IDT72T51553L5BBI [IDT]

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION; 2.5V多队列流量控制的设备( 32队列) 18位宽的配置
IDT72T51553L5BBI
型号: IDT72T51553L5BBI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
2.5V多队列流量控制的设备( 32队列) 18位宽的配置

文件: 总57页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
2.5V MULTI-QUEUE FLOW-CONTROL DEVICES  
(32 QUEUES) 18 BIT WIDE CONFIGURATION  
1,179,648 bits and 2,359,296 bits  
IDT72T51543  
IDT72T51553  
Shows PAE and PAF status of 8 Queues  
Direct or polled operation of flag status bus  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
– x18in to x18out  
– x9in to x18out  
FEATURES:  
Choose from among the following memory density options:  
IDT72T51543  
IDT72T51553  
Configurable from 1 to 32 Queues  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 512 x 18 or 1,024 x 9  
Independent Read and Write access per queue  
User programmable via serial port  
User selectable I/O: 2.5V LVTTL, 1.5V HSTL, 1.8V eHSTL  
Default multi-queue device configurations  
IDT72T51543 : 2,048 x 18 x 32Q  
– x18in to x9out  
– x9in to x9out  
FWFT mode of operation on read port  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
Power Down Input provides additional power savings in HSTL  
and eHSTL modes.  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
IDT72T51553 : 4,096 x 18 x 32Q  
100% Bus Utilization, Read and Write on every clock cycle  
200 MHz High speed operation (5ns cycle time)  
3.6ns access time  
Echo Read Enable & Echo Read Clock Outputs  
Individual, Active queue flags (OV, FF, PAE, PAF)  
8 bit parallel flag status on both read and write ports  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
RADEN  
ESTR  
Q0  
WADEN  
FSTR  
RDADD  
8
WRADD  
REN  
Q1  
Q2  
8
RCLK  
WEN  
EREN  
WCLK  
ERCLK  
OE  
Q
out  
x9, x18  
D
in  
x9, x18  
DATA IN  
DATA OUT  
OV  
FF  
PAF  
PAFn  
PAE  
PAEn  
Q31  
8
8
5999 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
NOVEMBER 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5999/3  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
Echo Read Enable, EREN and Echo Read Clock, ERCLK outputs are  
provided.Theseareoutputs fromthereadportofthequeuethatarerequired  
forhighspeeddatacommunication,toprovidetightersynchronizationbetween  
thedatabeingtransmittedfromtheQnoutputsandthedatabeingreceivedby  
theinputdevice.Datareadfromthereadportisavailableontheoutputbuswith  
respecttoERENandERCLK,thisisveryusefulwhendataisbeingreadathigh  
speed.  
Themulti-queueflow-controldevicehasthecapabilityofoperatingitsIOin  
either2.5VLVTTL,1.5VHSTLor1.8VeHSTLmode.ThetypeofIOisselected  
viatheIOSELinput.Thecoresupplyvoltage(VCC)tothemulti-queueisalways  
2.5V,howevertheoutputlevelscanbesetindependentlyviaaseparatesupply,  
VDDQ.  
ThedevicesalsoprovideadditionalpowersavingsviaaPowerDownInput.  
This input disables the write port data inputs when no write operations are  
required.  
DESCRIPTION:  
TheIDT72T51543/72T51553multi-queueflow-controldevicesaresingle  
chipwithinwhichanywherebetween1and32discreteFIFOqueuescanbe  
setup.Allqueueswithinthedevicehaveacommondatainputbus,(writeport)  
andacommondataoutputbus,(readport).Datawrittenintothewriteportis  
directed to a respective queue via an internal de-multiplex operation, ad-  
dressedbytheuser.Datareadfromthereadportisaccessedfromarespective  
queueviaaninternalmultiplexoperation,addressedbytheuser.Datawrites  
andreadscanbeperformedathighspeedsupto200MHz,withaccesstimes  
of3.6ns.Datawriteandreadoperationsaretotallyindependentofeachother,  
aqueuemaybeselectedonthewriteportandadifferentqueueontheread  
portorbothportsmayselectthesamequeuesimultaneously.  
The device provides Full flag and Output Valid flag status for the queue  
selected for write and read operations respectively. Also a Programmable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two8bitprogrammableflagbussesareavailable,providingstatusofqueues  
notselectedforwriteorreadoperations.When8orlessqueuesareconfigured  
in the device these flag busses provide an individual flag per queue, when  
morethan8queuesareused,eitheraPolledorDirectmodeofbusoperation  
providestheflagbusseswithallqueuesstatus.  
BusMatchingisavailableonthisdevice,eitherportcanbe9bitsor18bits  
wide.WhenBusMatchingisusedthedeviceensuresthelogicaltransferof  
datathroughputinaLittleEndianmanner.  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueuesbetween1and32,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
AJTAGtestportisprovided,herethemulti-queuedevicehasafullyfunctional  
BoundaryScanfeature,compliantwithIEEE1149.1StandardTestAccessPort  
andBoundaryScanArchitecture.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
in  
x9, x18  
- D  
D
0
17  
WCLK  
WEN  
INPUT  
DEMUX  
TMS  
8
WRADD  
WADEN  
Write Control  
Logic  
TDI  
JTAG  
Logic  
TDO  
TCK  
TRST  
Write Pointers  
PAF  
General Flag  
Monitor  
FSTR  
PAFn  
8
FSYNC  
Upto 32  
FIFO  
Queues  
FXO  
FXI  
OV  
Active Q  
Flags  
PAE  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
8
SI  
SO  
PAEn  
Serial  
ESTR  
ESYNC  
SCLK  
Multi-Queue  
Programming  
SENI  
EXI  
SENO  
EXO  
Read Pointers  
FM  
IW  
8
Reset  
Logic  
RDADD  
Read Control  
Logic  
OW  
RADEN  
NULL-Q  
MAST  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
Offset  
DFM  
OUTPUT  
REGISTER  
EREN  
PRS  
MRS  
ERCLK  
5999 drw02  
IOSEL  
Vref  
IO Level Control  
&
Power Down  
OE  
Q
- Q  
17  
0
PD  
Q
x9, x18  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D17  
D13  
D16  
GND  
D12  
D11  
GND  
D10  
D9  
Q9  
Q8  
Q7  
Q15  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
FM  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID2  
ID1  
ID0  
Q3  
Q2  
Q1  
Q6  
Q5  
Q4  
Q12  
Q11  
Q14  
Q13  
B
C
D
E
F
D8  
TRST  
IOSEL  
Q0  
Q10  
Q16  
DNC  
Q17  
DNC  
DNC  
VDDQ  
VCC  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
VCC  
VCC  
VDDQ  
VDDQ  
VCC  
V
CC  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
VDDQ  
VCC  
VDDQ  
VCC  
GND  
VCC  
VDDQ  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
MAST  
G
H
J
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PD  
GND  
NULL-Q  
GND  
GND  
GND  
VCC  
DNC  
GND  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
VCC  
K
L
VREF  
VCC  
VCC  
VCC  
VCC  
GND  
ADVANCE  
SI  
VDDQ  
GND  
GND  
GND  
GND  
VCC  
DFM  
DF  
VCC  
GND  
VDDQ  
IW  
OW  
GND  
GND  
M
N
P
R
T
SENO  
SENI  
OE  
SO  
VDDQ  
VDDQ  
VCC  
VCC  
GND  
VCC  
VDDQ  
VDDQ  
RDADD0 RDADD1  
VCC  
VDDQ  
WRADD1 WRADD0 SCLK  
RDADD2 RDADD3 RDADD4  
RDADD5 RDADD6 RDADD7  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
V
DDQ  
V
DDQ  
WRADD4 WRADD3 WRADD2 WADEN  
FF  
OV  
PAF3  
PAF6  
PAF7  
PAE  
PAE6  
PAE7  
PAE3  
INFORMATION  
WRADD6 WRADD5 FSYNC  
ESTR ESYNC  
FSTR  
PAF  
EREN  
REN  
PAE2  
PAE1  
RADEN  
PAF2  
PAF5  
PAE5  
ERCLK  
PAF4  
DNC  
EXO  
EXI  
WRADD7 FXI  
FXO  
WEN  
PRS  
MRS  
RCLK  
PAE4  
PAE0  
PAF0  
PAF1  
WCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
5999 drw03  
NOTE:  
1. DNC - Do Not Connect.  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
provides a user programmable almost full flag for all 32 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall32queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto32FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and32queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
MEMORYORGANIZATION/ALLOCATION  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
512x18or1,024x9bits.Whentheuserisconfiguringthenumberofqueues  
andindividualqueue sizes the usermustallocate the memorytorespective  
queues,inunitsofblocks,thatis,asinglequeuecanbemadeupfrom0tom  
blocks,wheremisthetotalnumberofblocksavailablewithinadevice.Alsothe  
totalsize of anygiven queue mustbe in increments of 512 x 18or1,024 x 9.  
Forthe IDT72T51543andIDT72T51553the TotalAvailable Memoryis 128  
and256blocks respectively(a blockbeing512x18or1,024x9). Ifanyport  
is configured for x18 bus width, a block size is 512 x 18. If both the write and  
readports are configuredforx9bus width, a blocksize is 1,024x9. Queues  
canbebuiltfromtheseblockstomakeanysizequeuedesiredandanynumber  
ofqueuesdesired.  
PROGRAMMABLE FLAG BUSSES  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis8bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis8bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 32 queues in the device.  
IntheIDT72T51543/72T51553multi-queueflow-controldevicestheuser  
has theoptionofutilizinganywherebetween1and32queues,thereforethe  
8bitflagstatusbussesaremultiplexedbetweenthe32queues,aflagbuscan  
onlyprovidestatusfor8ofthe32queuesatanymoment,thisisreferredtoas  
aQuadrant,suchthatwhenthebusisprovidingstatusofqueues1through  
8,thisisquadrant1,whenitisqueues9through16,thisisquadrant2andso  
onuptoquadrant4. Ifless than32queues are setupinthe device, there are  
still4quadrants,suchthatinPolled”modeofoperationtheflagbuswillstillcycle  
through4quadrants.Ifforexampleonly22 queuesaresetup,quadrants1and  
2 will reflect status of queues 1 through 8 and 9 through 16 respectively.  
Quadrant3willreflectthestatusofqueues17through22ontheleastsignificant  
6bits,themostsignificant2bitsoftheflagbusaredontcareandthe4thquadrant  
outputswillbedontcarealso.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9orx18bitswide,thereadandwriteportwidths  
beingsetindependentlyofoneanother.Becausetheportsarecommontoall  
queuesthewidthofthequeuesisnotindividuallyset,sothattheinputwidthof  
all queues are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as a  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
The flag busses are available in two user selectable modes of operation,  
Polled”orDirect.Whenoperatinginpolledmodeaflagbusprovidesstatus  
ofeachquadrantsequentially,thatis,oneachrisingedgeofaclocktheflagbus  
isupdatedtoshowthestatusofeachquadrantinorder.Therisingedgeofthe  
writeclockwillupdatethealmostfullbusandarisingedgeonthereadclockwill  
updatethealmostemptybus.Themodeofoperationisalwaysthesameforboth  
thealmostfullandalmostemptyflagbusses.Whenoperatingindirectmode,the  
quadrantontheflagbusisselectedbytheuser.Sotheusercanactuallyaddress  
thequadranttobeplacedontheflagstatusbusses,theseflagbussesoperate  
independentlyofoneanother.Addressingofthealmostfullflagbusisdonevia  
thewriteportandaddressingofthealmostemptyflagbusisdoneviathereadport.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
EXPANSION  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
or queue expansion. Depth Expansion means expanding the depths of  
individual queues. Queue expansion means increasing the total number of  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore  
memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe  
depth of a queue. For example, depth expansion of 8 devices provides the  
possibilityof8queuesof64Kx18deepwithintheIDT72T51543,and128kx  
18deepwithintheIDT72T51553,eachqueuebeingsetupwithinasingledevice  
utilizing all memory blocks available to produce a single queue. This is the  
deepestqueuethatcansetupwithinadevice.  
