalingachangeofqueue(clockcycleA”).Theaddress  
onWRADDatthattimedeterminesthenextqueue.Datapresentedduringthat  
cycle (A”) and the next cycle (B” and C), will be written to the active (old)  
READING AND WRITING TO THE IDT MULTI-QUEUE  
FLOW-CONTROL DEVICE  
The IDT72T51546/72T51556 multi-queue flow-control devices can be queue,providedWENisactiveLOW.IfWENisHIGH(inactive)forthese3clock  
configuredintwodistinctmodes,namelyStandardModeandPacketMode. cycles,datawillnotbewrittenintothepreviousqueue.Thewriteportdiscrete  
fullflagwillupdatetoshowthefullstatusofthenewlyselectedqueue(QX)atthis  
STANDARD MODE OPERATION (PKT = LOW ON MASTER RESET)  
lastcyclesrisingedge(C).Datapresentonthedatainputbus(Din),canbe  
writtenintothenewlyselectedqueue(QX)ontherisingedgeofWCLKonthe  
thirdcycle(D”)followingachangeofqueue,providedWENis LOWandthe  
newqueueisnotfull.Ifthenewlyselectedqueueisfullatthepointofitsselection,  
WRITE QUEUE SELECTION AND WRITE OPERATION  
(STANDARDMODE)  
The IDT72T51546/72T51556 multi-queue flow-control devices can be any writes to that queue will be prevented. Data cannot be written into a full  
configureduptoamaximumof32queues intowhichdatacanbewrittenvia queue.  
acommonwriteportusingthedatainputs(Din),writeclock(WCLK)andwrite  
Refer to Figure 10, Write Queue Select, Write Operation and Full flag  
enable(WEN).Thequeuetobewrittenisselectedbytheaddresspresenton Operation, Figure 11, Write Operations &FirstWordFallThroughfortiming  
the write address bus (WRADD) during a rising edge on WCLK while write diagrams and Figure 12, Full Flag Timing in Expansion Mode for timing  
addressenable(WADEN)isHIGH.ThestateofWENdoesnotimpactthequeue diagrams.  
TABLE 1 — WRITE ADDRESS BUS, WRADD[7:0]  
Operation WCLK WADEN FSTR  
WRADD[7:0]  
7 6 5 4 3 2  
1 0  
Write  
Queue  
Select  
1
0
Device Select  
(Compared to  
ID0,1,2)  
Write Queue Address  
(5 bits = 32 Queues)  
7 6 5 4 3 2  
1 0  
PAFn  
Quadrant  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
Quadrant  
Address  
Quadrant  
Address  
Queue Status on PAFn Bus  
00  
Q0 : Q7 PAF0 : PAF7  
Q8 : Q15 PAF0 : PAF7  
Q16 : Q23 PAF0 : PAF7  
Q24 : Q31 PAF0 : PAF7  
01  
10  
11  
5998 drw05  
20  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION AND READ OPERATION  
(STANDARDMODE)  
cyclesrisingedge(F),thereadportdiscreteemptyflagwillupdatetoshow  
theemptystatusofthenewlyselectedqueue(QF).Theinternalpipelineisalso  
The IDT72T51546/72T51556 multi-queue flow-control devices can be loadedatthis time(F)withthelastwordfromtheprevious (old)queue(QF)  
configureduptoamaximumof32queueswhichdatacanbereadviaacommon aswellasthenextwordfromthenewqueue(QF).Bothofthesewordswillfall  
readportusingthe data outputs (Qout), readclock(RCLK)andreadenable through to the output register (provided the OE is asserted) consecutively  
(REN). An output enable, OE control pin is also provided to allow High- (cycles F and G” respectively) following the selection of the new queue  
ImpedanceselectionoftheQoutdataoutputs.Themulti-queuedevicereadport regardlessofthestateofREN,unlessthenewqueue(Q )isempty.Ifthenewly  
F
operates ina mode similartoFirstWordFallThrough”ona SuperSyncIDT selectedqueue is empty, anyreads fromthatqueue willbe prevented. Data  
FIFO,butwiththeaddedfeatureofdataoutputpipelining(seeFigure11,Write cannotbereadfromanemptyqueue.Thelastwordinthedataoutputregister  
Operations & First Word Fall Through). The queue to be read is selected by (fromthepreviousqueue),willremainonthedatabus,buttheoutputvalidflag,  
theaddresspresentedonthereadaddressbus(RDADD)duringarisingedge OVwillgoHIGH,toindicatethatthedatapresentisnolongervalid.Thispipelining  
onRCLKwhilereadaddressenable(RADEN)isHIGH.ThestateofRENdoes effectprovidestheuserwith100%busutilization,andbringsaboutthepossibility  
notimpactthequeueselection.Thequeueselectionrequires1RCLKcycles. thataNULL”queuemayberequiredwithinamulti-queuedevice.Nullqueue  
Allsubsequentdatareadswillbefromthisqueueuntilanotherqueueisselected. operationisdiscussedinthenextsection.RememberthatOEallowstheuser  
Standardmodeoperationisdefinedasindividualwordswillbereadfromthe toplacethedataoutputbus(Qout)intoHigh-Impedanceandthedatacanbe  
deviceasopposedtoPacketModewherecompletepacketsmayberead.The readintotheoutputregisterregardless ofOE.  
readportisdesignedsuchthat100%busutilizationcanbeobtained.Thismeans  
RefertoTable2,forReadAddressBusarrangement.Also,refertoFigures  
that data can be read out of the device on every RCLK rising edge including 13,15,and16forreadqueueselectionandreadportoperationtimingdiagrams.  
the cycle that a new queue is being addressed.  
ChangingqueuesrequiresaminimumofthreeRCLKcyclesonthereadport PACKET MODE OPERATION (PKT = HIGH on Master Reset)  
(see Figure 13, Read Queue Select, Read Operation). RADEN goes high  
The Packet mode operation provides the capability where, user defined  
signalingachangeofqueue(clockcycleD”).TheaddressonRDADDatthat packetsorframescanbewrittentothedeviceasopposedtoStandardmode  
timedeterminesthenextqueue.Datapresentedduringthatcycle(D”)willbe whereindividualwordsarewritten.Forclarification,inPacketMode,apacket  
readatD”(+tA),andthenextcycle(E),cancontinuetobereadfromtheactive canbewrittentothedevicewiththestartinglocationdesignatedasTransmitStart  
(old)queue (QP), providedREN is active LOW. IfREN is HIGH(inactive)for ofPacket(TSOP)andtheendinglocationdesignatedasTransmitEndofPacket  
thesetwoclockcycles,datawillnotbereadfromthepreviousqueue.Thenext (TEOP). Inconjunction, a packetreadfromthe device willbe designatedas  
TABLE 2 — READ ADDRESS BUS, RDADD[7:0]  
Operation  
RCLK RADEN ESTR  
Null-Q  
0
RDADD[7:0]  
4 3 2  
7
6
5
1 0  
Read Queue  
Select  
1
0
1
0
1
0
Device Select  
(Compared to  
ID0,1,2)  
Read Queue Address  
(5 bits = 32 Queues)  
7
6
5
4 3 2  
1 0  
Quadrant  
Address  
PAEn/PRn  
Quadrant  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
7
X
6
X
5
X
4 3 2  
1 0  
Null Queue  
Select  
X
X
X
X
X
Quadrant  
Address  
Queue Status on PAEn/PRn Bus  
00  
Q0 : Q7 PAE0 : PAE7  
Q8 : Q15 PAE0 : PAE7  
Q16 : Q23 PAE0 : PAE7  
Q24 : Q31 PAE0 : PAE7  
01  
10  
11  
5998 drw06  
21  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Receive StartofPacket(RSOP)anda Receive EndofPacket(REOP). The requestismade(C”orJ).IfRENisHIGH(inactive)forthesetwoclockcycles,  
minimumsizeforapacketisfourwords(SOP,twowordsofdataandEOP).The datawillnotbereadfromtheprevious queue(QA).Inapplications wherethe  
almostemptyflagbusbecomesthePacketReady”PRflagbuswhenthedevice multi-queueflow-controldeviceisconnectedtoasharedbus,anoutputenable,  
isconfiguredforpacketmode.ValidpacketsareindicatedwhenbothPRand OEcontrolpinisalsoprovidedtoallowHigh-Impedanceselectionofthedata  
OV areasserted.  
outputs(Qout).WithreferencetoFigure18whenchangingqueues,apacket  
marker(SOPorEOP)shouldnotbereadoncycle(E”orL”).ReadingaSOP  
WRITEQUEUESELECTIONANDWRITEOPERATION(PACKETMODE) orEOPshouldnotoccurduringthe cycles requiredfora queue change. Itis  
Itisrequiredthatafullpacketbewrittentoaqueuebeforemovingtoadifferent alsorecommendedthataqueuechangeshouldnotoccuroncethereadingof  
queue.Thedevicerequiresthreecyclestochangequeues.Packetmode,has the packethas commenced, The EOPmarkerofthe packetpriortoa queue  
2restrictions:<1>Anextraword(orfillerword)is requiredtobewrittenafter changeshouldbereadonorbeforethequeuechange.IftheEOPwordisread  
eachpacketonthecyclefollowingthequeuechangetoensuretheRSOPin beforeaqueuechange,RENcanbepulledhightodisablefurtherreads.When  
theoldqueueisnotreadoutonaqueuechangebecauseofthefirstwordfall thequeuechangeisinitiated,thefillerwordwrittenintothecurrentqueueafter  
through.<2>NoSOP/EOPis allowedtoread/writtenatcycle(DorK”)the theEOPwordwillfallthroughfollowedbyandthefirstwordfromthenewqueue.  
secondcycleafteraqueuechange.Inthismode,thewriteportmaynotobtain  
100%busutilization.  
