ICS889872AKT [IDT]

DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION; 差分至LVDS缓冲器/分频器W /内部端接
ICS889872AKT
型号: ICS889872AKT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION
差分至LVDS缓冲器/分频器W /内部端接

时钟驱动器 逻辑集成电路
文件: 总14页 (文件大小:1088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER  
W/INTERNAL TERMINATION  
ICS889872  
General Description  
Features  
The ICS889872 is a high speed Differential-to-  
Three LVDS outputs  
S
IC  
LVDS Buffer/Divider w/Internal Termination and is a  
member of the HiPerClockSfamily of high  
performance clock solutions from IDT. The  
Frequency divide select options: ÷4, ÷6: >2GHz,  
HiPerClockS™  
÷8, ÷16: >1.6GHz  
IN, nIN input can accept the following differential input levels:  
ICS889872 has a selectable ÷2, ÷4, ÷8, ÷16 output  
LVPECL, LVDS, CML  
dividers. The clock input has internal termination resistors,  
allowing it to interface with several differential signal types while  
minimizing the number of required external components. The  
device is packaged in a small, 3mm x 3mm VFQFN package,  
making it ideal for use on space-constrained boards.  
Output frequency: >2GHz  
Cycle-to-cycle jitter: 1ps (typical)  
Total jitter: 10ps (typical)  
Output skew: 7ps (typical), QA/nQA outputs  
Part-to-part skew: 250ps (typical)  
Propagation Delay: 750ps (typical), QA/nQA outputs  
Full 2.5V supply mode  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Block Diagram  
Enable  
16 15 14 13  
nRESET/  
FF  
1
2
3
QB0  
nQB0  
QB1  
12  
11  
10  
IN  
nDISABLE  
VT  
VREF_AC  
nIN  
Enable  
MUX  
QA  
nQB1  
4
9
5
6
7
8
nQA  
QB0  
IN  
50  
nQB0  
÷2, ÷4,  
÷8, ÷16  
VT  
50Ω  
ICS889872  
nIN  
QB1  
16-Lead VFQFN  
3mm x 3mm x 0.95mm package body  
VREF_AC  
S1  
nQB1  
K Package  
Top View  
Decoder  
S0  
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification.  
Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
1
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
Differential output pair. Divide by 2, 4, 8, 16. Unused outputs must be  
terminated with 100W across the pin (QB0/nQB0).  
LVDS interface levels.  
1, 2  
QB0, nQB0  
Output  
Output  
Differential output pair. Divide by 2, 4, 8, 16. Unused outputs must be  
terminated with 100W across the pin (QB1nQB1).  
LVDS interface levels.  
3, 4  
QB1, nQB1  
5, 6  
QA, nQA  
VDD  
Output  
Power  
Differential undivided output pair. LVDS interface levels.  
Power supply pins.  
7, 14  
Output reset and enable/disable pin. When LOW, resets the divider select,  
and align Bank A and Bank B edges. In addition, when LOW, Bank A and  
Bank B will be disabled. Input threshold is VDD/2V.  
nRESET/  
nDISABLE  
8
Input  
Pullup  
Includes a 37kpullup resistor. LVTTL / LVCMOS interface levels.  
9
nIN  
VREF_AC  
VT  
Input  
Output  
Input  
Inverting differential LVPECL clock input. RT = 50termination to VT.  
Reference voltage for AC-coupled applications. Equal to VDD – 1.4V  
(approx.). Maximum sink/source current is 0.5mA.  
10  
11  
12  
13  
Termination input. Leave pin floating.  
Non-inverting LVPECL differential clock input.  
RT = 50termination to VT.  
IN  
Input  
GND  
Power  
Power supply ground.  
Select pins. Logic HIGH if left unconnected (÷16 mode). S0 = LSB.  
Input threshold is VDD/2. 37kW pullup resistor.  
LVCMOS/LVTTL interface levels.  
15, 16  
S1, S0  
Input  
Pullup  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
RPULLUP  
Input Pullup Resistor  
37  
kΩ  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
2
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Function Tables  
Table 3A. Control Input Function Table  
Input  
Outputs  