5
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Forqueue expansiona maximumnumberof256(8x32)queues maybe connectingmulti-queuedevicesinexpansionmodeallrespectiveinputpins  
setup,eachqueuebeing4Kx18or8Kx9deep,iflessqueuesaresetup,then (data&control)andoutputpins(data& flags),shouldbeconnected”together  
morememoryblockswillbeavailabletoincreasequeuedepthsifdesired.When betweenindividualdevices.  
6
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
D[17:0]  
Din (See Pin  
tablefordetails)  
DataInputBus  
LVTTL  
INPUT  
Thesearethe18datainputpins.Datais writtenintothedeviceviatheseinputpins ontherisingedge  
ofWCLKprovidedthatWENisLOW.Duetobusmatchingnotallinputsmaybeused,anyunusedinputs  
shouldbetiedLOW.  
DF(1)  
(L3)  
DefaultFlag  
DefaultMode  
RCLK Echo  
REN Echo  
LVTTL  
INPUT  
Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
(L2)  
LVTTL  
INPUT  
Themulti-queuedevicerequiresprogrammingaftermasterreset.Theusercandothisseriallyviathe  
serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewill  
beselected,ifHIGHthendefaultmodeisselected.  
ERCLK  
(R10)  
HSTL-LVTTL ReadClockEchooutput,this outputgenerates aclockbasedonthereadclockinput,this is usedfor  
OUTPUT SourceSynchronousclockingwherethereceivingdevicesutilizestheERCLKtoclockdataoutputfrom  
thequeue.  
EREN  
(R11)  
HSTL-LVTTL ReadEnableEchooutput,canbeusedinconjunctionwiththeERCLKoutputtoloaddataoutputfrom  
OUTPUT the queue intothe receivingdevice.  
ESTR  
(R15)  
PAEn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
andtheRDADDbustoselectaquadrantofqueuestobeplacedontothePAEnbusoutputs.Aquadrant  
addressedviatheRDADDbus is selectedontherisingedgeofRCLKprovidedthatESTRis HIGH.If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.  
ESYNC  
(R16)  
PAEnBus Sync  
LVTTL  
ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT duringPolledoperationofthePAEnbus.DuringPolledoperationeachquadrantofqueuestatusflags  
is loadedontothe PAEnbus outputs sequentiallybasedonRCLK. The firstRCLKrisingedge loads  
quadrant1ontoPAEn,thesecondRCLKrisingedgeloadsquadrant2andsoon.ThefifthRCLKrising  
edgewillagainloadquadrant1.DuringtheRCLKcyclethatquadrant1ofaselecteddeviceis placed  
ontothePAEnbus,theESYNCoutputwillbeHIGH.Forallotherquadrantsofthatdevice,theESYNC  
outputwillbeLOW.  
EXI  
(T16)  
PAEnBus  
ExpansionIn  
LVTTL  
INPUT  
The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAEn  
bus operationhas beenselected. EXIofdevice Nconnects directlytoEXOofdevice N-1’. The EXI  
receives atokenfromtheprevious deviceinachain.InsingledevicemodetheEXIinputmustbetied  
LOWifthePAEnbusisoperatedindirectmode.IfthePAEnbusisoperatedinpolledmodetheEXIinput  
mustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
EXO  
(T15)  
PAEnBus  
ExpansionOut  
LVTTL  
EXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAEnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.This  
pinpulseswhendeviceNhasplaceditsfinal(4th)quadrantontothePAEnbuswithrespecttoRCLK.  
This pulse (token)is thenpassedontothe nextdevice inthe chainN+1andonthe nextRCLKrising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAEnbus.Thiscontinuesthroughthechain  
andEXOofthelastdeviceisthenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
(P8)  
Full Flag  
LVTTL  
This pinprovides thefullflagoutputfortheactivequeue,thatis,thequeueselectedontheinputport  
OUTPUT forwriteoperations,(selectedviaWCLK,WRADDbus andWADEN).OntheWCLKcycleaftera  
queueselection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueue  
onthenextcycleprovidedFFisHIGH.ThisflaghasHigh-Impedancecapability,thisisimportantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.Whenaqueueselectionismadeonthewriteportthisoutputwillswitchfrom  
High-ImpedancecontrolonthenextWCLKcycle.ThisflagissynchronizedtoWCLK.  
(1)  
FM  
Flag Mode  
LVTTL  
INPUT  
Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
FMpinduringMasterResetwilldeterminewhetherthePAFnandPAEnflagbusses operateineither  
PolledorDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
(K16)  
7
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
FSTR  
(R4)  
PAFn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
andtheWRADDbustoselectaquadrantofqueuestobeplacedontothePAFnbusoutputs.Aquadrant  
addressedviatheWRADDbusisselectedontherisingedgeofWCLKprovidedthatFSTRisHIGH.If  
Polledoperationshasbeenselected,FSTRshouldbetiedinactive,LOW.  
FSYNC  
(R3)  
PAFn Bus Sync  
LVTTL  
FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
OUTPUT duringPolledoperationofthePAFnbus.DuringPolledoperationeachquadrantofqueuestatusflags  
is loadedontothePAFnbus outputs sequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
quadrant1ontoPAFn,thesecondWCLKrisingedgeloadsquadrant2andsoon.ThefifthWCLKrising  
edgewillagainloadquadrant1.DuringtheWCLKcyclethatquadrant1ofaselecteddeviceisplaced  
ontothePAFnbus,theFSYNCoutputwillbeHIGH.Forallotherquadrantsofthatdevice,theFSYNC  
outputwillbeLOW.  
FXI  
(T2)  
PAFnBus  
ExpansionIn  
LVTTL  
INPUT  
The FXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAFn  
bus operation has been selected. FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives atokenfromtheprevious deviceinachain.InsingledevicemodetheFXIinputmustbetied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
(T3)  
PAFnBus  
ExpansionOut  
LVTTL  
FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
OUTPUT PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulseswhendeviceNhasplaceditsfinal(4th)quadrantontothePAFnbuswithrespecttoWCLK.  
This pulse(token)is thenpassedontothenextdeviceinthechainN+1’andonthenextWCLKrising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAFnbus.Thiscontinuesthroughthechain  
andFXOofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
(1)  
ID[2:0]  
Device ID Pins  
LVTTL  
INPUT  
Forthe32Qmulti-queuedevicetheWRADDandRDADDaddressbussesare8bitswide.Whenaqueue  
selectiontakesplacethe3MSbsofthis8bitaddressbusareusedtoaddressthespecificdevice(the  
5 LSbs are used to address the queue within that device). During write/read operations the 3 MSbs  
oftheaddressarecomparedtothedeviceIDpins.Thefirstdeviceinachainofmulti-queues(connected  
in expansion mode), may be setup as 000, the second as 001’ and so on through to device 8 which  
is111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
anydevice operation. Note, the device selectedas the Master’does nothave tohave the IDof000.  
(ID2-C9  
ID1-A10  
ID0-B10)  
IOSEL  
(C8)  
IOSelect  
LVTTL  
INPUT  
This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are  
required then IOSEL should be tied LOW. If LVTTL I/O are required then it should be tied HIGH.  
(1)  
IW  
InputWidth  
MasterDevice  
LVTTL  
INPUT  
IWselectsthebuswidthforthedatainputbus.IfIWisLOWduringaMasterResetthenthebuswidth  
is x18, if HIGH then it is x9.  
(L15)  
(1)  
MAST  
(K15)  
LVTTL  
INPUT  
ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
MasterdeviceoraSlave.IfthispinisHIGH,thedeviceisthemasterifitisLOWthenitisaSlave.Themaster  
deviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-Impedance,  
preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,thispinmust  
be setHIGH.  
MRS  
(T9)  
MasterReset  
LVTTL  
INPUT  
AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
aftermasterreset.  
NULL-Q  
(J2)  
NullQueue  
Select  
HSTL-LVTTL This pin is used on the read port when a Null-Q is required, it is used in conjunction with the RDADD  
INPUT  
address bus toaddress the Null-Q.  
OE  
(M14)  
OutputEnable  
LVTTL  
INPUT  
TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
8
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
OE  
(Continued)  
OutputEnable  
LVTTL  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
OUTPUT stateofthatrespectivedevice.  
OV  
OutputValidFlag LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-control  
(P9)  
OUTPUT devicedataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.  
Thatis,thereisa2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimethe  
OV flagrepresents thedatainthatrespectivequeue.Whenaselectedqueueonthereadportis read  
toempty,theOVflagwillgoHIGH,indicatingthatdataontheoutputbusisnotvalid.TheOVflagalsohas  
High-Impedancecapability,requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
(1)  
OW  
(L16)  
OutputWidth  
LVTTL  
INPUT  
OWselectsthebuswidthforthedataoutputbus.IfOWisLOWduringaMasterResetthenthebuswidth  
is x18, if HIGH then it is x9.  
PAE  
(P10)  
Programmable  
Almost-Empty  
Flag  
LVTTL  
ThispinprovidestheAlmost-Emptyflagstatusforthequeuethathasbeenselectedontheoutputport  
OUTPUT for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn  
Programmable  
Almost-Empty  
FlagBus  
LVTTL  
Onthe 32Qdevice the PAEnbus is 8bits wide. This outputbus provides PAE status of8queues  
(PAE7-P11  
PAE6-P12  
PAE5-R12  
PAE4-T12  
PAE3-P13  
PAE2-R13  
PAE1-T13  
PAE0-T14)  
OUTPUT (1quadrant),withinaselecteddevice,havingatotalof4quadrants.Duringqueueread/writeoperations  
theseoutputsprovideprogrammableemptyflagstatus,ineitherdirectorpolledmode.Themodeofflag  
operationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbusiscapableof  
High-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirectoperation  
the PAEnbus is updatedtoshowthe PAEstatus ofa quadrantofqueues withina selecteddevice.  
SelectionismadeusingRCLK,ESTRandRDADD.DuringPolledoperationthePAEnbusisloadedwith  
thePAEstatusofmulti-queueflow-controlquadrantssequentiallybasedontherisingedgeofRCLK.  
PAF  
(R8)  
Programmable  
LVTTL  
ThispinprovidestheAlmost-Fullflagstatusforthequeuethathasbeenselectedontheinputportfor  
Almost-FullFlag OUTPUT writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselected  
queueis almost-full.This flagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagis  
synchronizedtoWCLK.  
PAFn  
Programmable  
LVTTL  
Onthe32Qdevicethe PAFnbus is 8bits wide.Atanyonetimethis outputbus providesPAFstatus of  
(PAF7-P7  
PAF6-P6  
PAF5-R6  
PAF4-R7  
PAF3-P5  
PAF2-R5  
PAF1-T5  
PAF0-T4)  
Almost-FullFlag OUTPUT 8queues(1quadrant),withinaselecteddevice,havingatotalof4quadrants.Duringqueueread/write  
Bus  
operationstheseoutputsprovideprogrammablefullflagstatus,ineitherdirectorpolledmode.Themode  
offlagoperationisdeterminedduringmasterresetviathestateoftheFMinput.Thisflagbusiscapable  
ofHigh-Impedancestate,thisisimportantduringexpansionofmulti-queuedevices.Duringdirect  
operationthePAFnbusisupdatedtoshowthePAFstatusofaquadrantofqueueswithinaselecteddevice.  
Selectionis madeusingWCLK,FSTR,WRADDandWADEN.DuringPolledoperationthePAFnbus  
isloadedwiththePAFstatusofmulti-queueflow-controlquadrantssequentiallybasedontherisingof  
edgeWCLK.  