Refer to Figure 18, Reading in Packet Mode during a Queue Change as  
wellasFigures13,15,and16fortimingdiagramsandTable2,forReadAddress  
Changingqueues requires aminimumof3WCLKcycles onthewriteport busarrangement.  
(see Figure 17, Writing in Packet Mode during a Queue Change). WADEN  
Note,thealmostemptyflagbusbecomesthePacketReady”flagbuswhen  
goes high signaling a change of queue (clock cycle B” or I”). The address the device is configuredforpacketreadymode..  
on WRADD at the rising edge of WCLK determines the next queue. Data  
presented on Din during that cycle (B” or I”) and the next cycle (C” or J) PACKETREADYFLAG  
can continue to be written to the active (old) queue (QA or QB respectively),  
The36-bitmulti-queueflow-controldeviceprovidestheuserwithaPacket  
providedWENisLOW(active).IfWENisHIGH(inactive)forthesetwoclock Readyfeature. Duringa MasterResetthe logic1”(HIGH)onthe PKTinput  
cycles (H), datawillnotbewrittenintotheprevious queue(QA).Thesecond signal (packet mode select), configures the device in packet mode. The PR  
cyclefollowingarequestforqueuechange(D”orK”)willrequireafiller”word discreteflag,providesapacketreadystatusoftheactivequeueselectedonthe  
tobewrittentothedevice.ThiscanbedonebyclockingtheTEOPtwiceorby read port. A packet ready status is individually maintained on all queues;  
writingafiller”word.Inpacketmode,themulti-queueis designedunderthe howeveronlythequeueselectedonthereadporthasitspacketreadystatus  
2restrictionslistedpreviously.Note,anerroneousPacketReadyflagmayoccur indicatedonthePRoutputflag.Apacketisavailableontheoutputforreading  
iftheEOPorSOPmarkershowsupatthesecondcycleafteraqueuechange. whenbothPRandOVareassertedLOW.Iflessthanafullpacketisavailable,  
TopreventanerroneousPacketReadyflagfromoccurringafillerwordshould thePRflagwillbeHIGH(packetnotready).Inpacketmode,nowordscanbe  
bewrittenintotheoldqueueatthelastclockcycleofwriting.Itisimportanttoknow readfroma queue untila complete packethas beenwrittenintothatqueue,  
thatnoSOPorEOPmaybewrittenintothedeviceduringthiscycle(D”orK”). regardless ofREN.  
Thewriteportdiscretefullflagwillupdatetoshowthefullstatus ofthenewly  
WhenpacketmodeisselectedtheProgrammableAlmostEmptybus,PAEn,  
selected queue (QB) at this last cycles rising edge (D” or K”). Data values becomes thePacketReadybus,PRn.WhenconfiguredinDirectBus (FM=  
presentedonthedatainputbus (Din),canbewrittenintothenewlyselected LOW during a master reset), the PRn bus provides packet ready status in 8  
queue(QX)ontherisingedgeofWCLKonthethirdcycle(E)followingarequest queue increments. The PRn bus supports either Polled or Direct modes of  
forchangeofqueue,providedWENisLOW(active)andthenewqueueisnot operation. The PRnmode ofoperationis configuredthroughthe FlagMode  
full. If a selected queue is full (FF is LOW), then writes to that queue will be (FM) bit during a Master Reset.  
prevented.Note,datacannotbewrittenintoafullqueue.  
Whenthemulti-queueisconfiguredforpacketmodeoperation,thedevice  
Refer to Figure 17, Writing in Packet Mode during a Queue Change and mustalsobeconfiguredfor36bitwritedatabusand36bitreaddatabus.The  
Figure19,DataInput(Transit)PacketModeofOperationfortimingdiagrams. twomostsignificantbitsofthe36-bitdatabusareusedaspacketmarkers.On  
thewriteportthesearebitsD34(TransmitStartofPacket,)D35(TransmitEnd  
READ QUEUE SELECTION AND READ OPERATION (PACKET MODE) ofPacket)andonthereadportQ34,Q35.Allfourbitsaremonitoredbythepacket  
InpacketMode itis requiredthata fullpacketis readfroma queue before controllogicasdataiswrittenintoandreadoutfromthequeues.Thepacket  
movingtoadifferentqueue.Thedevicerequiresthreecyclestochangequeues. readystatusforindividualqueuesisthendeterminedbythepacketreadylogic.  
InPacketMode,thereare2restrictions<1>Anextraword(orfillerword)should  
OnthewriteportD34is usedtomark”thefirstwordbeingwrittenintothe  
havebeeninsertedintothedatastreamaftereachpackettoinsuretheRSOP selectedqueueastheTransmitStartofPacket,TSOP.Tofurtherclarify,when  
inthe oldqueue is notreadoutona queue change because ofthe firstword theuserrequiresawordbeingwrittentobemarkedasthestartofapacket,the  
fallthroughandthiswordshouldbediscarded.<2>NoEOP/SOPisallowed TSOPinput(D34)mustbeHIGHforthesameWCLKrisingedgeastheword  
toberead/writtenatcycle(D”orK”)thesecondcycleafteraqueuechange). thatiswritten.TheTSOPmarkerisstoredinthequeuealongwiththedataitwas  
Inthis mode,thereadportmaynotobtain100%bus utilization.  
written in until the word is read out of the queue via the read port.  
Changingqueuesrequiresaminimumof3RCLKcyclesonthereadport(see  
OnthewriteportD35isusedtomark”thelastwordofthepacketcurrently  
Figure18,ReadinginPacketModeduringaQueueChange).RADENgoes beingwrittenintotheselectedqueueastheTransmitEndofPacket”TEOP.  
high signaling a change of queue (clock cycle B” or I”). The address on Whentheuserrequiresawordbeingwrittentobemarkedastheendofapacket,  
RDADDattherisingedgeofRCLKdeterminesthequeue.AsillustratedinFigure theTEOPinputmustbeHIGHforthesameWCLKrisingedgeasthewordthat  
18 during cycle (B” or I”), and the next cycle (C” or J) data can continue iswrittenin.TheTEOPmarkerisstoredinthequeuealongwiththedataitwas  
tobe readfromthe active (old)queue (QA orQBrespectively), providedboth written in until the word is read out of the queue via the read port.  
RENandOEareLOW(active)simultaneouslywithchangingqueues.REOP  
Thepacketreadylogicmonitorsallstartandendofpacketmarkersbothas  
for packet located in queue (QA) must be read on or before a queue change theyenterrespectivequeuesviathewriteportandastheyexitqueuesviathe  
22  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 5 — PACKET MODE VALID BYTE  
BYTE A  
BYTE D  
BYTE C  
BYTE B  
TMOD1 (D33)  
RMOD1 (Q33)  
TMOD2 (D32)  
RMOD2 (Q32)  
VALID BYTES  
0
0
1
1
0
1
0
1
A, B, C, D  
A
A, B  
A, B, C  
5998 drw07  
NOTE:  
Packet Mode is only available when the Input Port and Output Port are 36 bits wide.  
of packet. This is a useful feature when due to latencies within the system,  
monitoringtheREOPmarkeralonedoesnotpreventoverreading”ofthedata  
fromthequeueselected.Forexample,anAEOPmarkerset4writesbeforethe  
TEOPmarkerprovidesthedeviceconnectedtothereadportwithandalmost  
endofpacket”indication4cyclesbeforetheendofpacket.  
The AEOP can be set any number of words before the end of packet  
determinedbyuserrequirementsorlatenciesinvolvedinthesystem.  