nRESET  
QA, QBx  
Disabled; LOW  
Enabled  
nQA, nQBx  
Disabled; HIGH  
Enabled  
0
1
NOTE: After nRESET switches, the clock outputs are disabled or  
enabled following a falling input clock edge as shown in Figure 1.  
Figure 1. nRESET Timing Diagram  
V
/2  
DD  
nRESET  
t
RR  
IN  
nIN  
V
Swing  
IN  
t
PD  
nQBx  
QBx  
V
Swing  
OUT  
QA  
nQA  
Table 3B. Truth Table  
Inputs  
Outputs  
nRESET/nDISABLE  
S1  
0
S0  
0
Bank A  
Bank B  
1
1
1
1
0
Input Clock  
Input Clock  
Input Clock  
Input Clock  
Input Clock ÷2  
Input Clock ÷4  
Input Clock ÷8  
Input Clock ÷16  
0
1
1
0
1
1
X
X
QA = LOW, nQA = HIGH; NOTE 1  
QBx = LOW, nQBx = HIGH; NOTE 2  
NOTE 1: On the next negative transition of the input signal.  
NOTE 2: Asynchronous reset/disable function.Absolute Maximum Ratings  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
3
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
10mA  
15mA  
Input Current, IN, nIN  
50mA  
VT Current, IVT  
100mA  
Input Sink/Source, IREF_AC  
0.5mA  
Operating Temperature Range, TA  
Package Thermal Impedance, θJA, (Junction-to-Ambient)  
Storage Temperature, TSTG  
-40°C to +85°C  
51.5°C/W (0 lfpm)  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol Parameter  
VDD Positive Supply Voltage  
IDD Power Supply Current  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum  
Units  
V
2.375  
2.625  
80  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
2
0
VDD + 0.3  
V
V
VIL  
0.8  
5
IIH  
VDD = VIN = 2.625V  
µA  
µA  
IIL  
VDD = 2.625V, VIN = 0V  
-150  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
4
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Table 4C. Differential DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol  
RIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Differential Input Resistance  
Input High Voltage  
Input Low Voltage  
Input Voltage Swing  
Differential Input Voltage Swing  
Input Current  
(IN, nIN)  
(IN, nIN)  
(IN, nIN)  
100  
V
VIH  
1.2  
0
VDD  
VDD – 0.15  
2.8  
VIL  
V
VIN  
0.15  
0.3  
V
VDIFF_IN  
IIN  
V
(IN, nIN)  
45  
mA  
V
VREF_AC  
Bias Voltage  
VDD – 1.35  
Table 4D. LVDS DC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Symbol  
VOUT  
VOH  
Parameter  
Test Conditions  
Minimum  
Typical  
350  
Maximum  
Units  
mV  
V
Output Voltage Swing  
Output High Voltage  
1.475  
VOL  
Output Low Voltage  
0.925  
V
VCCM  
VOCM  
Output Common Mode Voltage  
Change in Common Mode Voltage  
1.35  
V
50  
mV  
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 2.5V 5%, TA = -40°C to 85°C  
Parameter  
Symbol  
Test Conditions  
÷2, ÷4  
Minimum  
Typical  
>2  
Maximum  
Units  
GHz  
GHz  
ps  
Output Frequency  
Input Frequency  
fMAX  
÷8, ÷16  
>1.6  
750  
750  
7
Input Swing: <400mV  
Input Swing: 400mV  
Propagation Delay;  
NOTE 1, 2  
tPD  
IN-to-Q  
ps  
QB0-to-QB1  
QA-to-QB  
ps  
Output Skew;  
NOTE 2, 3, 4  
tsk(o)  
60  
ps  
tsk(pp)  
tjit(cc)  
tjit(j)  
Part-to-Part Skew; NOTE 2, 4, 5  
Cycle-to-Cycle Jitter; NOTE 2, 6  
Total Jitter; NOTE 2  
250  
1
ps  
ps  
10  
ps  
tRR  
Reset Recovery Time; NOTE 2  
Output Rise/Fall Time; NOTE 2  
600  
ps  
tR / tF  
150  
ps  
All parameters characterized at 1GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Specs are design targets.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 6: The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
5
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Parameter Measurement Information  
V
DD  
,
SCOPE  
nIN  
Qx  
V
DD  
2.5V 5%  
POWER SUPPLY  
VIN  
VIH  
Cross Points  
VIL  
+
Float GND –  
LVDS  
IN  
nQx  
GND  