PD  
(K1)  
Power Down  
PartialReset  
HSTL  
INPUT  
This inputis usedtoprovideadditionalpowersavings.WhenthedeviceI/Ois setupforHSTL/eHSTL  
modeaHIGHonthePDinputdisablesthedatainputsonthewriteportonly,providingsignificantpower  
savings. In LVTTL mode this pin has no operation  
PRS  
(T8)  
LVTTL  
INPUT  
APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.Beforea  
PartialResetcanbeperformedonaqueue,thatqueuemustbeselectedonboththewriteportandread  
port2clockcyclesbeforetheresetisperformed.APartialResetisthenperformedbytakingPRSLOW  
foroneWCLKcycleandoneRCLKcycle.ThePartialResetwillonlyresetthereadandwritepointers  
tothefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[17:0]  
DataOutputBus  
LVTTL  
Thesearethe18dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
Qout(SeePin  
tablefordetails)  
OUTPUT ofRCLKprovidedthat REN is LOW, OE is LOWandthe queue is selected. Due tobus matchingnot  
alloutputs maybeused,anyunusedoutputs shouldnotbeconnected.  
RADEN  
(R14)  
ReadAddress  
Enable  
LVTTL  
INPUT  
TheRADENinputis usedinconjunctionwithRCLKandtheRDADDaddress bus toselectaqueueto  
bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
9
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
RADEN  
(Continued)  
ReadAddress  
Enable  
LVTTL  
INPUT  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
RCLK  
(T10)  
ReadClock  
LVTTL  
INPUT  
Whenenabledby REN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
PAEnflagquadranttobeplacedonthePAEnbusduringdirectflagoperation.Duringpolledflagoperation  
thePAEnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronizedtoRCLK.ThePAE  
andOVoutputs areallsynchronizedtoRCLK.DuringdeviceexpansiontheEXOandEXIsignals are  
basedonRCLK. RCLKmustbe continuous andfree-running.  
RDADD  
[7:0]  
ReadAddress  
Bus  
LVTTL  
INPUT  
For the 32Q device the RDADD bus is 8 bits. The RDADD bus is a dual purpose address bus. The  
firstfunctionofRDADDistoselectaqueuetobereadfrom.Theleastsignificant5bitsofthebus,  
RDADD[4:0]areusedtoaddress1of32possiblequeueswithinamulti-queuedevice.Themostsignificant  
3bits,RDADD[7:5]areusedtoselect1of8possiblemulti-queuedevices thatmaybeconnectedin  
expansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheRDADDbuswillbeselectedonarisingedgeofRCLKprovidedthatRADENisHIGH,(note,that  
data canbe placedontothe Qoutbus, readfromthe previouslyselectedqueue onthis RCLKedge).  
On the next rising RCLK edge after a read queue select, a data word from the previous queue will be  
placedontotheoutputs,Qout,regardless oftheRENinput.TwoRCLKrisingedges afterreadqueue  
select,datawillbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENdue  
tothefirstwordfallthrougheffect.  
(RDADD7-P16  
RDADD6-P15  
RDADD5-P14  
RDADD4-N16  
RDADD3-N15  
RDADD2-N14  
RDADD1-M16  
RDADD0-M15)  
The secondfunctionofthe RDADDbus is toselectthe quadrantofqueues tobe loadedontothe  
PAEnbusduringstrobedflagmode.Theleastsignificant2bits,RDADD[1:0]areusedtoselectthe  
quadrantofadevicetobeplacedonthePAEnbus.Themostsignificant3bits,RDADD[7:5]areagain  
usedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.Address  
bitsRDADD[4:2]aredontcareduringquadrantselection.ThequadrantaddresspresentontheRDADD  
buswillbeselectedontherisingedgeofRCLKprovidedthatESTRisHIGH,(note,thatdatacanbeplaced  
ontotheQoutbus,readfromthepreviouslyselectedqueueonthisRCLKedge).PleaserefertoTable2  
fordetails onRDADDbus.  
REN  
ReadEnable  
SerialClock  
LVTTL  
INPUT  
The REN input enables read operations from a selected queue based on a rising edge of RCLK.  
AqueuetobereadfromcanbeselectedviaRCLK,RADENandtheRDADDaddress bus regardless  
ofthestateofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecond  
RCLKcycleafterqueueselectionregardlessofRENduetotheFWFToperation.Areadenableisnot  
required to cycle the PAEn bus (in polled mode) or to select the PAEn quadrant , (in direct mode).  
(T11)  
SCLK  
(N3)  
LVTTL  
INPUT  
Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
(M2)  
SerialInput  
Enable  
LVTTL  
INPUT  
Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
part(viaarisingedgeofSCLK),providedtheSENIinputofthatdeviceis LOW.Ifmultipledevices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,itsSENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
(M1)  
SerialOutput  
Enable  
LVTTL  
Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENOoutput  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENOwillgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedtheSENO output  
10  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
SENO  
(Continued)  
SerialOutput  
Enable  
LVTTL  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
OUTPUT WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
(L1)  
SerialIn  
LVTTL  
INPUT  
Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
SerialOut  
LVTTL  
Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
(M3)  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
(A8)  
JTAGClock  
LVTTL  
INPUT  
ClockinputforJTAGfunction.Oneoffourterminals requiredbyIEEEStandard1149.1-1990.Test  
operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising  
edgeofTCKandoutputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignal  
needs tobe tiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL  
INPUT  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
operation,testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,  
IDRegisterandBypass Register.Aninternalpull-upresistorforces TDIHIGHifleftunconnected.  
(B9)  
(2)  
TDO  
(A9)  
JTAGTestData  
Output  
LVTTL  
One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan  
OUTPUT operation,testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstruction  
Register,IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,while  
in SHIFT-DR and SHIFT-IR controller states.  
TMS(2)  
(B8)  
JTAGMode  
Select  
LVTTL  
INPUT  
TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
(C7)  
JTAGReset  
LVTTL  
INPUT  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
resetuponpower-up, thus itmustbe resetbyeitherthis signalorbysettingTMS=HIGHforfive TCK  
cycles.IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.Ifthe  
JTAGfunctionisusedbuttheuserdoesnotwanttouseTRST,thenTRSTcanbetiedwithMRStoensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
WADEN  
(P4)  
WriteAddress  
Enable  
LVTTL  
INPUT  
TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuecycle(s).WADENshould  
notbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,that  
awritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingoftheparthas  
beencompletedandSENO hasgoneLOW.  
WCLK  
(T7)  
WriteClock  
LVTTL  
INPUT  
WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedqueueviatheinputbus,  
Din. The queue to be written to is selected via the WRADD address bus and a rising edge of WCLK  
whileWADENis HIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalsoselect  
theflagquadranttobeplacedonthePAFnbusduringdirectflagoperation.Duringpolledflagoperation  
the PAFnbus is cycledwithrespecttoWCLKandthe FSYNCsignalis synchronizedtoWCLK. The  
PAFn,PAFandFFoutputsareallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXI  
signals are basedonWCLK. The WCLKmustbe continuous andfree-running.  
WEN  
(T6)  
WriteEnable  
LVTTL  
INPUT  
TheWENinputenableswriteoperationstoaselectedqueuebasedonarisingedgeofWCLK.Aqueue  
tobewrittentocanbeselectedviaWCLK,WADENandtheWRADDaddressbusregardlessofthestate  
ofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLKcycleafter  
queueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFnbus(inpolled  
mode)ortoselectthe PAFnquadrant, (indirectmode).  
WRADD  
[7:0]  
(WRADD7-T1  
WriteAddress  
Bus  
LVTTL  
INPUT  
Forthe32QdevicetheWRADDbusis8bits.TheWRADDbusisadualpurposeaddressbus.Thefirst  
functionofWRADDistoselectaqueuetobewrittento.Theleastsignificant5bitsofthebus,WRADD[4:0]  
areusedtoaddress1of32possiblequeueswithinamulti-queuedevice.Themostsignificant3bits,  
11  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
WRADD6-R1  
WRADD5-R2  
WRADD4-P1  
WRADD3-P2  
WRADD2-P3  
WRADD1-N1  
WRADD0-N2)  
WRADD[7:5]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSB’s will address a device with the matching ID code. The address present on the  
WRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,thatdata  
presentontheDinbuscanbewrittenintothepreviouslyselectedqueueonthisWCLKedgeandonthe  
nextrisingWCLKalso,providingthatWENisLOW).TwoWCLKrisingedgesafterwritequeueselect,  
datacanbewrittenintothenewlyselectedqueue.  
ThesecondfunctionoftheWRADDbusistoselectthequadrantofqueuestobeloadedontothePAFn  
busduringstrobedflagmode.Theleastsignificant2bits,WRADD[1:0]areusedtoselectthequadrant  
ofa device tobe placedonthePAFnbus. The mostsignificant3bits, WRADD[7:5]are againused  
toselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.Addressbits  
WRADD[4:2]aredontcareduringquadrantselection.ThequadrantaddresspresentontheWRADD  
buswillbeselectedontherisingedgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewritten  
intothepreviouslyselectedqueueonthisWCLKedge).PleaserefertoTable1fordetailsontheWRADD  
bus.  
VCC  
(See below)  
+2.5VSupply  
Power  
Power  
These are VCC power supply pins and must all be connected to a +2.5V supply rail.  
VDDQ  
(See Pin No.  
tablefordetails)  
O/PRailVoltage  
Thesepinsmustbetiedtothedesiredoutputrailvoltage.ForLVTTLI/Othesepinsmustbeconnected  
to+2.5V,forHSTLthesepinsmustbeconnectedto+1.5VandforeHSTLthesepinsmustbeconnected  
to+1.8V.  
GND  
GroundPin  
Ground  
These are Ground pins and must all be connected to the GND supply rail.  
(See below)  
Vref  
(K3)  
Reference  
Voltage  
HSTL  
INPUT  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable  
"RecommendedDCOperatingConditions". The inputprovides the reference levelforHSTL/eHSTL  
inputs. ForLVTTLI/Omode this inputshouldbe tiedtoGND.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 52-56 and Figures 32-34.  
PIN NUMBER TABLE  
Symbol  
Name  
DataInputBus HSTL-LVTTL D17-C1, D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5, D5-C5,  
INPUT D4-A6, D3-B6, D2-C6, D1-A7, D0-B7  
I/OTYPE  
Pin Number  
D[17:0]  
Din  
Q[17:0]  
Qout  
DataOutputBus HSTL-LVTTL Q17-C15, Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14, Q11-B14, Q10-C14, Q9-A13, Q8-B13,  
OUTPUT Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11, Q(1,0)-C(11,10)  
VCC  
+2.5VSupply  
O/PRailVoltage  
GroundPin  
Power  
Power  
Ground  
D(7-10),E(6,7,10,11),F(5,12),G(4,5,12,13),H(4,13),J(4,13),K(4,5,12,13),L(5,12),M(6,7,10,11),N(7-10)  
D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)  
VDDQ  
GND  
C(2,3), D(1-3), E(1-3,8-9), F(1-3,6-11), G(1-3,6-11), H(1-3,5-12), J(1,3,5-12,14), K(2,6-11,14),  
L(6-11,14), M(8-9)  
DNC  
DoNotConnect  
None  
B16, C16, D(15,16), E(14-16), F(14-16), G(14-16), H(14-16), J(15-16), R9  
12  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Rating  
Commercial  
–0.5to+3.6(2)  
Unit  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
VTERM  
TerminalVoltage  
with respect to GND  
V
(2,3)  
CIN  
Input  
Capacitance  
VIN = 0V  
10(3)  
pF  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
Capacitance  
VOUT = 0V  
15  
pF  
NOTES:  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF  
(HSTL only)  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
13  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
ILI  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
µA  
µA  
V
V
V
InputLeakageCurrent  
OutputLeakageCurrent  
ILO  
10  
(3)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
ICC1(1,2)  
ICC2(1)  
ICC3(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
80  
150  
150  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
25  
100  
100  
mA  
mA  
mA  
Standby VCC Current in Power Down mode(VCC = 2.5V) I/O = LVTTL  
50  
50  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
(1,2)  
IDDQ  
ActiveVDDQ Current (VDDQ =2.5VLVTTL)  
(VDDQ = 1.5V HSTL)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
10  
10  
10  
mA  
mA  
mA  
(VDDQ = 1.8V eHSTL)  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz.  