See Figure 18, Reading in Packet Mode during a Queue Change, Figure  
19, Data Input (Transmit) Packet Mode of Operation and Figure 20, Data  
Output (Receive) Packet Mode of Operation.  
readport.Themulti-queueinternallogicincrementsanddecrementsapacket  
counter,whichisprovidedforeachqueue.Thefunctionalityofthepacketready  
logicprovidesstatusastowhetheratleastonefullpacketofdataisavailable  
withintheselectedqueue.Apartialpacketinaqueueisregardedasapacket  
notreadyandPR (activeLOW)willbeHIGH.InPacketmode,nowords can  
bereadfromaqueueuntilatleastonecompletepackethasbeenwritteninto  
thequeue,regardless ofREN.Forexample,ifaTSOPhas beenwrittenand  
somenumberofwordslateraTEOPiswrittenafullpacketofdataisdeemed  
tobeavailable,andthePRflagandOVwillgoactiveLOW.Consequentlyifreads  
beginfromaqueuethathasonlyonecompletepacketandtheRSOPisdetected  
ontheoutputportasdataisbeingreadout,PRwillgoinactiveHIGH.OVwill  
remainLOWindicatingthereisstillvaliddatabeingreadoutofthatqueueuntil  
theREOPisread.Theusermayproceedwiththereadingoperationuntilthe  
currentpackethasbeenreadoutandnofurthercompletepacketsareavailable.  
Ifduringthattimeanothercompletepackethasbeenwrittenintothequeueand  
thePRflagwillagaingoneactive,thenreadsfromthenewpacketmayfollow  
afterthecurrentpackethasbeencompletelyreadout.  
PACKETMODEMODULOOPERATION  
The internal packet ready control logic performs no operation on these  
modulobits,theyareonlyinformationalbitsthatarepassedthroughwiththe  
respectivedatabyte(s).  
Whenutilizingthemulti-queueflow-controldeviceinpacketmode,theuser  
mayalsowanttoconsidertheimplementationofModulo”operationorvalid  
byte marking. Modulo operation may be useful when the packets being  
transferredthroughaqueueareinaspecificbytearrangementeventhough  
thedatabuswidthis36bits.InModulooperationtheusercanconcatenatebytes  
toformaspecificdatastringthroughthemulti-queuedevice.Apossiblescenario  
is where a limited number of bytes are extracted from the packet for either  
analysisorfilteredforsecurityprotection.Thiswillonlyoccurwhenthefirst36  
bitwordofapacketiswritteninandthelast36bitwordofpacketiswrittenin.  
Themodulooperationisameansbywhichtheusercanmarkandidentifyspecific  
datawithintheQueue.  
Onthewriteportdatainputbits,D32(transmitmodulobit2,TMOD2)andD33  
(transmitmodulobit1,TMOD1)canbeusedasdatamarkers.Anexampleof  
thiscouldbetouseD32andD33tocodewhichbytesofawordarepartofthe  
packetthatis alsobeingmarkedas the StartofMarker”orEndofMarker.  
Conversely on the read port when reading out these marked words, data  
outputs Q32(receive modulobit2, RMOD2)andQ33(receive modulobit1,  
RMOD1)willpassonthebytevalidityinformationforthatword.RefertoTable  
5foroneexampleofhowthemodulobitsmaybesetupandused.SeeFigure  
19, Data Input (Transmit) Packet Mode of Operation and Figure 20, Data  
Output (Receive) Packet Mode of Operation.  
Thepacketcountersthereforelookforstartofpacketmarkersfollowedbyend  
ofpacketmarkers andregarddatainbetweentheTSOPandTEOPas afull  
packetofdata.Thepacketmonitoringhasnolimitationastohowmanypackets  
arewrittenintoaqueue,theonlyconstraintisthedepthofthequeue.Note,there  
isaminimumallowablepacketsizeoffourwords,inclusiveoftheTSOPmarker  
andTEOPmarker.  
The packet logic does expect a TSOP marker to be followed by a TEOP  
marker.  
If a second TSOP marker is written after a first, it is ignored and the logic  
regardsdatabetweenthefirstTSOPandthefirstsubsequentTEOPasthefull  
packet.ThesameistrueforTEOP;asecondconsecutiveTEOPmarkisignored.  
On the read side the user should regard a packet as being between the first  
RSOP and the first subsequent REOP and disregard consecutive RSOP  
markersand/orREOPmarkers.ThisiswhyaTEOPmaybewrittentwice,using  
the secondTEOPas the filler”word.  
Asanexample,theusermayalsowishtoimplementtheuseofanAlmost  
EndofPacket”(AEOP)marker. Forexample, the AEOPcanbe assignedto  
datainputbitD33.ThepurposeofthisAEOPmarkeristoprovideanindicator  
thatthe endofpacketis a fixed(known)numberofreads awayfromthe end  
23  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
NULL QUEUE OPERATION (OF THE READ PORT)  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus busstrobe),toaddressthealmostfullflagbusduringdirectmodeofoperation.  
utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
Note:TheWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
deviceoneveryRCLKcycleregardlessofqueueswitchesorotheroperations. 12,FullFlagTimingExpansionMode,Figure14,OutputValidFlagTiming(In  
Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwiththenext ExpansionMode),andFigure35,Multi-QueueExpansionDiagram,fortiming  
wordsinaselectedqueuetobereadout,againproviding100%busutilization. diagrams.  
This type of architecture does assume that the user is constantly switching  
queuessuchthatduringaqueueswitch,thelastdatawordrequiredfromthe BUS MATCHING OPERATION  
previousqueuewillfallthroughthepipelinetotheoutput.  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword Duringamasterresetofthemulti-queuethestateofthethreesetuppins,BM  
willautomaticallyflowthroughthepipelinetotheoutput. (BusMatching),IW(InputWidth)andOW(OutputWidth)determinetheinputand  
BusMatchingoperationbetweentheinputportandoutputportisavailable.  
The NullQoperationis achievedbysettingthe NullQsignalHIGHduring outputportbuswidthsaspertheselectionsshowninTable3,BusMatching  
aqueueselect.NotethatthereadaddressbusRDADD[7:0]isadon'tcare.The Set-Up.9bitbytes,18bitwordsand36bitlongwordscanbewrittenintoand  
NullQueueisaseparatequeuewithinthedeviceandthusthemaximumnumber read from the Queues provided that at least one of the ports is setup for x36  
ofqueuesandmemoryisalwaysavailableregardlessofwhetherornottheNull operation.Whenwritingtoorreadingfromthemulti-queueinabusmatching  
queue is used. Also note that in expansion mode a user may want to use a mode, the device orders data in a Little Endian” format. See Figure 4, Bus  
dedicatednullqueueforeachdevice.Anullqueuecanbeselectedwhenno MatchingByteArrangementfordetails.  
furtherreadsarerequiredfromapreviouslyselectedqueue.Changingtoanull  
TheFullflagandAlmostFullflagoperationis always basedonwrites and  
queuewillcontinuetopropagatedatainthepipelinetothepreviousqueue's readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput  
output.TheNullQcanremainselecteduntiladatabecomesavailableinanother portisx36andtheoutputportisx9,thenfourdatareadsfromafullqueuewill  
queueforreading.TheNull-Qcanbeutilizedineitherstandardorpacketmode. berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe portis x18andthe outputportis x36, twowrite operations willbe requiredto  
OVflagwillgoHIGH,indicatingdatais notvalid.  
causetheoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queue  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- isnotempty).  
queue, it is a means to force data through the pipeline to the output. Null Q  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also, port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
refer to Figure 21, Read Operation and Null Queue Select for diagram.  
portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
outputportsize).  
PAFn FLAG BUS OPERATION  
The IDT72T51546/72T51556 multi-queue flow-control device can be  
configuredforupto32queues,eachqueuehavingitsownalmostfullstatus.  
Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF,on  
thewriteport.Queuesthatarenotselectedforawriteoperationcanhavetheir  
PAFstatus monitoredviathe PAFnbus.ThePAFnflagbus is 8bits wide,so  
that8queuesatatimecanhavetheirstatusoutputtothebus.If9ormorequeues  
aresetupwithinadevicethenthereare2methodsbywhichthedevicecanshare  
thebusbetweenqueues,Direct”modeandPolled”modedependingonthe  
state ofthe FM(FlagMode)inputduringa MasterReset. If8orless queues  
aresetupwithinadevicetheneachwillhaveitsowndedicatedoutputfromthe  
bus.If8orlessqueuesaresetupinsingledevicemode,itisrecommendedto  
configure the PAFnbus topolledmode as itdoes notrequire usingthe write  
address(WRADD).  