LVDS Output Load AC Test Circuit  
Differential Input Level  
nQx  
Qx  
Part 1  
nQx  
Qx  
nQy  
Part 1  
Qy  
Qy  
Qy  
tsk(o)  
tsk(pp)  
Part-to-Part Skew  
Output Skew  
nQA,  
nQB[0:1]  
nIN  
IN  
QA,  
QB[0:1]  
nQA,  
nQB[0:1]  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
QA,  
QB[0:1]  
1000 Cycles  
tPD  
Cycle-to-Cycle Jitter  
Propagation Delay  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
6
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Parameter Measurement Information, continued  
80%  
80%  
tR  
VDIFF_IN, VDIFF_OUT  
VOD  
1600mV  
(typical)  
VIN, VOUT  
Clock  
Outputs  
20%  
20%  
800mV  
(typical)  
tF  
Single-Ended & Differential Input Voltage Swing  
Output Rise/Fall Time  
Application Information  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VDD = 3.3V, V_REF should be 1.25V and  
VDD  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
IN  
V_REF  
nIN  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
7
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Differential Input with Built-in 50Termination Interface  
The IN /nIN with built-in 50terminations accepts LVDS, LVPECL,  
LVHSTL, CML, SSTL and other differential signals. Both signals  
must meet the VPP and VCMR input requirements. Figures 3A to 3E  
show interface examples for the HiPerClockS IN/nIN input with  
built-in 50terminations driven by the most common driver types.  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm  
the driver termination requirements.  
2.5V  
2.5V  
2.5V  
3.3V or 2.5V  
Zo = 50  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
IN  
IN  
VT  
nIN  
VT  
nIN  
Receiver  
With  
Receiver  
With  
LVPECL  
LVDS  
R1  
18  
Built-In  
50Ω  
Built-In  
50Ω  
Figure 3A. HiPerClockS IN/nIN Input with Built-In 50Ω  
Figure 3B. HiPerClockS IN/nIN Input with Built-In 50Ω  
Driven by an LVDS Driver  
Driven by an LVPECL Driver  
2.5V  
2.5V  
2.5V  
3.3V  
3.3V LVPECL  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
IN  
IN  
50Ω  
50Ω  
VT  
VT  
nIN  
nIN  
Receiver  
With  
REF_AC  
CML - Built-in 50Pull-up  
R5  
100 - 200Ω  
R5  
100 - 200Ω  
Receiver with  
Built-In 50Ω  
Built-In  
50Ω  
Figure 3C. HiPerClockS IN/nIN Input with Built-In 50Ω  
Driven by a CML Driver with Built-In 50Ω  
Pullup  
Figure 3D. HiPerClockS IN/nIN Input with Built-In 50Ω  
Driven by an SSTL Driver  
2.5V  
3.3V  
3.3V CML with  
Built-In Pullup  
Zo = 50Ω  
Zo = 50Ω  
C1  
C2  
IN  
50Ω  
50Ω  
VT  
nIN  
REF_AC  
Receiver with  
Built-In 50Ω  
Figure 3E. HiPerClockS IN/nIN Input with Built-In 50Ω  
Driven by a 3.3V CML Driver with  
Built-In Pullup  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
8
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Recommendations for Unused Input Pins  
Inputs:  
OUTputs:  
LVCMOS Select Pins  
LVDS Outputs  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
All unused LVDS output pairs can be either left floating or  
terminated with 100across. If they are left floating, we  
recommend that there is no trace attached.  
EPAD Thermal Release Path  
The EPAD provides heat transfer from the device to the P.C. board.  
The exposed metal pad on the PCB is connected to the ground  
plane through thermal vias. To guarantee the device’s electrical  
and thermal performance, EPAD must be soldered to the exposed  
metal pad on the PCB, as shown in Figure 4. For further  
information, please refer to the Application Note on Surface Mount  
Assembly of Amkor’s Thermally /Electrically Enhance Leadframe  
Base Package, Amkor Technology.  
SOLDER  
SOLDER  
PIN  
PIN  
EPAD  
PIN PAD  
GROUND PLANE  