2. Data inputs toggling at 10MHz.  
3. Total Power consumed: PT = [(VCC x ICC) + (VDDQ x IDDQ)].  
4. Outputs are not 3.3V tolerant.  
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care and should be at a known state.  
14  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
V
DDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
InputRise/FallTimes  
50Ω  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
VDDQ/2  
I/O  
5999 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
200  
Capacitance (pF)  
5999 drw04a  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
Figure 2b. Lumped Capacitive Load, Typical Derating  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
OL  
V
CC/2  
100mV  
100mV  
100mV  
V
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
5999 drw04b  
NOTE:  
1. REN is HIGH.  
15  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51543L5  
IDT72T51553L5  
IDT72T51543L6  
IDT72T51553L6  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
5
200  
3.6  
3.6  
3.6  
3.6  
10  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
Clock High Time  
2.3  
2.3  
1.5  
0.5  
1.5  
0.5  
30  
2.7  
2.7  
2.0  
0.5  
2.0  
0.5  
30  
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
ResetPulseWidth  
tRSS  
tRSR  
tPRSS  
tPRSH  
ResetSetupTime  
15  
15  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
1.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
tOE  
fC  
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
20  
3.7  
3.7  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
20  
20  
1.5  
1.0  
1.5  
0.5  
1.5  
1.0  
0.6  
0.6  
0.6  
0.6  
2.5  
1.5  
2.0  
0.5  
2.0  
0.5  
0.6  
0.6  
0.6  
0.6  
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
PAE/PAF Strobe Setup  
PAE/PAF Strobe Hold  
QueueSetup  
tSTH  
tQS  
tQH  
QueueHold  
tWAF  
tRAE  
tPAF  
tPAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
16  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51543L5  
IDT72T51553L5  
IDT72T51543L6  
IDT72T51553L6  
Symbol  
Parameter  
RCLK to Echo RCLK Output  
Min.  
Max.  
Min.  
Max.  
Unit  
tERCLK  
tCLKEN  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4
4.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
4.2  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK to Echo REN Output  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
WCLKtoFullFlagtoLow-Impedance  
(2)  
tPAEHZ  
(2)  
tPAFLZ  
(2)  
tPAFHZ  
(2)  
tFFHZ  
(2)  
tFFLZ  
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
RCLK to PAE Bus Expansion to Output  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]  
SKEW time between RCLK and WCLK for OV  
ExpansionInputSetup  
(2)  
tOVHZ  
tFSYNC  
tFXO  
tESYNC  
tEXO  
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tXIS  
5
5
6
5
6
1.0  
0.5  
1.0  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
17  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtothe SENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENOofthefinaldevicegoesLOW.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
FM – Flag bus Mode  
IW,OWBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE andPAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 5, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connectedinexpansionmode,theIDT72T51543/72T51553devicesrequire  
atotalnumberofseriallyloadedbitsperdevicetocompleteserialprogramming,  
(SCLKcycleswithSENIenabled),calculatedby:n[19+(Qx72)]whereQisthe  
numberofqueues the userwishes tosetupwithinthe device, where nis the  
numberofdevices inthechain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 6, PartialReset for relevant timing.  
SeeFigure7,SerialPortConnectionandFigure8,SerialProgrammingfor  
connectionandtiminginformation.  
SERIAL PROGRAMMING  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid-  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respectivequeues.Alluserprogrammingisdoneviatheserialportafteramaster  
resethas takenplace. Internallythe multi-queue device has setupregisters  
whichmustbeseriallyloaded,theseregisterscontainvaluesforeveryqueue  
within the device, such as the depth and PAE/PAF offset values. The  
IDT72T51543/72T51553 devices are capable of up to 32 queues and  
thereforecontain32setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port. For the IDT72T51543/72T51553 devices the serial programming re-  
quiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycleswithSENI  
enabled),calculatedby:19+(Qx72)whereQisthenumberofqueuestheuser  
wishestosetupwithinthedevice.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevice,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
For the IDT72T51543/72T51553 devices the default mode will setup 32  
queues,eachqueueconfiguredasfollows:fortheIDT72T51543withx9input  
andx9outputports, 4,096x9. Ifone orbothports is x18, then2,048x18for  
the IDT72T51553 with x9 input and x9 output ports, 8,192 x 9. If one or both  
portsisx18,then4,096x18.ForbothdevicesthevalueofthePAE/PAFoffsets  
isdeterminedatmasterresetbythestateoftheDFinput.IfDFisLOWthenboth  
the PAE & PAF offset will be 8, if HIGH then the value is 128.  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
WhenconfiguringtheIDT72T51543/72T51553devicesindefaultmodethe  
usersimplyhastoapplyWCLKcyclesafteramasterreset,untilSENOgoes  
LOW,thissignalsthatdefaultprogrammingiscomplete.Theseclockcyclesare  
requiredforthedevicetoloaditsinternalsetupregisters.Whenasinglemulti-  
18  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
queuedeviceisused,thecompletionofdeviceprogrammingissignaledbythe Allsubsequentwriteswillbewrittentothatqueueuntilanewqueueisselected.  
SENO outputofadevicegoingfromHIGHtoLOW.Note,thatSENImustbe Aminimumof3WCLKcyclesmustoccurbetweenqueueselectionsonthewrite  
heldLOWwhenadeviceissetupfordefaultprogrammingmode.  
port.OnthenextWCLKrisingedgethewriteportdiscretefullflagwillupdate  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof toshowthefullstatusofthenewlyselectedqueue.Onthesecondrisingedge  
the first device in a chain can be held LOW. The SENO of a device should ofWCLK,datapresentonthedatainputbus,Dincanbewrittenintothenewly  
connecttotheSENIofthenextdeviceinthechain.TheSENOofthefinaldevice selectedqueueprovidedthatWENisLOWandthenewqueueisnotfull.The  
isusedtoindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthe cycleofthequeueselectionandthenextcyclewillcontinuetowritedatapresent  
finalSENOgoesLOWnormaloperationsmaybegin.Again,alldeviceswillbe onthedatainputbus,DinintothepreviousqueueprovidedthatWENisactive  
programmedwiththeirmaximumnumberofqueuesandthememorydivided LOW.  
equally between them. Please refer to Figure 9, DefaultProgramming.  
IfWENisHIGH,inactiveforthese3clockcycles,thendatawillnotbewritten  
in to the previous queue.  
WRITE QUEUE SELECTION & WRITE OPERATION  
Ifthenewlyselectedqueueisfullatthepointofitsselection,thenwritestothat  
TheIDT72T51543/72T51553multi-queueflow-controldeviceshaveupto queue willbe prevented, a fullqueue cannotbe writteninto.  
32queuesthatdatacanbewrittenintoviaacommonwriteportusingthedata Inthe32queuemulti-queuedevicetheWRADDaddressbusis8bitswide.  
inputs, Din, write clock, WCLK and write enable, WEN. The queue address Theleastsignificant5bitsareusedtoaddressoneofthe32availablequeues  
presentonthewriteaddressbus,WRADDduringarisingedgeonWCLKwhile withinasinglemulti-queuedevice.Themostsignificant3bitsareusedwhen  
write address enable, WADEN is HIGH, is the queue selected for write adeviceis connectedinexpansionmode,upto8devices canbeconnected  
operations. The state of WEN is dont care during the write queue selection inexpansion,eachdevicehavingits own3bitaddress.Theselecteddevice  
cycle.ThequeueselectiononlyhastobemadeonasingleWCLKcycle,this istheoneforwhichtheaddressmatchesa3bitIDcode,whichisstaticallysetup  
willremainthe selectedqueue untilanotherqueue is selected, the selected on the ID pins, ID0, ID1, and ID2 of each individual device.  
queueisalwaysthelastqueueselected.  
Note,theWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained. busstrobe),toaddressthealmostfullflagbusquadrantduringdirectmodeof  
ThismeansthatdatacanbewrittenintothedeviceoneveryWCLKrisingedge operation.  
includingthecyclethatanewqueueisbeingaddressed.Whenanewqueue  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
isselectedforwriteoperationstheaddressforthatqueuemustbepresenton 10, Write Queue Select, Write OperationandFullflagOperationandFigure  
theWRADDbusduringarisingedgeofWCLKprovidedthatWADENisHIGH. 12,FullFlagTimingExpansionMode fortimingdiagrams.  
AqueuetobewrittentoneedonlybeselectedonasinglerisingedgeofWCLK.  
TABLE 1 — WRITE ADDRESS BUS, WRADD[7:0]  
Operation WCLK WADEN FSTR  
WRADD[7:0]  
7 6 5 4 3 2  
1 0  
Write  
Queue  
Select  
1
0
Device Select  
(Compared to  
ID0,1,2)  
Write Queue Address  
(5 bits = 32 Queues)  
7 6 5 4 3 2  
1 0  
PAFn  
Quadrant  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
Quadrant  
Address  
Quadrant  
Address  
Queue Status on PAFn Bus  
00  
Q0 : Q7 PAF0 : PAF7  
Q8 : Q15 PAF0 : PAF7  
Q16 : Q23 PAF0 : PAF7  
Q24 : Q31 PAF0 : PAF7  
01  
10  
11  
5999 drw05  
19  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION & READ OPERATION  
registerafter3RCLKcycles.Asmentioned,intheprevious3RCLKcyclesto  
Themulti-queueflow-controldevicehasupto32queuesthatdataisread thenewdatabeingavailable,datacanstillbereadfromthepreviousqueue,  
fromviaacommonreadportusingthedataoutputs,Qout,readclock,RCLK providedthatthequeueisnotempty.Atthepointofqueueselection,the internal  
and read enable, REN. An output enable, OE control pin is also provided to datapipelineisloadedwiththelastwordfromthepreviousqueueandthenext  
allow High-Impedance selection of the Qout data outputs. The multi-queue wordfromthenewqueue,boththesewordswillfallthroughtotheoutputregister  
device read port operates in a mode similar to First Word Fall Through” on consecutivelyuponselectionofthenewqueue.Thispipeliningeffectprovides  
atraditionalIDTFIFO,butwiththeaddedfeatureofdataoutputpipelining.This theuserwith100%busutilization,andbringsaboutthepossibilitythataNULL”  
datapipeliningontheoutputportallowstheusertoachieve100%busutilization, queue maybe requiredwithina multi-queue device. Nullqueue operationis  
which is the ability to read out a data word on every rising edge of RCLK discussedinthenextsectionon.  
regardless of whether a new queue is being selected for read operations.  