TABLE 3 — BUS-MATCHING SET-UP  
x36 DEVICE  
BM  
IW  
OW  
Write Port Read Port  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
x36  
x36  
FULL FLAG OPERATION  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
secondrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthe  
newlyselectedqueue.OnthethirdrisingedgeofWCLKfollowingthequeue  
selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
andenablesetup&holdtimesaremet.  
EXPANDING UP TO 256 QUEUES OR PROVIDING DEEPER QUEUES  
Expansioncantakeplaceusingeitherthestandardmodeorthepacketmode.  
Inthe32queuemulti-queuedevice, theWRADDaddress bus is 8bits wide.  
The5LeastSignificantbits(LSbs)areusedtoaddressoneofthe32available  
queueswithinasinglemulti-queuedevice.The3MostSignificantbits(MSbs)  
areusedwhenadeviceisconnectedinexpansionmodewithupto8devices  
connectedinwidthexpansion,eachdevicehavingitsown3-bitaddress.When  
logically expanded with multiple parts, each device is statically setup with a  
uniquechipIDcodeontheIDpins,ID0,ID1,andID2.Adeviceisselectedwhen  
the3MostSignificantbitsoftheWRADDaddressbusmatchesa3-bitIDcode.  
Themaximumlogicalexpansionis 256queues (32queues x8devices)ora  
minimumof8queues(1queueperdevicex8devices),eachofthemaximum  
sizeoftheindividualmemorydevice.  
24  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Note,theFFflagwillprovidestatusofanewlyselectedqueuetwoWCLKcycle Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
afterqueueselection,whichisonecyclebeforedatacanbewrittentothatqueue. theQoutdataoutputs3RCLKcycleslater,theOVwillchangestatetoindicate  
Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assumingthat validityofthedatafromthenewlyselectedqueueonthis3rd RCLKcyclealso.  
a queue switchhas beenmade toa queue thatis actuallyfull).  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways  
basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand indicatesstatusforthedatacurrentlypresentontheoutputregister.  
keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand  
flag (selected on the write port). A queue selected on the read port may keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations. thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective  
See Figure 10, Write Queue Select, Write Operation and Full Flag flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected  
Operation and Figure 12, Full Flag Timing in Expansion Mode for timing onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased  
information.  
on write operations, that is, data may be written into that queue causing it to  
becomenotempty.  
EXPANSION MODE - FULL FLAG OPERATION  
SeeFigure13,ReadQueueSelect,ReadOperationandFigure14,Output  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags ValidFlagTimingfordetailsofthetiming.  
of all devices should be connected together, such that a system controller  
monitoring and managing the multi-queue devices write port only looks at a EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags  
isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime. of all devices should be connected together, such that a system controller  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe monitoring and managing the multi-queue devices read port only looks at a  
writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
queue on the write port.  
is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive  
madeonlyasingledevicedrivestheFFflagbusandallotherFFflagoutputs queue on the read port.  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennone madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs  
ofitsqueuesareselectedforwriteoperations.  
connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.Its FF flagwill devicewillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhennone  
simplyupdate betweenqueue switches toshowthe respective queue full ofitsqueuesareselectedforreadoperations.  
status.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup validstatus.  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup  
12,FullFlagTiminginExpansionModefordetailsofflagoperation,including onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective  
when more than one device is connected in expansion.  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
14,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
OUTPUTVALIDFLAGOPERATION  
The multi-queue flow-control device provides a single Output Valid flag thanone device is connectedinexpansion.  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising ALMOST FULL FLAG  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread  
As previously mentioned the multi-queue flow-control device provides a  
port, also updates the OV flag to show whether or not that new data word is singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
actually valid. Internally the multi-queue flow-control device monitors and astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
maintainsastatusoftheemptyconditionofallqueueswithinit,howeveronly writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
thequeuethatisselectedforreadoperationshasitsoutputvalid(empty)status monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
outputtotheOVflag,givingavalidstatusforthewordbeingreadatthattime. it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue. userhasperformeddefaultprogramming.  
25  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost is,anewqueuecanbeselectedonthereadportviatheRDADDbus,RADEN  
fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe enableandarisingedgeofRCLK.OnthethirdrisingedgeofRCLKfollowing  
PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue a queue selection, the data wordfromthe newqueue willbe available atthe  
device programming (along with the number of queues, queue depths and outputregisterandthePAEflagoutputwillshowtheemptystatusofthenewly  
almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe selectedqueue.ThePAEisflagoutputistripleregisterbuffered,sowhenaread  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory operationoccurs atthealmostemptyboundarycausingtheselectedqueue  
depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice statustogoalmostemptythePAEwillgoLOW3RCLKcyclesaftertheread.  
canbedifferentvalues.  
Thesameistruewhenawriteoccurs,therewillbea3RCLKcycledelayafter  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput thewriteoperation.  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthethirdcycleafteranewqueueselectionismade,onthesameWCLKcycle  
thatdata canactuallybe writtentothe newqueue. Thatis, a newqueue can  
beselectedonthewriteportviatheWRADDbus,WADENenableandarising  
edgeofWCLK.OnthethirdrisingedgeofWCLKfollowingaqueueselection,  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.ThePAF occur based on a rising edge of RCLK. Internally the multi-queue device  
isflagoutputistripleregisterbuffered,sowhenawriteoperationoccursatthe monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
almostfullboundarycausingtheselectedqueuestatustogoalmostfullthePAF thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
willgoLOW3WCLKcyclesafterthewrite.Thesameistruewhenareadoccurs, nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
there will be a 3 WCLK cycle delay after the read operation.  
So the PAF flag delays are:  
writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
on write operations. The multi-queue flow-control device also provides a  
duplicateofthePAEflagonthePAE[7:0]flagbus,thiswillbediscussedindetail  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF inalatersectionofthedatasheet.  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
SeeFigures25and26forAlmostEmptyflagtimingandqueueswitching.  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag  
occur based on a rising edge of WCLK. Internally the multi-queue device POWER DOWN (PD)  
monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
This device has a power down feature intended for reducing power  
thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis consumptionforHSTL/eHSTLconfiguredinputswhenthedeviceisidlefora  
nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe long period of time. By entering the power down state certain inputs can be  
readportmayexperienceachangeofitsinternalalmostfullflagstatusbased disabled,therebysignificantlyreducingthepowerconsumptionofthepart.All  
on read operations. The multi-queue flow-control device also provides a WENandRENsignalsmustbedisabledforaminimumoffourWCLKandRCLK  
duplicateofthePAFflagonthePAF[7:0]flagbus,thiswillbediscussedindetail cycles before activating the power down signal. The power down signal is  
inalatersectionofthedatasheet.  
SeeFigures 23and24forAlmostFullflagtimingandqueueswitching.  
asynchronousandneedstobeheldLOWthroughoutthedesiredpowerdowntime.  
Duringpowerdown,thefollowingconditionsfortheinputs/outputssignalsare:  
Alldata inQueue(s)memoryare retained.  
ALMOSTEMPTYFLAG  
Alldatainputsbecomeinactive.  
As previously mentioned the multi-queue flow-control device provides a  
single Programmable Almost Empty flag output, PAE. The PAE flag output  
providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred  
toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128)  
canbeselectediftheuserhasperformeddefaultprogramming.  
Allwrite andreadpointers maintaintheirlastvalue before powerdown.  
Allenables,chipselects,andclockinputpinsbecomeinactive.  
Alldataoutputsbecomeinactiveandenterhigh-impedancestate.  
Allflagoutputswillmaintaintheircurrentstatesbeforepowerdown.  
Allprogrammableflagoffsetsmaintaintheirvalues.  
Allechoclocks andenables willbecomeinactiveandenterhigh-  
impedancestate.  
TheserialprogrammingandJTAGportwillbecomeinactiveandenter  
high-impedancestate.  
AllsetupandconfigurationCMOSstaticinputsarenotaffected,asthese  
pins are tied to a known value and do not toggle during operation.  
Allinternalcounters,registers,andflagswillremainunchangedandmaintain  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia theircurrentstatepriortopowerdown.Clockinputscanbecontinuousandfree-  
thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti- runningduringpowerdown,butwillhavenoaffectonthepart.However,itis  
queuedeviceprogramming(alongwiththenumberofqueues,queuedepths recommendedthattheclockinputsbelowwhenthepowerdownisactive.To  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe exitpowerdownstateandresumenormaloperations,disablethepowerdown  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory signalbybringingitHIGH.Theremustbeaminimumof1µswaitingperiodbefore  
depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice readandwriteoperationscanresume.Thedevicewillcontinuefromwhereit  
canbedifferentvalues.  
hadstoppedandnoformofresetisrequiredafterexitingpowerdownstate.The  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput powerdownfeaturedoesnotprovideanypowersavingswhentheinputsare  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, configuredforLVTTLoperation.However,itwillreducethecurrentforI/Osthat  
onthethirdcycleafteranewqueueselectionismade,onthesameRCLKcycle are not tied directly to VCC or GND. See Figure 34, Power Down Operation,  
thatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.That fortheassociatedtimingdiagram.  