EXPOSED METAL PAD  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 4. P.C. Board for Exposed Pad Thermal Release Path Example  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
9
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
2.5V LVDS Driver Termination  
Figure 5 shows a typical termination for LVDS driver in  
characteristic impedance of 100differential (50single)  
transmission line environment. For buffer with multiple LDVS driver,  
it is recommended to terminate the unused outputs.  
2.5V  
50  
2.5V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 5. Typical LVDS Driver Termination  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
10  
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS889872.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS889872 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 2.5V + 5% = 2.625V, which gives worst case results.  
Power_MAX = VDD_MAX * IDD_MAX = 2.625V * 80mA = 210mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 51.5°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.210W * 51.5°C/W = 95.8°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 6. Thermal Resistance θJA for 16 Lead VFQFN, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
11  
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 16 Lead VFQFN  
θJA by Velocity  
Linear Feet per Minute  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
Transistor Count  
The transistor count for ICS889872 is: 323  
Pin compatible with SY89872U  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 16 Lead VFQFN  
(Ref.)  
Seating Plane  
N & N  
(N -1)x e  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N & N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
Table 8. Package Dimensions  
JEDEC Variation: VEED-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
16  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
4
3.00 Basic  
1.00  
0.30  
1.80  
0.50 Basic  
L
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
12  
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
ICS889872AK  
ICS889872AKT  
ICS889872AKLF  
ICS889872AKLFT  
Marking  
872A  
872A  
TBD  
Package  
16 Lead VFQFN  
16 Lead VFQFN  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
“Lead-Free” 16 Lead VFQFN  
“Lead-Free” 16 Lead VFQFN  
TBD  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT  
product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
13  
ICS889872AK REV. A AUGUST 22, 2007  
ICS889872  
DIFFERENTIAL-TO-LVDS BUFFER/DIVIDER W/INTERNAL TERMINATION  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
+408 284 8200 (outside U.S.)  
#20-03 Wisma Atria  
Singapore 238877  
+65 6 887 5505  
England  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
Printed in USA  
www.IDT.com  

相关型号:

ICS889874

DIFFERENTIAL-TO-LVPECL BUFFER/DIVIDER
ICSI

ICS889874AK

DIFFERENTIAL-TO-LVPECL BUFFER/DIVIDER
ICSI

ICS889874AKT

DIFFERENTIAL-TO-LVPECL BUFFER/DIVIDER
ICSI

ICS889875AKLFT

Low Skew Clock Driver, 889875 Series, 2 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS889875AKT

Low Skew Clock Driver, 889875 Series, 2 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT

ICS8M3001AJ

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), CDSO6, 5 X 7 MM, 1.50 MM, CERAMIC, HERMETIC-6
IDT

ICS8M3001AJLF

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), CDSO6, 5 X 7 MM, 1.50 MM, CERAMIC, HERMETIC-6
IDT

ICS8M3001AJLFT

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), CDSO6, 5 X 7 MM, 1.50 MM, CERAMIC, HERMETIC-6
IDT

ICS8M3001AJT

Low Skew Clock Driver, 1 True Output(s), 0 Inverted Output(s), CDSO6, 5 X 7 MM, 1.50 MM, CERAMIC, HERMETIC-6
IDT
IDT
IDT