IfanemptyqueueisselectedforreadoperationsontherisingedgeofRCLK,  
The queue address present on the read address bus, RDADD during a onthesameRCLKedgeandthefollowingRCLKedge,2finalreadswillbemade  
risingedgeonRCLKwhilereadaddressenable,RADENisHIGH,isthequeue fromthepreviousqueue,providedthatRENisactive,LOW.OnthenextRCLK  
selectedforreadoperations.Aqueuetobereadfromneedonlybeselected rising edge a read from the new queue will not occur, because the queue is  
ona single risingedge ofRCLK. Allsubsequentreads willbe readfromthat empty.Thelastwordinthedataoutputregister(fromthepreviousqueue),will  
queueuntilanewqueueisselected.Aminimumof3RCLKcyclesmustoccur remainthere,buttheoutputvalidflag,OVwillgoHIGH,toindicatethatthedata  
betweenqueueselectionsonthereadport.Datafromthenewlyselectedqueue present is no longer valid.  
willbepresentontheQoutoutputsafter3RCLKcyclesplusanaccesstime,  
TheRDADDbusisalsousedinconjunctionwithESTR(almostemptyflag  
providedthatOEisactive,LOW.OnthesameRCLKrisingedgethatthenew busstrobe),toaddressthealmostemptyflagbusquadrantduringdirectmode  
queueisselected,datacanstillbereadfromthepreviouslyselectedqueue, ofoperation.Inthe32queuemulti-queuedevicetheRDADDaddressbusis  
providedthatRENisLOW,activeandthepreviousqueueisnotemptyonthe 8bitswide.Theleastsignificant5bitsareusedtoaddressoneofthe32available  
followingrisingedgeofRCLKawordwillbereadfromthepreviouslyselected queueswithinasinglemulti-queuedevice.Themostsignificant3bitsareused  
queueregardlessofRENduetothefallthroughoperation,(providedthequeue when a device is connected in expansion mode, up to 8 devices can be  
isnotempty). RememberthatOEallowstheusertoplacetheQout,dataoutput connectedinexpansion,eachdevicehavingitsown3bitaddress.Theselected  
bus into High-Impedance and the data can be read onto the output register deviceistheoneforwhichtheaddressmatchesa3bitIDcode,whichisstatically  
regardlessofOE.  
setup on the ID pins, ID0, ID1, and ID2 of each individual device.  
RefertoTable2,forReadAddressbusarrangement.Also,refertoFigures  
Whenaqueueis selectedonthereadport,thenextwordavailableinthat  
queue (provided that the queue is not empty), will fall through to the output 13,15&16forreadqueueselectionandreadportoperationtimingdiagrams.  
TABLE 2 — READ ADDRESS BUS, RDADD[7:0]  
Operation  
RCLK RADEN ESTR  
Null-Q  
0
RDADD[7:0]  
4 3 2  
7
6
5
1 0  
Read Queue  
Select  
1
0
1
0
1
0
Device Select  
(Compared to  
ID0,1,2)  
Read Queue Address  
(5 bits = 32 Queues)  
7
6
5
4 3 2  
1 0  
Quadrant  
Address  
PAEn  
Quadrant  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
X
7
X
6
X
5
X
4 3 2  
1 0  
Null Queue  
Select  
X
X
X
X
X
Quadrant  
Address  
Queue Status on PAEn Bus  
00  
Q0 : Q7 PAE0 : PAE7  
Q8 : Q15 PAE0 : PAE7  
Q16 : Q23 PAE0 : PAE7  
Q24 : Q31 PAE0 : PAE7  
01  
10  
11  
5999 drw06  
20  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
NULL QUEUE OPERATION (OF THE READ PORT)  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
deviceoneveryRCLKcycleregardlessofqueueswitchesorotheroperations. outputportsize).  
Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwiththenext  
wordsinaselectedqueuetobereadout,againproviding100%busutilization. FULL FLAG OPERATION  
This type of architecture does assume that the user is constantly switching  
queuessuchthatduringaqueueswitch,thelastdatawordrequiredfromthe TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
previousqueuewillfallthroughthepipelinetotheoutput. writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
willautomaticallyflowthroughthepipelinetotheoutput. onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
The NullQoperationis achievedbysettingthe NullQsignalHIGHduring FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
aqueueselect.NotethatthereadaddressbusRDADD[7:0]isadon'tcare.The Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
NullQueueisaseparatequeuewithinthedeviceandthusthemaximumnumber willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
ofqueuesandmemoryisalwaysavailableregardlessofwhetherornottheNull onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
queue is used. Also note that in expansion mode a user may want to use a forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
dedicatednullqueueforeachdevice.Anullqueuecanbeselectedwhenno writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
furtherreadsarerequiredfromapreviouslyselectedqueue.Changingtoanull portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
queuewillcontinuetopropagatedatainthepipelinetothepreviousqueue's secondrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthe  
output.TheNullQcanremainselecteduntiladatabecomesavailableinanother newlyselectedqueue.OnthethirdrisingedgeofWCLKfollowingthequeue  
queueforreading.TheNull-Qcanbeutilizedineitherstandardorpacketmode. selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen andenablesetup&holdtimesaremet.  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe afterqueueselection,whichisonecyclebeforedatacanbewrittentothatqueue.  
OVflagwillgoHIGH,indicatingdatais notvalid. Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assumingthat  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- a queue switchhas beenmade toa queue thatis actuallyfull).  
queue, it is a means to force data through the pipeline to the output. Null Q TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also, basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand  
Note,theFFflagwillprovidestatusofanewlyselectedqueuetwoWCLKcycle  
refer to Figure 17, Read Operation and Null Queue Select for diagram.  
keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue  
flag (selected on the write port). A queue selected on the read port may  
BUS MATCHING OPERATION  
BusMatchingoperationbetweentheinputportandoutputportisavailable. experienceachangeofitsinternalfullflagstatusbasedonreadoperations.  
Duringamasterresetofthemulti-queuethestateofthetwosetuppins,IW(Input See Figure 10, Write Queue Select, Write Operation and Full Flag  
Width)andOW(OutputWidth)determinetheinputandoutputportbuswidths Operation and Figure 12, Full Flag Timing in Expansion Mode for timing  
aspertheselectionsshowninTable3,BusMatchingSet-Up”.9bitbytesor information.  
18bitwordscanbewrittenintoandreadfromthequeues.Whenwritingtoor  
readingfromthemulti-queueinabusmatchingmode,thedeviceordersdata EXPANSION MODE - FULL FLAG OPERATION  
inaLittleEndian”format.SeeFigure4,BusMatchingByteArrangementfor  
details.  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags  
of all devices should be connected together, such that a system controller  
TheFullflagandAlmostFullflagoperationis always basedonwrites and monitoring and managing the multi-queue devices write port only looks at a  
readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag  
portisx18andtheoutputportisx9,thentwodatareadsfromafullqueuewill isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime.  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive  
andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput queue on the write port.  
portisx9andtheoutputportisx18,twowriteoperationswillberequiredtocause  
theoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queueisnot outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag  
empty).  
madeonlyasingledevicedrivestheFFflagbusandallotherFFflagoutputs  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennone  
ofitsqueuesareselectedforwriteoperations.  
TABLE 3 — BUS-MATCHING SET-UP  
IW  
OW  
Write Port  
Read Port  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress  
0
0
1
1
0
1
0
1
x18  
x18  
x9  
x18  
x9  
x18  
x9  
x9  
21  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective validstatus.  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress  
12,FullFlagTiminginExpansionModefordetailsofflagoperation,including bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup  
when more than one device is connected in expansion.  
onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
OUTPUTVALIDFLAGOPERATION  
The multi-queue flow-control device provides a single Output Valid flag 14,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe thanone device is connectedinexpansion.  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread ALMOST FULL FLAG  
port, also updates the OV flag to show whether or not that new data word is  
As previously mentioned the multi-queue flow-control device provides a  
actually valid. Internally the multi-queue flow-control device monitors and singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
maintainsastatusoftheemptyconditionofallqueueswithinit,howeveronly astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
thequeuethatisselectedforreadoperationshasitsoutputvalid(empty)status writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
outputtotheOVflag,givingavalidstatusforthewordbeingreadatthattime. monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue. viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe  
Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon userhasperformeddefaultprogramming.  
theQoutdataoutputs3RCLKcycleslater,theOVwillchangestatetoindicate  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost  
validityofthedatafromthenewlyselectedqueueonthis3rd RCLKcyclealso. fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe  
Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue  
theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways device programming (along with the number of queues, queue depths and  
indicatesstatusforthedatacurrentlypresentontheoutputregister.  
almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe  
TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice  
keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat canbedifferentvalues.  
thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput  
flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased onthethirdcycleafteranewqueueselectionismade,onthesameWCLKcycle  
on write operations, that is, data may be written into that queue causing it to thatdata canactuallybe writtentothe newqueue. Thatis, a newqueue can  
becomenotempty.  
beselectedonthewriteportviatheWRADDbus,WADENenableandarising  
SeeFigure13,ReadQueueSelect,ReadOperationandFigure14,Output edgeofWCLK.OnthethirdrisingedgeofWCLKfollowingaqueueselection,  
ValidFlagTimingfordetailsofthetiming.  
thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.ThePAF  
isflagoutputistripleregisterbuffered,sowhenawriteoperationoccursatthe  
almostfullboundarycausingtheselectedqueuestatustogoalmostfullthePAF  
EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags willgoLOW3WCLKcyclesafterthewrite.Thesameistruewhenareadoccurs,  
of all devices should be connected together, such that a system controller there will be a 3 WCLK cycle delay after the read operation.  
monitoring and managing the multi-queue devices read port only looks at a  
singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive  
queue on the read port.  
So the PAF flag delays are:  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag  
occur based on a rising edge of WCLK. Internally the multi-queue device  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis  
madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe  
connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes readportmayexperienceachangeofitsinternalalmostfullflagstatusbased  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control on read operations. The multi-queue flow-control device also provides a  
devicewillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhennone duplicateofthePAFflagonthePAF[7:0]flagbus,thiswillbediscussedindetail  
ofitsqueuesareselectedforreadoperations.  
inalatersectionofthedatasheet.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill  
SeeFigures 19and20forAlmostFullflagtimingandqueueswitching.  
22  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ALMOSTEMPTYFLAG  
nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
As previously mentioned the multi-queue flow-control device provides a writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
single Programmable Almost Empty flag output, PAE. The PAE flag output on write operations. The multi-queue flow-control device also provides a  
providesastatusofthealmostemptyconditionfortheactivequeuecurrently duplicateofthePAEflagonthePAE[7:0]flagbus,thiswillbediscussedindetail  
selectedonthereadportforreadoperations.Internallythemulti-queueflow- inalatersectionofthedatasheet.  
controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
SeeFigures21and22forAlmostEmptyflagtimingandqueueswitching.  
hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred POWER DOWN (PD)  
toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
This device has a power down feature intended for reducing power  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan consumptionforHSTL/eHSTLconfiguredinputswhenthedeviceisidlefora  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128) long period of time. By entering the power down state certain inputs can be  
canbeselectediftheuserhasperformeddefaultprogramming.  
disabled,therebysignificantlyreducingthepowerconsumptionofthepart.All  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost WENandRENsignalsmustbedisabledforaminimumoffourWCLKandRCLK  
emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia cycles before activating the power down signal. The power down signal is  
thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti- asynchronousandneedstobeheldLOWthroughoutthedesiredpowerdowntime.  
queuedeviceprogramming(alongwiththenumberofqueues,queuedepths Duringpowerdown,thefollowingconditionsfortheinputs/outputssignalsare:  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory  
depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice  
canbedifferentvalues.  
Alldata inQueue(s)memoryare retained.  
Alldatainputsbecomeinactive.  
Allwrite andreadpointers maintaintheirlastvalue before powerdown.  
Allenables,chipselects,andclockinputpinsbecomeinactive.  
Alldataoutputsbecomeinactiveandenterhigh-impedancestate.  
Allflagoutputswillmaintaintheircurrentstatesbeforepowerdown.  
Allprogrammableflagoffsetsmaintaintheirvalues.  
Allechoclocks andenables willbecomeinactiveandenterhigh-  
impedancestate.  
TheserialprogrammingandJTAGportwillbecomeinactiveandenter  
high-impedancestate.  
AllsetupandconfigurationCMOSstaticinputsarenotaffected,asthese  
pins are tied to a known value and do not toggle during operation.  