26  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Output Valid, OV Flag Boundary  
Full Flag, FF Boundary  
I/O Set-Up  
OV Boundary Condition  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
I/O Set-Up  
In36 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Boundary Condition  
In36 to out36 (Almost Empty Mode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D+1 Writes  
(seenotebelowfortiming)  
OV Goes LOW after 1st Write  
(seenote2belowfortiming)  
In36 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36toout36(PacketMode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out9  
(Writeportonlyselectedforqueue  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Writeportonlyselectedforqueue  
(seenotebelowfortiming)  
when the 1st Word is written in)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
1. OV Timing  
Assertion:  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
In18 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 4) Writes  
(seenotebelowfortiming)  
2. OV Timing when in Packet Mode (36 in to 36 out only)  
Assertion:  
Write to OV LOW: tSKEW4 + RCLK + tROV  
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV  
De-assertion:  
In9 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 4) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
in36 to out36  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in36 to out36  
PAF/PAFn Goes LOW after  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
in36 to out18  
in36 to out9  
in18 to out36  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
in9 to out36  
PAF/PAFn Goes LOW after  
([D+1-m] x 4) Writes  
(seenotebelowfortiming)  
27  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up PAE Assertion  
PAE Goes HIGH after n+2  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up PAEn Boundary Condition  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
in36 to out36  
in36 to out36  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out36  
PAEn Goes HIGH after  
in36 to out18  
PAE Goes HIGH after n+1  
(Bothportsselectedforsamequeuewhenthe1st Writes  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out18  
in36 to out9  
in18 to out36  
PAEn Goes HIGH after n+1  
in36 to out9  
PAE Goes HIGH after n+1  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st Writes  
PAEn Goes HIGH after n+1  
Writes(seebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in18 to out36  
PAE Goes HIGH after  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAE Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
in18 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
in9 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAEn Goes HIGH after  
in9 to out36  
PAE Timing  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 4) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
PACKET READY FLAG BUS, PRn BOUNDARY  
Assertion:  
PACKETREADYFLAG,PRBOUNDARY  
Assertion:  
Both the rising and falling edges of PRn are synchronous to RCLK.  
PRn Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Both the rising and falling edges of PR are synchronous to RCLK.  
PR Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Timing:  
Timing:  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK* + tPAE  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK + tPR  
If tSKEW4 is violated PRn goes LOW after tSKEW4 + 3 RCLK* + tPAE  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
De-assertion:  
IftSKEW4isviolated:  
PR goes LOW after tSKEW4 + 3 RCLK + tPR  
(PleaserefertoFigure19,DataInput(Transmit)PacketModeofOperation,  
fortimingdiagram).  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
3 RCLK* + tPAE  
De-assertion:  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
3 RCLK + tPR  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionor  
de-assertionthere maybe one additionalRCLKclockcycle delay.  
(PleaserefertoFigure20,DataOutput(Receive)PacketModeofOperation  
fortimingdiagram).  
28  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn - DIRECT BUS  
devicesholdtheirPAFnoutputsinHigh-Impedance.Whenthemasterdevice  
If FM is LOW at master reset then the PAFn bus operates in Direct hascycledallofitsquadrantsitpassesatokentothenextdeviceinthechain  
(addressed) mode. In direct mode the user can address the quadrant of andthatdeviceassumescontrolofthePAFnbusandthencyclesitsquadrants  
queuestheyrequiretobeplacedontothePAFnbus.Forexample,consider andsoon,thePAFnbuscontroltokenbeingpassedonfromdevicetodevice.  
the operationofthePAFnbus when26queues havebeensetup.Tooutput ThistokenpassingisdoneviatheFXOoutputsandFXIinputsofthedevices  
statusofthefirstquadrant,Queue[0:7]theWRADDbusisusedinconjunction (PAFExpansionOut”andPAFExpansionIn).TheFXOoutputofthemaster  
withtheFSTR(PAFflagstrobe)inputandWCLK.Theaddresspresentonthe deviceconnects totheFXIoftheseconddeviceinthechainandtheFXOof  
2leastsignificantbitsoftheWRADDbuswithFSTRHIGHwillbeselectedas thesecondconnectstotheFXIofthethirdandsoon.Thefinaldeviceinachain  
the quadrantaddress ona risingedge ofWCLK. Sotoaddress quadrant1, hasitsFXOconnectedtotheFXIofthefirstdevice,sothatoncethePAFnbus  
Queue[0:7]theWRADDbusshouldbeloadedwithxxxxxx00”,thePAFnbus hascycledthroughallquadrantsofalldevices,controlofthePAFnwillpass  
will change status to show the new quadrant selected 1 WCLK cycle after tothemasterdeviceagainandsoon.TheFSYNCofeachrespectivedevice  
quadrantselection.PAFn[0:7]getsstatusofqueues,Queue[0:7]respectively. willoperateindependentlyandsimplyindicatewhenthatrespectivedevicehas  
To address the second quadrant, Queue[8:15], the WRADD address is takencontrolofthebus andis placingits firstquadrantontothePAFnbus.  
“xxxxxx01”.PAFn[0:7]getsstatusofqueues,Queue[8:15]respectively.To  
WhenoperatinginsingledevicemodetheFXIinputmustbeconnectedto  
addressthethirdquadrant,Queue[16:23],theWRADDaddressisxxxxxx10”. theFXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
PAF[0:7]getsstatusofqueues,Queue[16:23]respectively.Toaddressthe tobe passedintothe device foraccessingthe PAFnbus.  
fourthquadrant,Queue[24:31],theWRADDaddressisxxxxxx11”.PAF[0:1]  
getsstatusofqueues,Queue[24:25]respectively.Remember,only26queues  
PleaserefertoFigure32,PAFnBusPolledModefortiminginformation.  
weresetup,sowhenquadrant4isselectedtheunusedoutputsPAF[2:7]will PAEn/PRn FLAG BUS OPERATION  
bedon'tcarestates.  
The IDT72T51546/72T51556 multi-queue flow-control device can be  
Note,thatifareadorwriteoperationis occurringtoaspecificqueue,say configured for up to 32 queues, each queue having its own almost empty/  
queuex’onthesamecycleasaquadrantswitchwhichwillincludethequeue packetreadystatus.Anactivequeuehasitsflagstatusoutputtothediscrete  
‘x’,thentheremaybeanextraWCLKcycledelaybeforethatqueues status flags,OV,PAE andPR,onthereadport.Queues thatarenotselectedfora  
is correctly shown on the respective output of the PAFn bus. However, the readoperationcanhavetheirPAE/PRstatusmonitoredviathePAEn/PRnbus.  
activePAFflagwillshowcorrectstatusatalltimes.  
ThePAEn/PRnflagbusis8bitswide,sothat8queuesatatimecanhavetheir  
Quadrantscanbeselectedonconsecutiveclockcycles,thatisthequadrant statusoutputtothebus.If9ormorequeuesaresetupwithinadevicethenthere  
on the PAFn bus can change every WCLK cycle. Also, data present on the are2methodsbywhichthedevicecansharethebusbetweenqueues,"Direct"  
inputbus,Din,canbewrittenintoaQueueonthesameWCLKrisingedgethat modeand"Polled"modedependingonthestateoftheFM(FlagMode)input  
a quadrant is being selected, the only restriction being that a write queue duringaMasterReset.If8orlessqueuesaresetupwithinadevicetheneach  
selectionandPAFnquadrantselectioncannotbemadeonthesamecycle. willhaveitsowndedicatedoutputfromthebus.If8orlessqueuesaresetup  
If8orlessqueuesaresetupthenqueues,Queue[0:7]havetheirPAFstatus insingledevicemode,itisrecommendedtoconfigurethePAFnbustopolled  
outputonPAF[0:7]constantly.  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone  
mode as it does not require using the write address (WRADD).  