Allinternalcounters,registers,andflagswillremainunchangedandmaintain  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthethirdcycleafteranewqueueselectionismade,onthesameRCLKcycle  
thatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.That  
is,anewqueuecanbeselectedonthereadportviatheRDADDbus,RADEN  
enableandarisingedgeofRCLK.OnthethirdrisingedgeofRCLKfollowing  
a queue selection, the data wordfromthe newqueue willbe available atthe  
outputregisterandthePAEflagoutputwillshowtheemptystatusofthenewly  
selectedqueue.ThePAEisflagoutputistripleregisterbuffered,sowhenaread  
operationoccurs atthealmostemptyboundarycausingtheselectedqueue  
statustogoalmostemptythePAEwillgoLOW3RCLKcyclesaftertheread. theircurrentstatepriortopowerdown.Clockinputscanbecontinuousandfree-  
Thesameistruewhenawriteoccurs,therewillbea3RCLKcycledelayafter runningduringpowerdown,butwillhavenoaffectonthepart.However,itis  
thewriteoperation.  
So the PAE flag delays are:  
from a read operation to PAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE readandwriteoperationscanresume.Thedevicewillcontinuefromwhereit  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
recommendedthattheclockinputsbelowwhenthepowerdownisactive.To  
exitpowerdownstateandresumenormaloperations,disablethepowerdown  
signalbybringingitHIGH.Theremustbeaminimumof1µswaitingperiodbefore  
hadstoppedandnoformofresetisrequiredafterexitingpowerdownstate.The  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag powerdownfeaturedoesnotprovideanypowersavingswhentheinputsare  
occur based on a rising edge of RCLK. Internally the multi-queue device configuredforLVTTLoperation.However,itwillreducethecurrentforI/Osthat  
monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible are not tied directly to VCC or GND. See Figure 30, Power Down Operation,  
thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis fortheassociatedtimingdiagram.  
23  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Output Valid, OV Flag Boundary  
Full Flag, FF Boundary  
I/O Set-Up  
OV Boundary Condition  
I/O Set-Up  
FF Boundary Condition  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D+1 Writes  
(seenotebelowfortiming)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenotebelowfortiming)  
In18 to out9  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In9 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In18 to out9  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
NOTE:  
1. OV Timing  
Assertion:  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
In9 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out18  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
In18 to out18 or In9 to out9  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAF/PAFn Goes LOW after  
In18 to out9  
In9 to out18  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
24  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag, PAE Boundary  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up  
PAE Assertion  
PAE Goes HIGH after n+2  
I/O Set-Up  
PAEn Boundary Condition  
PAEn Goes HIGH after  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeuewhenthe1st Writes  
In18 to out18 or In9 to out9  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
In18 to out18 or In9 to out9  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAEn Goes HIGH after  
In18 to out9  
PAE Goes HIGH after n+1  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
In18 to out9  
In9 to out18  
PAEn Goes HIGH after n+1  
In9 to out18  
PAE Goes HIGH after  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
PAEn Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
NOTE:  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
In9 to out18  
PAEn Goes HIGH after  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
PAE Timing  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
NOTE:  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
25  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn FLAG BUS OPERATION  
quadrantswithinthedeviceregardlessofhowmanyqueueshavebeensetup  
The IDT72T51543/72T51553 multi-queue flow-control devices can be inthepart.EveryrisingedgeoftheWCLKcausesthenextquadranttobeloaded  
configuredforupto32queues,eachqueuehavingitsownalmostfullstatus. onthePAFnbus.Thedeviceconfiguredasthemaster(MASTinputtiedHIGH),  
Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF,on willtakecontrolofthePAFnafterMRSgoesLOW.ForthewholeWCLKcycle  
thewriteport.Queuesthatarenotselectedforawriteoperationcanhavetheir thatthe firstquadrantis onPAFntheFSYNC(PAFnbus sync)outputwillbe  
PAFstatus monitoredviathe PAFnbus.ThePAFnflagbus is 8bits wide,so HIGH, forallotherquadrants, this FSYNCoutputwillbe LOW. This FSYNC  
that8queuesatatimecanhavetheirstatusoutputtothebus.If9ormorequeues outputprovides the userwitha markwithwhichtheycansynchronize tothe  
aresetupwithinadevicethenthereare2methodsbywhichthedevicecanshare PAFnbus,FSYNCisalwaysHIGHfortheWCLKcyclethatthefirstquadrant  
thebusbetweenqueues,"Direct"modeand"Polled"modedependingonthe of a device is present on the PAFn bus.  
state ofthe FM(FlagMode)inputduringa MasterReset. If8orless queues  
When devices are connected in expansion mode, only one device will be  
aresetupwithinadevicetheneachwillhaveitsowndedicatedoutputfromthe setastheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtied  
bus.Itisrecommendedif8orlessqueuesaresetupinsingledevicemodeto LOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAFnbusand  
configure the PAFnbus topolledmode as itdoes notrequire usingthe write willplaceitsfirstquadrantonthebusontherisingedgeofWCLKaftertheMRS  
address(WRADD).  
inputgoesHIGH.Forthenext3WCLKcyclesthemasterdevicewillmaintain  
controlofthePAFnbusandcycleitsquadrantsthroughit,allotherdeviceshold  
theirPAFnoutputsinHigh-Impedance.Whenthemasterdevicehascycledall  
PAFn - DIRECT BUS  
IfFMisLOWatmasterresetthenthePAFnbusoperatesinDirect(addressed) ofitsquadrantsitpassesatokentothenextdeviceinthechainandthatdevice  
mode.Indirectmodetheusercanaddressthequadrantofqueuestheyrequire assumescontrolofthePAFnbusandthencyclesitsquadrantsandsoon,the  
tobe placedontothe PAFnbus. Forexample, considerthe operationofthe PAFn bus control token being passed on from device to device. This token  
PAFn bus when 26 queues have been setup. To output status of the first passing is done via the FXO outputs and FXI inputs of the devices (PAF  
quadrant,Queue[0:7]theWRADDbus is usedinconjunctionwiththeFSTR ExpansionOut”andPAFExpansionIn).TheFXOoutputofthemasterdevice  
(PAFflagstrobe)inputandWCLK.Theaddresspresentonthe2leastsignificant connectstotheFXIoftheseconddeviceinthechainandtheFXOofthesecond  
bitsoftheWRADDbuswithFSTRHIGHwillbeselectedasthequadrantaddress connectstotheFXIofthethirdandsoon.ThefinaldeviceinachainhasitsFXO  
onarisingedgeofWCLK.Sotoaddressquadrant1,Queue[0:7]theWRADD connectedtotheFXIofthefirstdevice,sothatoncethePAFnbushascycled  
busshouldbeloadedwithxxxxxx00”,thePAFnbuswillchangestatustoshow throughallquadrantsofalldevices,controlofthePAFnwillpasstothemaster  
thenewquadrantselected1WCLKcycleafterquadrantselection.PAFn[0:7] device again and so on. The FSYNC of each respective device will operate  
getsstatusofqueues,Queue[0:7]respectively.  
To address the second quadrant, Queue[8:15], the WRADD address is ofthe bus andis placingits firstquadrantontothe PAFnbus.  
WhenoperatinginsingledevicemodetheFXIinputmustbeconnectedto  
independentlyandsimplyindicatewhenthatrespectivedevicehastakencontrol  
“xxxxxx01”. PAFn[0:7] gets status of queues, Queue[8:15] respectively. To  
addressthethirdquadrant,Queue[16:23],theWRADDaddressisxxxxxx10”. theFXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
PAF[0:7]gets status ofqueues, Queue[16:23]respectively. Toaddress the tobe passedintothe device foraccessingthePAFnbus.  
fourthquadrant,Queue[24:31],theWRADDaddressisxxxxxx11”.PAF[0:1]  
getsstatusofqueues,Queue[24:25]respectively.Remember,only26queues  
PleaserefertoFigure28,PAFnBusPolledModefortiminginformation.  
weresetup,sowhenquadrant4isselectedtheunusedoutputsPAF[2:7]will PAEn FLAG BUS OPERATION  
bedon'tcarestates.  
The IDT72T51543/72T51553 multi-queue flow-control devices can be  
Note, that if a read or write operation is occurring to a specific queue, say configuredforupto32queues,eachqueuehavingitsownalmostemptystatus.  
queuex’onthesamecycleasaquadrantswitchwhichwillincludethequeue Anactivequeuehasitsflagstatusoutputtothediscreteflags,OVandPAE,on  
‘x’,thentheremaybeanextraWCLKcycledelaybeforethatqueuesstatusis thereadport.Queuesthatarenotselectedforareadoperationcanhavetheir  
correctlyshownontherespectiveoutputofthePAFnbus.However,theactive PAEstatusmonitoredviathePAEnbus.ThePAEnflagbusis8bitswide,so  
PAFflagwillshowcorrectstatusatalltimes.  
that8queuesatatimecanhavetheirstatusoutputtothebus. If9ormorequeues  
Quadrantscanbeselectedonconsecutiveclockcycles,thatisthequadrant aresetupwithinadevicethenthereare2methodsbywhichthedevicecanshare  
onthePAFnbuscanchangeeveryWCLKcycle.Also,datapresentontheinput thebusbetweenqueues,"Direct"modeand"Polled"modedependingonthe  
bus, Din, can be written into a queue on the same WCLK rising edge that a state ofthe FM(FlagMode)inputduringa MasterReset. If8orless queues  
quadrantisbeingselected,theonlyrestrictionbeingthatawritequeueselection aresetupwithinadevicetheneachwillhaveitsowndedicatedoutputfromthe  
andPAFnquadrantselectioncannotbemadeonthesamecycle.  
bus.Itisrecommendedif8orlessqueuesaresetupinsingledevicemodeto  
If8orlessqueuesaresetupthenqueues,Queue[0:7]havetheirPAFstatus configure the PAFnbus topolledmode as itdoes notrequire usingthe write  
outputonPAF[0:7]constantly.  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone  
address(WRADD).  
devicethePAFnbussesofalldevicesareconnectedtogether,whenswitching PAEn - DIRECT BUS  
betweenquadrantsofdifferentdevicestheusermustutilizethe3mostsignificant  
IfFMisLOWatmasterresetthenthePAEnbusoperatesinDirect(addressed)  
bits of the WRADD address bus (as well as the 2 LSBs). These 3 MSB’s mode.Indirectmodetheusercanaddressthequadrantofqueuestheyrequire  
correspondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1&ID2. tobe placedontothe PAEnbus. Forexample, considerthe operationofthe  
PleaserefertoFigure25PAFn-DirectModeQuadrantSelectionfortiming PAEn bus when 26 queues have been setup. To output status of the first  
information. AlsorefertoTable 1, WriteAddress Bus, WRADD.  
quadrant, Queue[0:7]the RDADDbus is usedinconjunctionwiththe ESTR  
(PAEflagstrobe)inputandRCLK.Theaddresspresentonthe2leastsignificant  
bitsoftheRDADDbuswithESTRHIGHwillbeselectedasthequadrantaddress  
PAFn – POLLED BUS  
IfFMisHIGHatmasterresetthenthePAFnbusoperatesinPolled(looped) onarisingedgeofRCLK.Sotoaddressquadrant1,Queue[0:7]theRDADD  
mode. In polled mode the PAFn bus automatically cycles through the 4 busshouldbeloadedwithxxxxxx00”,thePAEnbuswillchangestatustoshow  
26  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
thenewquadrantselected1RCLKcycleafterquadrantselection.PAEn[0:7] quadrantswithinthedeviceregardlessofhowmanyqueueshavebeensetup  
getsstatusofqueues,Queue[0:7]respectively. inthepart.EveryrisingedgeoftheRCLKcausesthenextquadranttobeloaded  
To address the second quadrant, Queue[8:15], the RDADD address is onthePAEnbus.Thedeviceconfiguredasthemaster(MASTinputtiedHIGH),  
“xxxxxx01”. PAEn[0:7]gets status ofqueues, Queue[8:15]respectively. To willtakecontrolofthePAEnafterMRSgoesLOW.ForthewholeRCLKcycle  
addressthethirdquadrant,Queue[16:23],theRDADDaddressisxxxxxx10”. thatthefirstquadrantis onPAEntheESYNC(PAEnbussync)outputwillbe  
PAE[0:7]gets status ofqueues, Queue[16:23]respectively. Toaddress the HIGH, forallotherquadrants, this ESYNCoutputwillbe LOW. This ESYNC  
fourthquadrant,Queue[24:31],theRDADDaddressisxxxxxx11”.PAE[0:1] outputprovides the userwitha markwithwhichtheycansynchronize tothe  
getsstatusofqueues,Queue[24:25]respectively.Remember,only26queues PAEnbus,ESYNCisalwaysHIGHfortheRCLKcyclethatthefirstquadrant  
weresetup,sowhenquadrant4isselectedtheunusedoutputsPAE[2:7]will of a device is present on the PAEn bus.  
bedon'tcarestates.  
When devices are connected in expansion mode, only one device will be  
Note, that if a read or write operation is occurring to a specific queue, say setastheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtied  
queuex’onthesamecycleasaquadrantswitchwhichwillincludethequeue LOW.ThemasterdeviceisthefirstdevicetotakecontrolofthePAEnbusand  
‘x’,thentheremaybeanextraRCLKcycledelaybeforethatqueuesstatusis willplaceitsfirstquadrantonthebusontherisingedgeofRCLKaftertheMRS  
correctlyshownontherespectiveoutputofthePAEnbus.  
inputgoesLOW.Forthenext3RCLKcyclesthemasterdevicewillmaintain  
Quadrantscanbeselectedonconsecutiveclockcycles,thatisthequadrant controlofthePAEnbusandcycleitsquadrantsthroughit,allotherdeviceshold  
on the PAEn bus can change every RCLK cycle. Also, data can be read out theirPAEnoutputsinHigh-Impedance.Whenthemasterdevicehascycledall  
ofa queue onthe same RCLKrisingedge thata quadrantis beingselected, ofitsquadrantsitpassesatokentothenextdeviceinthechainandthatdevice  
the only restriction being that a read queue selection and PAEn quadrant assumescontrolofthePAEnbusandthencyclesitsquadrantsandsoon,the  
selectioncannotbemadeonthesameRCLKcycle.  
If8orlessqueuesaresetupthenqueues,Queue[0:7]havetheirPAEstatus passing is done via the EXO outputs and EXI inputs of the devices (PAE  
outputonPAE[0:7]constantly. ExpansionOut”andPAEExpansionIn).TheEXOoutputofthemasterdevice  
PAEn bus control token being passed on from device to device. This token  
Whenthemulti-queuedevicesareconnectedinexpansionofmorethanone connectstotheEXIoftheseconddeviceinthechainandtheEXOofthesecond  
devicethePAEnbussesofalldevicesareconnectedtogether,whenswitching connectstotheEXIofthethirdandsoon.ThefinaldeviceinachainhasitsEXO  
betweenquadrantsofdifferentdevicestheusermustutilizethe3mostsignificant connectedtotheEXIofthefirstdevice,sothatoncethePAEnbushascycled  
bits of the RDADD address bus (as well as the 2 LSBs). These 3 MSB’s throughallquadrantsofalldevices,controlofthePAEnwillpasstothemaster  
correspondtothedeviceIDinputs,whicharethestaticinputs,ID0,ID1&ID2. device again and so on. The ESYNC of each respective device will operate  
PleaserefertoFigure24,PAEn-DirectModeQuadrantSelectionfortiming independentlyandsimplyindicatewhenthatrespectivedevicehastakencontrol  
information. AlsorefertoTable 2, ReadAddress Bus, RDADD.  
ofthebus andis placingits firstquadrantontothePAEnbus.  
WhenoperatinginsingledevicemodetheEXIinputmustbeconnectedto  
theEXOoutputofthesamedevice.Insingledevicemodeatokenisstillrequired  
PAEn – POLLED BUS  
IfFMisHIGHatmasterresetthenthePAEnbusoperatesinPolled(looped) tobepassedintothedeviceforaccessingthePAEnbus.  
mode. In polled mode the PAEn bus automatically cycles through the 4 PleaserefertoFigure29,PAEnBusPolledModefortiminginformation.  
27  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ECHO READ CLOCK (ERCLK)  
slowerthantheslowestQn,dataoutput.RefertoFigure3,EchoReadClock  
TheEchoReadClockoutputisprovidedinbothHSTLandLVTTLmode, and Data Output Relationship and Figure 23, Echo RCLK & Echo REN  
selectableviaIOSEL.TheERCLKisafree-runningclockoutput,itwillalways Operationfortiminginformation.  
follow the RCLK input regardless of REN and RADEN.  
TheERCLKoutputfollowstheRCLKinputwithanassociateddelay. This ECHO READ ENABLE (EREN)  
delayprovidestheuserwithamoreeffectivereadclocksourcewhenreading  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
data from the Qn outputs. This is especially helpful at high speeds when selectableviaIOSEL.  
variableswithinthedevicemaycausechangesinthedataaccesstimes. These  
The EREN output is provided to be used in conjunction with the ERCLK  
variations in access time maybe caused by ambient temperature, supply outputandprovidesthereadingdevicewithamoreeffectiveschemeforreading  
voltage,devicecharacteristics.TheERCLKoutputalsocompensatesforany datafromtheQnoutputportathighspeeds.TheERENoutputiscontrolledby  
tracelengthdelaysbetweentheQndataoutputsandreceivingdevicesinputs. internallogicthatbehavesasfollows:TheERENoutputisactiveLOWforthe  
Anyvariationseffectingthedataaccesstimewillalsohaveacorresponding RCLKcyclethatanewwordisreadoutofthequeue.Thatis,arisingedgeof  
effect on the ERCLK output produced by the queue device, therefore the RCLKwillcause EREN togoactive (LOW)ifRENis active andthe queue is  
ERCLKoutputleveltransitionsshouldalwaysbeatthesamepositionintime NOTempty.  
relativetothedataoutputs.Note,thatERCLKisguaranteedbydesigntobe  
RCLK  
tERCLK  
tERCLK  
ERCLK  
tD  
tA  
Q
SLOWEST(3)  
5999 drw07  
NOTES:  
1. REN is LOW. OE is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
Figure 3. Echo Read Clock and Data Output Relationship  
28  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
B
Write to Queue  
A
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE  
IW  
L
OW  
L
A
B
Read from Queue  
L
(a) x18 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
L
B
A
Read from Queue  
H
(b) x18 INPUT to x18 OUTPUT - LITTLE ENDIAN  
Q8-Q0  
Q17-Q9  
Q17-Q9  
BE  
IW  
L
OW  
H
A
1st: Read from Queue  
2nd: Read from Queue  
L
Q8-Q0  
B
(c) x18 INPUT to x9 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
L
OW  
H
B
1st: Read from Queue  
H
Q17-Q9  
Q8-Q0  
A
2nd: Read from Queue  
(d) x18 INPUT to x9 OUTPUT - LITTLE ENDIAN  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
D17-Q9  
D8-Q0  
B
BYTE ORDER ON OUTPUT PORT:  
Q17-Q9  
Q8-Q0  
BE  
IW OW  
A
B
Read from Queue  
L
H
L
(a) x9 INPUT to x18 OUTPUT - BIG ENDIAN  
Q17-Q9  
Q8-Q0  
BE  
IW  
H
OW  
L
A
B
Read from Queue  
H
(a) x9 INPUT to x18 OUTPUT - LITTLE ENDIAN  
5999 drw08  
Figure 4. Bus-Matching Byte Arrangement  
29  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW  
FM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
tRSS  
HIGH = Master Device  
LOW = Slave Device  
MAST  
DFM  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC "0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
t
RSF  
RSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
t
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
5999 drw09  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 5. Master Reset  
30  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-3  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
tAS  
tAH  
WRADD  
Qx  
tWFF  
FF  
tWAF  
PAF  
tPAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQS  
tQH  
RADEN  
tAS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
tPAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
r+4  
5999 drw10  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 3 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 6. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
MRS  
DFM  
DFM  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SENO  
SO  
SENI  
SENI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SI  
SI  
SI  
SCLK  
SCLK  
SCLK  
5999 drw11  
Serial Clock  
Figure 7. Serial Port Connection for Serial Programming  
31  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
32  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
33  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
34  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W3  
W1  
W2  
Dn  
tSKEW1  
1
2
RCLK  
REN  
Qout  
tENS  
tA  
tA  
tA  
Last Word Read Out of Queue  
W1 Qy  
FWFT  
W2 Qy  
FWFT  
W3 Qy  
tROV  
tROV  
OV  
5999 drw15  
NOTES:  
1. Qy has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 11. Write Operations & First Word Fall Through  
35  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
37  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q30  
D1 Q15  
tQS  
tQH  
tQH  
tQS  
t
A
tA  
t
A
t
A
t
tOLZ  
Qout  
(Device 1)  
D
1
Q
30  
WD  
Last Word  
D
1
Q
15  
D1  
Q
15 We Last Word  
W0 Q15  
PFT We-1  
D
1
t
ROV  
tROV  
tROV  
ROV  
t
OVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
WEN  
tENH  
tENS  
tAS  
tAH  
WRADD  
D1 Q15  
tQS  
tQ  
H
WADEN  
Din  
tDS  
tDH  
D
1
W
Q
15  
0
5999 drw18  
Cycle:  
*A* Queue 30 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* After a queue switch, there is a 3 RCLK latency for output data.  
*D* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q30 of D1. This happens to be the last word of Q30. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q30 is valid.  
*E* Queue 15 of device 1 is selected for read operations. The last word of Q30 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q30 was read to empty). Word, Wd remains on the output bus.  
*F* The last word of Q30 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*G* The next word (We-1), available from the newly selected queue, Q15 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag updates 3 RCLK cycles after a queue selection.  
*H* The last word, We is read from Q15, this queue is now empty.  
*I* The OV flag goes HIGH to indicate that Q15 was read to empty on the previous cycle.  
*J* Due to a write operation the OV flag goes LOW and data word W0 is read from Q15. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 14. Output Valid Flag Timing (In Expansion Mode)  
38  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
39  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EO  
40  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NULL QUEUE  
NEW QUEUE  
*D*  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
*G*  
RCLK  
tAS  
tAH  
tAS  
tAH  
Don’t care  
00000100  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tAS  
tAH  
NULL-Q  
tENS  
tENH  
REN  
t
A
tA  
tA  
tA  
t
A
Q4 W0  
FWFT  
Qout  
OV  
Q1 Wn-4  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
tROV  
tROV  
5999 drw21  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 18, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*C* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 3 RCLK cycles between queue selects.  
*D* The Null Q is seen as an empty queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH. A new queue, Q4 is selected.  
*G* 1st word, W0 of Q4 falls through present on the O/P register after 3 RCLK cycles after the queue select.  
Figure 17. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
Null  
Queue  
Null  
Queue  
Queue 4  
Memory  
Queue 4  
Memory  
Queue 1  
Memory  
Queue 1  
Memory  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Q4  
Wn  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Wn-2  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
5999 drw22  
Figure 18. Null Queue Flow Diagram  
41  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
WRADD  
D1  
Q5  
D1 Q9  
tQS  
tQH  
tQH  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q5  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
5999 drw23  
Cycle:  
*A* Queue 5 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* No write occurs.  
*D* Word, Wd-m is written into Q5 causing the PAF flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + tWAF.  
*E* Queue 9 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + tWAF latency.  
*F* The PAF flag goes LOW based on the write 2 cycles earlier.  
*G* No write occurs.  
*H* The PAF flag goes HIGH due to the queue switch to Q9.  