devicethePAFnbussesofalldevicesareconnectedtogether,whenswitching PAEn/PRn - DIRECT BUS  
betweenquadrantsofdifferentdevicestheusermustutilizethe3mostsignificant  
If FM is LOW at master reset then the PAEn/PRn bus operates in Direct  
bits of the WRADD address bus (as well as the 2 LSBs). These 3 MSB’s (addressed) mode. In direct mode the user can address the quadrant of  
correspondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1&ID2. queues they require to be placed on to the PAEn/PRn bus. For example,  
PleaserefertoFigure29PAFn-DirectModeQuadrantSelectionfortiming consider the operation of the PAEn/PRn bus when 26 queues have been  
information. AlsorefertoTable 1, Write Address Bus, WRADD.  
setup.Tooutputstatusofthefirstquadrant,Queue[0:7]theRDADDbusisused  
in conjunction with the ESTR (PAE/PR flag strobe) input and RCLK. The  
addresspresentonthe2leastsignificantbitsoftheRDADDbuswithESTR  
PAFn – POLLED BUS  
IfFMisHIGHatmasterresetthenthePAFnbusoperatesinPolled(looped) HIGHwillbeselectedasthequadrantaddressonarisingedgeofRCLK.So  
mode. In polled mode the PAFn bus automatically cycles through the 4 to address quadrant 1, Queue[0:7] the RDADD bus should be loaded with  
quadrantswithinthedeviceregardlessofhowmanyqueueshavebeensetup xxxxxx00”,thePAEn/PRnbuswillchangestatustoshowthenewquadrant  
in the part. Every rising edge of the WCLK causes the next quadrant to be selected 1 RCLK cycle after quadrant selection. PAEn[0:7] gets status of  
loadedonthe PAFnbus.Thedeviceconfiguredas themaster(MASTinput queues,Queue[0:7]respectively.  
tiedHIGH),willtakecontrolofthePAFnafterMRSgoesLOW.Forthewhole  
To address the second quadrant, Queue[8:15], the RDADD address is  
WCLKcycle thatthe firstquadrantis onPAFnthe FSYNC(PAFnbus sync) xxxxxx01”.PAEn[0:7]getsstatusofqueues,Queue[8:15]respectively.To  
outputwillbeHIGH,forallotherquadrants,thisFSYNCoutputwillbeLOW. addressthethirdquadrant,Queue[16:23],theRDADDaddressisxxxxxx10”.  
This FSYNC output provides the user with a mark with which they can PAE[0:7]getsstatusofqueues,Queue[16:23]respectively.Toaddressthe  
synchronizetothePAFnbus,FSYNCisalwaysHIGHfortheWCLKcyclethat fourthquadrant,Queue[24:31],theRDADDaddressisxxxxxx11”.PAE[0:1]  
the firstquadrantofa device is presentonthe PAFnbus.  
getsstatusofqueues,Queue[24:25]respectively.Remember,only26queues  
Whendevices areconnectedinexpansionmode,onlyonedevicewillbe weresetup,sowhenquadrant4isselectedtheunusedoutputsPAE[2:7]will  
setas the Master, MASTinputtied HIGH, allotherdevices willhave MAST bedon'tcarestates.  
tiedLOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAFnbus  
Note,thatifareadorwriteoperationis occurringtoaspecificqueue,say  
andwillplaceitsfirstquadrantonthebusontherisingedgeofWCLKafterthe queuex’onthesamecycleasaquadrantswitchwhichwillincludethequeue  
MRS input goes HIGH. For the next 3 WCLK cycles the master device will ‘x’, thenthere maybe anextra RCLKcycle delaybefore thatqueues status  
maintaincontrolofthePAFnbusandcycleitsquadrantsthroughit,allother is correctlyshownontherespectiveoutputofthe PAEn/PRnbus.  
29  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Quadrantscanbeselectedonconsecutiveclockcycles,thatisthequadrant cansynchronizetothePAEn/PRnbus,ESYNCisalwaysHIGHfortheRCLK  
onthePAEn/PRnbuscanchangeeveryRCLKcycle.Also,datacanberead cyclethatthefirstquadrantofadeviceis presentonthePAEn/PRnbus.  
outofaQueueonthesameRCLKrisingedgethataquadrantisbeingselected,  
theonlyrestrictionbeingthatareadqueueselectionandPAEn/PRnquadrant setastheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtied  
selectioncannotbemadeonthesameRCLKcycle. LOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAEn/PRnbus  
If8orless queues aresetupthenqueues,Queue[0:7]havetheirPAE/PR andwillplaceitsfirstquadrantonthebusontherisingedgeofRCLKafterthe  
statusoutputonPAE[0:7]constantly. MRSinputgoesLOW.Forthenext3RCLKcyclesthemasterdevicewillmaintain  
When devices are connected in expansion mode, only one device will be  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone controlofthePAEn/PRnbusandcycleitsquadrantsthroughit,allotherdevices  
device the PAEn/PRn busses of all devices are connected together, when holdtheirPAEn/PRnoutputsinHigh-Impedance.Whenthemasterdevicehas  
switchingbetweenquadrantsofdifferentdevicestheusermustutilizethe3most cycledallofitsquadrantsitpassesatokentothenextdeviceinthechainand  
significant bits of the RDADD address bus (as well as the 2 LSBs). These 3 thatdeviceassumescontrolofthePAEn/PRnbusandthencyclesitsquadrants  
MSBscorrespondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1 andsoon, the PAEn/PRnbus controltokenbeingpassedonfromdevice to  
& ID2.  
device.ThistokenpassingisdoneviatheEXOoutputsandEXIinputsofthe  
PleaserefertoFigure28,PAEn/PRn-DirectModeQuadrantSelectionfor devices(PAEExpansionOut”andPAEExpansionIn).TheEXOoutputof  
timinginformation.AlsorefertoTable2,ReadAddressBus,RDADD.  
PAEn – POLLED BUS  
themasterdeviceconnectstotheEXIoftheseconddeviceinthechainandthe  
EXOofthesecondconnectstotheEXIofthethirdandsoon.Thefinaldevice  
inachainhasitsEXOconnectedtotheEXIofthefirstdevice,sothatoncethe  
If FM is HIGH at master reset then the PAEn/PRn bus operates in Polled PAEn/PRnbushascycledthroughallquadrantsofalldevices,controlofthe  
(looped)mode.InpolledmodethePAEn/PRnbusautomaticallycyclesthrough PAEn/PRnwillpasstothemasterdeviceagainandsoon.TheESYNCofeach  
the4quadrantswithinthedeviceregardlessofhowmanyqueueshavebeen respective device will operate independently and simply indicate when that  
setupinthepart.EveryrisingedgeoftheRCLKcauses thenextquadrantto respectivedevicehastakencontrolofthebusandisplacingitsfirstquadrant  
beloadedonthePAEn/PRnbus.Thedeviceconfiguredasthemaster(MAST ontothe PAEn/PRnbus.  
inputtiedHIGH),willtakecontrolofthePAEn/PRnafterMRSgoesLOW.For  
WhenoperatinginsingledevicemodetheEXIinputmustbeconnectedto  
thewholeRCLKcyclethatthefirstquadrantisonPAEn/PRntheESYNC(PAEn/ theEXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
PRnbussync)outputwillbeHIGH,forallotherquadrants,thisESYNCoutput tobepassedintothedeviceforaccessingthePAEnbus.  
willbeLOW.ThisESYNCoutputprovidestheuserwithamarkwithwhichthey  
PleaserefertoFigure33,PAEn/PRnBus–PolledModefortiminginformation.  
30  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ECHO READ CLOCK (ERCLK)  
slowerthantheslowestQn,dataoutput.RefertoFigure3,EchoReadClock  
TheEchoReadClockoutputisprovidedinbothHSTLandLVTTLmode, and Data Output Relationship and Figure 27, Echo RCLK & Echo REN  
selectableviaIOSEL.TheERCLKisafree-runningclockoutput,itwillalways Operationfortiminginformation.  
follow the RCLK input regardless of REN and RADEN.  
TheERCLKoutputfollowstheRCLKinputwithanassociateddelay.This ECHO READ ENABLE (EREN)  
delayprovidestheuserwithamoreeffectivereadclocksourcewhenreading  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
data from the Qn outputs. This is especially helpful at high speeds when selectableviaIOSEL.  
variableswithinthedevicemaycausechangesinthedataaccesstimes.These  
The EREN output is provided to be used in conjunction with the ERCLK  
variations in access time maybe caused by ambient temperature, supply outputandprovidesthereadingdevicewithamoreeffectiveschemeforreading  
voltage,devicecharacteristics.TheERCLKoutputalsocompensatesforany datafromtheQnoutputportathighspeeds.TheERENoutputiscontrolledby  
tracelengthdelaysbetweentheQndataoutputsandreceivingdevicesinputs. internallogicthatbehavesasfollows:TheERENoutputisactiveLOWforthe  
Anyvariationseffectingthedataaccesstimewillalsohaveacorresponding RCLK cycle that a new word is read out of the Queue. That is, a rising edge  
effect on the ERCLK output produced by the Queue device, therefore the ofRCLKwillcauseERENtogoactive(LOW)ifRENis activeandtheQueue  
ERCLKoutputleveltransitionsshouldalwaysbeatthesamepositionintime isNOTempty.  
relativetothedataoutputs.Note,thatERCLKisguaranteedbydesigntobe  
RCLK  
tERCLK  
tERCLK  
ERCLK  
tD  
tA  
Q
SLOWEST(3)  
5998 drw08  
NOTES:  
1. REN is LOW. OE is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
Figure 3. Echo Read Clock and Data Output Relationship  
31  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to Queue  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
L
IW OW  
A
B
C
D
Read from Queue  
L
L
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
1st: Read from Queue  
2nd: Read from Queue  
C
D
L
L
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
B
(b) x36 INPUT to x18 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
D
1st: Read from Queue  
2nd: Read from Queue  
L
H
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
Q8-Q0  
B
3rd: Read from Queue  
4th: Read from Queue  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
(c) x36 INPUT to x9 OUTPUT  
D35-D27  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
B
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
B
C
A
Read from Queue  
H
L
(d) x18 INPUT to x36 OUTPUT  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to Queue  
2nd: Write to Queue  
D8-D0  
B
D8-D0  
C
3rd: Write to Queue  
4th: Write to Queue  
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
C
B
A
Read from Queue  
5998 drw09  
H
H
(e) x9 INPUT to x36 OUTPUT  
Figure 4. Bus-Matching Byte Arrangement  
32  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW,  
BM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
FM  
MAST  
PKT  
t
RSS  
HIGH = Master Device  
LOW = Slave Device  
tRSS  
HIGH = Packet Ready Mode  
LOW = Almost Empty  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
DFM  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC "0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
tRSF  
tRSF  
tRSF  
tRSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
PR  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PRn  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
5998 drw10  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 5. Master Reset  
33  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-3  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
tAS  
tAH  
WRADD  
Qx  
tWFF  
FF  
tWAF  
PAF  
tPAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQS  
tQH  
RADEN  
tAS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
tPAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
r+4  
5998 drw11  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 3 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 6. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
MRS  
DFM  
DFM  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SENO  
SO  
SENI  
SENI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SI  
SI  
SI  
SCLK  
SCLK  
SCLK  
5998 drw12  
Serial Clock  
Figure 7. Serial Port Connection for Serial Programming  
34  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
37  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W3  
W1  
W2  
Dn  
tSKEW1  
1
2
RCLK  
REN  
Qout  
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Qy  
FWFT  
W2 Qy  
FWFT  
W3 Qy  
tROV  
tROV  
OV  
5998 drw16  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 11. Write Operations & First Word Fall Through  
38  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
39  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
40  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q30  
D1 Q15  
tQS  
tQH  
tQH  
tQS  
t
A
tA  
t
A
t
A
t
tOLZ  
Qout  
(Device 1)  
D
1
Q
30  
WD  
Last Word  
D
1
Q
15  
D1  
Q
15 We Last Word  
W0 Q15  
PFT We-1  
D
1
t
ROV  
tROV  
tROV  
ROV  
t
OVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
WEN  
tENH  
tENS  
tAS  
tAH  
WRADD  
D1 Q15  
tQS  
tQ  
H
WADEN  
Din  
tDS  
tDH  
D
1
W
Q
15  
0
5998 drw19  
Cycle:  
*A* Queue 30 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* After a queue switch, there is a 3 RCLK latency for output data.  
*D* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q30 of D1. This happens to be the last word of Q30. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q30 is valid.  
*E* Queue 15 of device 1 is selected for read operations. The last word of Q30 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q30 was read to empty). Word, Wd remains on the output bus.  
*F* The last word of Q30 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*G* The next word (We-1), available from the newly selected queue, Q15 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag updates 3 RCLK cycles after a queue selection.  
*H* The last word, We is read from Q15, this queue is now empty.  
*I* The OV flag goes HIGH to indicate that Q15 was read to empty on the previous cycle.  
*J* Due to a write operation the OV flag goes LOW and data word W0 is read from Q15. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 14. Output Valid Flag Timing (In Expansion Mode)  
41  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
42  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EO  
43  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
44  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
45  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
46  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
47  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NULL QUEUE  
NEW QUEUE  
*D*  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
*G*  
RCLK  
tAS  
tAH  
tAS  
tAH  
00100000  
00000100  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tAS  
tAH  
Null-Q  
tENS  
tENH  
REN  
tA  
tA  
tA  
tA  
t
A
Q4 W0  
FWFT  
Qout  
OV  
Q1 Wn-4  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
tROV  
tROV  
5998 drw26  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 22, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-3 from previously selected Q1 is read.  
*C* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 3 RCLK cycles between queue selects.  
*D* The Null Q is seen as an empty Queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH. A new queue, Q4 is selected.  
*G* 1st word, W0 of Q4 falls through present on the O/P register after 3 RCLK cycles after the queue select.  
Figure 21. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
Null  
Queue  
Null  
Queue  
Queue 4  
Memory  
Queue 4  
Memory  
Queue 1  
Memory  
Queue 1  
Memory  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Q4  
Wn  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Wn-2  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
5998 drw27  
Figure 22. Null Queue Flow Diagram  
48  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
WRADD  
D1 Q5  
D1 Q9  
tQS  
tQH  
tQH  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q5  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
5998 drw28  
Cycle:  
*A* Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* No write occurs.  
*D* Word, Wd-m is written into Q5 causing the PAF flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + tWAF.  
*E* Queue 9 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + tWAF latency.  
*F* The PAF flag goes LOW based on the write 2 cycles earlier.  
*G* No write occurs.  
*H* The PAF flag goes HIGH due to the queue switch to Q9.  
Figure 23. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D - (m+1) words in Queue(2)  
D-(m+1) words  
in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
5998 drw29  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 24. Almost Full Flag Timing  
49  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q30  
D1 Q15  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
t
A
tA  
tA  
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D
1
Q30  
Wn  
D
1
Q30  
Wn+1  
D1  
Q15  
W0  
D1 Q15 W1  
tRAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
5998 drw30  
Cycle:  
*A* Queue 30 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* No read occurs.  
*D* The PAE flag output now switches to device 1. Word, Wn is read from Q30 due to the FWFT operation. This read operation from Q30 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*E* Q15 of device 1 is selected.  
*F* The PAE flag goes LOW due to the read from Q30 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*G* Word, W0 is read from Q15 due to the FWFT operation.  
*H* The PAE flag goes HIGH to show that Q15 is not almost empty.  
Figure 25. Almost Empty Flag Timing and Queue Switch  
tCLKL  
tCLKH  
WCLK  
tENH  
tENS  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
5998 drw31  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 26. Almost Empty Flag Timing  
50  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ERN  
51  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tQS  
tQH  
t
QS  
tQS  
Quadrant 0  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Quadrant 2  
Quadrant 3  
001xxx10  
001xxx11  
001xxx00  
RDADD  
ESTR  
tSTS  
tSTH  
tSTS  
tSTH  
tPAE  
tPAE  
tPAE  
PAEn/  
PRn  
Device 1 Quadrant 2  
Device 1 Quadrant 3  
Device 1 Quadrant 0  
5998 drw33  
NOTES:  
1. Quadrants can be selected on consecutive cycles.  
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.  
3. There is a latency of 2 RCLK for the PAEn bus to switch.  
Figure 28. PAEn/PRn - Direct Mode - Quadrant Selection  
WCLK  
tQS  
tQH  
t
QS  
tQS  
Quadrant 2  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Quadrant 1  
Quadrant 3  
001xxx01  
001xxx11  
001xxx10  
WRADD  
FSTR  
tSTS  
tSTH  
tSTS  
tSTH  
tPAF  
tPAF  
tPAF  
PAFn  
Device 1 Quadrant 1  
Device 1 Quadrant 3  
Device 1 Quadrant 2  
5998 drw34  
NOTES:  
1. Quadrants can be selected on consecutive cycles.  
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.  