Figure 19. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D-(m+1) words  
in Queue  
D - (m+1) words in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
5999 drw24  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 20. Almost Full Flag Timing  
42  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q30  
D1 Q15  
tQS  
tQH  
tQH  
tQS  
RADEN  
Qout  
tA  
tA  
tA  
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q30  
Wn  
D
1
Q30  
Wn+1  
D1  
Q15  
W0  
D1 Q15 W1  
tRAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
5999 drw25  
Cycle:  
*A* Queue 30 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* No read occurs.  
*D* The PAE flag output now switches to device 1. Word, Wn is read from Q30 due to the FWFT operation. This read operation from Q30 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*E* Q15 of device 1 is selected.  
*F* The PAE flag goes LOW due to the read from Q30 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*G* Word, W0 is read from Q15 due to the FWFT operation.  
*H* The PAE flag goes HIGH to show that Q15 is not almost empty.  
Figure 21. Almost Empty Flag Timing and Queue Switch  
tCLKL  
tCLKH  
WCLK  
tENH  
tENS  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
5999 drw26  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 22. Almost Empty Flag Timing  
43  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ERN  
44  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tQS  
tQH  
t
QS  
tQS  
Quadrant 0  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Quadrant 2  
Quadrant 3  
001xxx10  
001xxx11  
001xxx00  
RDADD  
ESTR  
PAEn  
tSTS  
tSTH  
tSTS  
tSTH  
tPAE  
tPAE  
tPAE  
Device 1 Quadrant 2  
Device 1 Quadrant 3  
Device 1 Quadrant 0  
5999 drw28  
NOTES:  
1. Quadrants can be selected on consecutive cycles.  
2. On an RCLK cycle that the ESTR is HIGH, the RADEN input must be LOW.  
3. There is a latency of 2 RCLK for the PAEn bus to switch.  
Figure 24. PAEn - Direct Mode - Quadrant Selection  
WCLK  
tQS  
tQH  
t
QS  
tQS  
Quadrant 2  
t
QH  
tQH  
Device 1  
Device 1  
Device 1  
Quadrant 1  
Quadrant 3  
001xxx01  
001xxx11  
001xxx10  
WRADD  
FSTR  
tSTS  
tSTH  
tSTS  
tSTH  
tPAF  
tPAF  
tPAF  
PAFn  
Device 1 Quadrant 1  
Device 1 Quadrant 3  
Device 1 Quadrant 2  
5999 drw29  
NOTES:  
1. Quadrants can be selected on consecutive cycles.  
2. On a WCLK cycle that the FSTR is HIGH, the WADEN input must be LOW.  
3. There is a latency of 2 WCLK for the PAFn bus to switch.  
Figure 25. PAFn - Direct Mode - Quadrant Selection  
45  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
3
*E*  
*F*  
*G*  
*H*  
WCLK  
WADEN  
FSTR  
tQS  
tQH  
tQS  
tQH  
t
QS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
D4 quad 3  
D3Q8  
011 01000  
WRADD  
Dn  
D5Q24  
100 11000  
tDS  
tDH  
tDS  
t
DS  
100 xxx10  
t
DH  
t
DH  
Wp  
Wp+1  
Wp+2  
Wn+1  
D5Q24  
Wn  
Wx  
D3 Q8  
D5 Q24  
Writes to Previous Q  
t
SKEW3  
RCLK  
RADEN  
ESTR  
1
2
3
1
2
3
tQS  
tQH  
tSTS  
t
STH  
t
ENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
D5 quad 4  
D5Q24  
100 11000  
101 xxx11  
tA  
tA  
tA  
tA  
t
A
Wy+1  
D5 Q24  
Wy  
D5 Q24  
Wy+2  
D5 Q24  
Wy+3  
D5 Q24  
Device 5 -Qn  
Wa  
D5 Q17  
Wa+1  
D5 Q17  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
xxxx xxx0  
D5Quad4  
xxxx xxx1  
D5Quad 4  
Device 5 PAEn  
xxxx xxx0  
D5Quad4  
xxxx xxx1  
D5Quad 4  
Previous value loaded on to PAE bus  
D5 Q17 Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q24  
status  
Device 5 PAE  
5999 drw30  
*FF*  
*AA*  
*BB*  
*CC*  
*DD*  
*GG*  
*EE*  
Cycle:  
*A* Queue 24 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Queue 24 of Device 5 is selected for read operations.  
A quadrant from another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Current Word is kept on the output bus since REN is HIGH.  
*C* Word Wp+2 is written into the previously selected queue.  
*CC* Word Wa+1 of D5 Q17 is read due to FWFT.  
*D* Word, Wn is written into the newly selected queue, Q24 of D5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added).  
*DD* Word, Wy from the newly selected queue, Q24 will be read out due to FWFT operation.  
Quadrant 4 of Device 5 is selected on the PAEn bus. Q24 of device 5 will therefore have is PAE status output on PAE[0]. There is a single RCLK cycle latency before  
the PAEn bus changes to the new selection.  
*E* Queue 8 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q24 of D5.  
*EE* Word, Wy+1 is read from Q24 of D5.  
*F* No writes occur.  
*FF* Word, Wy+2 is read from Q24 of D5.  
The PAEn bus changes control to D5, the PAEn outputs of D5 go to Low-Impedance and quadrant 4 is placed onto the outputs. The device of the previously selected  
quadrant now places its PAEn outputs into High-Impedance to prevent bus contention.  
The discrete PAE flag will go HIGH to show that Q24 of D5 is not almost empty. Q24 of device 5 will have its PAE status output on PAE[0].  
*G* Quadrant 3 of device 4 is selected on the write port for the PAFn bus.  
*GG* The PAEn bus updates to show that Q24 of D5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q24 of D5 is almost empty based on the reading of Wy+1.  
*H* Word, Wx is written into Q8 of D3.  
Figure 26. PAEn - Direct Mode, Flag Operation  
46  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAH  
tAS  
tAS  
D7 quad 1  
RDADD  
D6Q2  
D0Q31  
110 00010  
111 xxx00  
000 11111  
OE  
tA  
t
A
tA  
tA  
tOLZ  
Qout  
W
X
W
X +1  
Prev. Q  
W
D0 Q31  
D - M + 2  
W0  
D6 Q2  
W
D0 Q31  
D-M+1  
Prev. Q  
t
SKEW3  
WCLK  
FSTR  
1
2
3
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
D0 quad4  
000 xxx11  
D0 Q31  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
W
y+1  
Wy+2  
Word W  
y
D0 Q31  
D0 Q31  
D0 Q31  
tPAFLZ  
tPAF  
tPAF  
Device 0 PAFn  
0xxx xxxx  
0xxx xxxx  
1xxx xxxx  
1xxx xxxx  
0xxx xxxx  
0xxx xxxx  
D0Quad4  
D0Quad4  
D0Quad4  
D0Quad4  
D0Quad4  
HIGH-Z  
DXQuad y  
D0Quad4  
Bus PAFn  
tPAFHZ  
HIGH-Z  
DXQuad y  
Prev.  
PAFn  
tPAFLZ  
tWAF  
Device 0  
HIGH - Z  
5999 drw31  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
*GG*  
Cycle:  
*A* Queue 31 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Quadrant 4 of device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected quadrant, Quad Y of device X.  
*B* No read operation.  
*BB* Queue 31 of device 0 is selected on the write port.  
*C* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*CC* PAFn continues to show status of Quad4 D0.  
The PAFn bus is updated with the quadrant selected on the previous cycle, D0 Quad 4. PAF[7] is LOW showing the status of queue 31.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*D* A new quadrant, Quad 1 of Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q31 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q31. This read will cause the PAF[7] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*DD* No write operation.  
*E* No read operations occur, REN is HIGH.  
*EE* PAF[7] goes HIGH to show that D0 Q31 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q31.  
*F* Queue 2 of Device 6 is selected for read operations.  
*FF* Word, Wy+1 is written into D0 Q31.  
*G* Word, Wd-m+2 is read out due to FWFT operation.  
*GG* PAF[7] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q31 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q31.  
*H* No read operation.  
*I* Word, W0 is read from Q0 of D6, selected on cycle *F*, due to FWFT.  
Figure 27. PAFn - Direct Mode, Flag Operation  
47  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
APF  
48  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAE  
49  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
WEN  
tDH  
tDS  
tDH  
tDS  
W
tDS  
D12  
tDH  
tDS  
D13  
D10  
WD11  
W
W
D[39:0]  
1ns  
(1)  
3
1
2
4
RCLK  
REN  
(7)  
(2)  
tPDHZ  
tPDLZ  
tA  
tA  
tA  
tA  
Hi-Z  
tPDL  
WD1  
WD2  
WD3  
WD4  
W
DH  
WDS  
Q[39:0]  
(2)  
tPDH  
(2)  
tPDH  
PD  
tERCLK  
Hi-Z  
Hi-Z  
ERCLK  
tEREN  
tEREN  
EREN  
5999 drw34  
NOTES:  
1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted.  
2. When the PD input becomes deasserted, there will be a 1µs waiting period before read and write operations can resume.  
All input and output signals will also resume after this time period.  
3. Set-up and configuration static inputs are not affected during power down.  
4. Serial programming and JTAG programming port are inactive during power down.  
5. RCS = 0, WCS = 0 and OE = 0. These signals can toggle during and after power down.  
6. All flags remain active and maintain their current states.  
7. During power down, all outputs will be in high-impedance.  
Figure 30. Power Down Operation  
50  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q
-Q  
17  
D
-D  
17  
0
0
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
RDADD  
RADEN  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
OV  
FSYNC  
Full Flag  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q
-Q  
17  
D
-D  
17  
0
0
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q
-Q  
17  
D
-D  
17  
0
0
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
SENO  
FXO EXO  
DONE  
5999 drw35  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 31. Multi-Queue Expansion Diagram  
51  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T51543/72T51553  
incorporates thenecessarytapcontrollerandmodifiedpadcellstoimplement  
theJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
5999 drw36  
Figure 32. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
52  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
5999 drw37  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 33. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IR This state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-Scan This is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
53  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
JTAG INSTRUCTION REGISTER  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
04  
0F  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
IDCODE  
THE DEVICE IDENTIFICATION REGISTER  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
For the IDT72T51543/72T51553, the Part Number field contains the  
followingvalues:  
Device  
IDT72T51543  
IDT72T51553  
Part# Field (HEX)  
0x482  
SAMPLE/PRELOAD  
0x483  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
54  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
55  
IDT72T51543/72T515532.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(32QUEUES)18BITWIDECONFIGURATION1,179,648and2,359,296bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
5999 drw38  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 34. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
IDT72T51543  
IDT72T51553  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
56  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to  
+70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Commercial Only  
5
6
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
Commercial & Industrial  
Low Power  
L
72T51543 1,179,648 bits 2.5V Multi-Queue Flow-Control Device  
72T51553 2,359,296 bits 2.5V Multi-Queue Flow-Control Device  
5999 drw39  
NOTE:  
1. Industrial temperature range product for the 6ns speed grade is available as a standard device. All other speed grades available by special order.  
DATASHEETDOCUMENTHISTORY  
06/06/2003  
11/06/2003  
pgs. 1 through 57.  
pgs. 1, 4, 16 and 17.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
57  

相关型号:

IDT72T51553L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L6BB8

FIFO, 128KX18, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51553L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 18 BIT WIDE CONFIGURATION
IDT

IDT72T51553L7-5BBI

FIFO, 128KX18, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51556

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51556L5BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51556L5BB8

FIFO, 64KX36, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51556L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51556L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51556L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T54242

2.5V QUAD/DUAL TeraSync⑩ DDR/SDR FIFO x10 QUAD FIFO or x10/x20 DUAL FIFO CONFIGURATIONS
IDT

IDT72T54242L5BB

2.5V QUAD/DUAL TeraSync⑩ DDR/SDR FIFO x10 QUAD FIFO or x10/x20 DUAL FIFO CONFIGURATIONS
IDT