3. There is a latency of 2 WCLK for the PAFn bus to switch.  
Figure 29. PAFn - Direct Mode - Quadrant Selection  
52  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
3
*E*  
*F*  
*G*  
*H*  
WCLK  
WADEN  
FSTR  
tQS  
tQH  
tQS  
tQH  
t
QS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
D4 quad 3  
D3Q8  
011 01000  
WRADD  
Dn  
D5Q24  
100 11000  
tDS  
tDH  
tDS  
t
DS  
100 xxx10  
t
DH  
t
DH  
Wp  
Wp+1  
Wp+2  
Wn+1  
D5Q24  
Wn  
Wx  
D3 Q8  
D5 Q24  
Writes to Previous Q  
t
SKEW3  
RCLK  
RADEN  
ESTR  
1
2
3
1
2
3
tQS  
tQH  
tSTS  
t
STH  
t
ENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
D5 quad 4  
D5Q24  
100 11000  
101 xxx11  
tA  
t
A
tA  
t
A
t
A
Wy+1  
D5 Q24  
Wy  
D5 Q24  
Wy+2  
D5 Q24  
Wy+3  
D5 Q24  
Device 5 -Qn  
Wa  
D5 Q17  
Wa+1  
D5 Q17  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
xxxx xxx0  
D5Quad4  
xxxx xxx1  
D5Quad 4  
Device 5 PAEn  
xxxx xxx0  
D5Quad4  
xxxx xxx1  
D5Quad 4  
Previous value loaded on to PAE bus  
D5 Q17 Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q24  
status  
Device 5 PAE  
5998 drw35  
*FF*  
*AA*  
*BB*  
*CC*  
*DD*  
*GG*  
*EE*  
Cycle:  
*A* Queue 24 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 24 of Device 5 is selected for read operations.  
A quadrant from another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Current Word is kept on the output bus since REN is HIGH.  
*C* Word Wp+2 is written into the previously selected queue.  
*CC* Word Wa+1 of D5 Q17 is read due to FWFT.  
*D* Word, Wn is written into the newly selected queue, Q24 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added).  
*DD* Word, Wy from the newly selected queue, Q24 will be read out due to FWFT operation.  
Quadrant 4 of Device 5 is selected on the PAEn bus. Q24 of device 5 will therefore have is PAE status output on PAE[0]. There is a single RCLK cycle latency before  
the PAEn bus changes to the new selection.  
*E* Queue 8 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q24 of D5.  
*EE* Word, Wy+1 is read from Q24 of D5.  
*F* No writes occur.  
*FF* Word, Wy+2 is read from Q24 of D5.  
The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and quadrant 4 is placed onto the outputs. The device of the previously selected  
quadrant now places its PAEn outputs into High-Impedance to prevent bus contention.  
The discrete PAE flag will go HIGH to show that Q24 of D5 is not almost empty. Q24 of device 5 will have its PAE status output on PAE[0].  
*G* Quadrant 3 of device 4 is selected on the write port for the PAFn bus.  
*GG* The PAEn bus updates to show that Q24 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q24 of D5 is almost empty based on the reading of Wy+1.  
*H* Word, Wx is written into Q8 of D3.  
Figure 30. PAEn - Direct Mode, Flag Operation  
53  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAH  
tAS  
tAS  
D7 quad 1  
RDADD  
D6Q2  
D0Q31  
110 00010  
111 xxx00  
000 11111  
OE  
t
A
t
A
tA  
t
A
tOLZ  
Qout  
W
X
W
X +1  
Prev. Q  
W
D0 Q31  
D - M + 2  
W0  
D6 Q2  
W
D0 Q31  
D-M+1  
Prev. Q  
t
SKEW3  
WCLK  
FSTR  
1
2
3
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
D0 quad4  
000 xxx11  
D0 Q31  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
W
y+1  
Wy+2  
Word W  
y
D0 Q31  
D0 Q31  
D0 Q31  
tPAFLZ  
tPAF  
tPAF  
Device 0 PAFn  
0xxx xxxx  
0xxx xxxx  
1xxx xxxx  
1xxx xxxx  
0xxx xxxx  
0xxx xxxx  
D0Quad4  
D0Quad4  
D0Quad4  
D0Quad4  
D0Quad4  
HIGH-Z  
DXQuad y  
D0Quad4  
Bus PAFn  
tPAFHZ  
HIGH-Z  
D
XQuad y  
Prev.  
PAFn  
tPAFLZ  
tWAF  
Device 0  
HIGH - Z  
5998 drw36  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
*GG*  
Cycle:  
*A* Queue 31 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Quadrant 4 of device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected quadrant, Quad Y of device X.  
*B* No read operation.  
*BB* Queue 31 of device 0 is selected on the write port.  
*C* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*CC* PAFn continues to show status of Quad4 D0.  
The PAFn bus is updated with the quadrant selected on the previous cycle, D0 Quad 4. PAF[7] is LOW showing the status of queue 31.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*D* A new quadrant, Quad 1 of Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q31 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q31. This read will cause the PAF[7] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*DD* No write operation.  
*E* No read operations occur, REN is HIGH.  
*EE* PAF[7] goes HIGH to show that D0 Q31 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q31.  
*F* Queue 2 of Device 6 is selected for read operations.  
*FF* Word, Wy+1 is written into D0 Q31.  
*G* Word, Wd-m+2 is read out due to FWFT operation.  
*GG* PAF[7] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q31 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q31.  
*H* No read operation.  
*I* Word, W0 is read from Q0 of D6, selected on cycle *F*, due to FWFT.  
Figure 31. PAFn - Direct Mode, Flag Operation  
54  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
APF  
55  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
P
PAE  
56  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
WEN  
tDH  
tDS  
tDH  
tDS  
tDS  
tDH  
tDS  
WD10  
WD11  
WD12  
WD13  
D[39:0]  
1ns  
(1)  
3
1
2
4
RCLK  
REN  
(7)  
PDHZ  
(2)  
t
tPDLZ  
tA  
tA  
t
A
tA  
Hi-Z  
WD1  
WD2  
WD3  
WD4  
WDH  
WDS  
Q[39:0]  
(2)  
PDH  
t
(2)  
PDH  
t
tPDL  
PD  
tERCLK  
Hi-Z  
Hi-Z  
ERCLK  
tEREN  
tEREN  
EREN  
5998 drw39  
NOTES:  
1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted.  
2. When the PD input becomes deasserted, there will be a 1µs waiting period before read and write operations can resume.  
All input and output signals will also resume after this time period.  
3. Set-up and configuration static inputs are not affected during power down.  
4. Serial programming and JTAG programming port are inactive during power down.  
5. RCS = 0, WCS = 0 and OE = 0. These signals can toggle during and after power down.  
6. All flags remain active and maintain their current states.  
7. During power down, all outputs will be in high-impedance.  
Figure 34. Power Down Operation  
57  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q -Q  
D -D  
0
35  
0
35  
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
RDADD  
RADEN  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
OV  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
Packet  
Reads  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
PR  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q -Q  
D -D  
0
35  
0
35  
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
5998 drw40  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 35. Multi-Queue Expansion Diagram  
58  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T51546/72T51556  
incorporatesthenecessarytapcontrollerandmodifiedpadcellstoimplement  
theJTAGfacility.  
Thefollowingsections provideabriefdescriptionofeachelement.Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5998 drw41  
Figure 36. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor.Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
59  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
5998 drw42  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 37. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IRThis state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-ScanThis is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
60  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
JTAG INSTRUCTION REGISTER  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate.Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth.Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current.Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata.Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions.Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
04  
0F  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsections provideabriefdescriptionofeachelement.Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO.Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction.For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports.TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
THE DEVICE IDENTIFICATION REGISTER  
IDCODE  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDTJEDECIDnumberis0xB3.Thistranslatesto0x33whentheparityis  
droppedinthe11-bitManufacturerIDfield.  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
For the IDT72T51546/72T51556, the Part Number field contains the  
followingvalues:  
Device  
IDT72T51546  
IDT72T51556  
Part# Field (HEX)  
0x48C  
0x48D  
SAMPLE/PRELOAD  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
61  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
62  
IDT72T51546/72T515562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)36BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5998 drw43  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 38. Standard JTAG Timing  
JTAGACELECTRICAL  
CHARACTERISTICS  
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
IDT72T51546  
IDT72T51556  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
63  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
5
6
Commercial Only  
Commercial and Industrial  
Low Power  
L
72T51546 1,179,648 bits 2.5V Multi-Queue Flow-Control Device  
72T51556 2,359,296 bits 2.5V Multi-Queue Flow-Control Device  
5998 drw44  
NOTE:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
DATASHEETDOCUMENTHISTORY  
06/06/2003  
11/06/2003  
pgs. 1 through 64.  
pgs. 1, 4, 17 and 18.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
64  

相关型号:

IDT72T51546L5BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51546L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51546L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51546L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51546L7-5BB

FIFO, 32KX36, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51546L7-5BBI

FIFO, 32KX36, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51553

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L5BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L5BB8

FIFO, 128KX18, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51553L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L6BB8

FIFO, 128KX18, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT