ICS853S012AKI [IDT]

Low Skew Clock Driver, 853S Series, 1 True Output(s), 0 Inverted Output(s), 5 MM X 5 MM, 0.75 MM HEIGHT, MO-220VHHD-2, VFQFN-32;
ICS853S012AKI
型号: ICS853S012AKI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 853S Series, 1 True Output(s), 0 Inverted Output(s), 5 MM X 5 MM, 0.75 MM HEIGHT, MO-220VHHD-2, VFQFN-32

文件: 总17页 (文件大小:2291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V  
LVPECL CLOCK/DATA MULTIPLEXER  
ICS853S012I  
GENERAL DESCRIPTION  
FEATURES  
The ICS853S012I is an 12:1 Differential-to-3.3V  
High speed 12:1 differential multiplexer  
ICS  
HiPerClockS™  
or 2.5V LVPECL Clock/Data Multiplexer which can  
operate up to 3.2GHz and is a member of the  
HiPerClockS™ family of High Performance Clock  
Solutions from IDT. The ICS853S012I has 12 dif-  
One differential 3.3V or 2.5V LVPECL output  
Twelve selectable differential clock or data inputs  
CLKx, nCLKx pairs can accept the following differential input  
levels: LVPECL, LVDS, CML, SSTL  
ferential selectable clock inputs. The CLK, nCLK input pairs  
can accept LVPECL, LVDS, CML or SSTL levels. The fully dif-  
ferential architecture and low propagation delay make it ideal  
for use in clock distribution circuits. The select pins have inter-  
nal pulldown resistors.  
Maximum output frequency: 3.2GHz (typical)  
Translates any single ended input signal to LVPECL levels with  
resistor bias on nCLKx input  
Additive phase jitter, RMS: 0.13ps (typical)  
Part-to-part skew: TBD  
Propagation delay: 685ps (typical)  
Full 3.3V or 2.5V operating supply modes  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Pulldown  
CLK0  
Pullup/Pulldown  
nCLK0  
Pulldown  
Pullup/Pulldown  
CLK1  
nCLK1  
32 31 30 29 28 27 26 25  
CLK2  
24  
23  
22  
21  
20  
19  
18  
17  
CLK9  
nCLK9  
SEL0  
1
2
3
4
5
6
7
8
Pulldown  
Pullup/Pulldown  
CLK2  
nCLK2  
nCLK2  
VCC  
Q
ICS853S012I  
32-Lead VFQFN  
5mm x 5mm x 0.75mm  
package body  
SEL1  
SEL2  
SEL3  
Q
nQ  
nQ  
VEE  
K Package  
Top View  
CLK3  
CLK8  
nCLK3  
nCLK8  
9
10 11 12 13 14 15 16  
Pulldown  
Pullup/Pulldown  
CLK11  
nCLK11  
SEL[3:0]  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
1
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
1
CLK2  
Input  
Input  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
2
3
nCLK2  
VCC  
Pullup/Pulldown  
Power  
Output  
Positive supply pin.  
4, 5  
Q, nQ  
Differential output pair. LVPECL interface levels.  
6
7
8
VEE  
Power  
Input  
Input  
Negative supply pin.  
CLK3  
nCLK3  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
Pullup/Pulldown  
Inverting differential clock input.  
VCC/2 default when left floating.  
9
nCLK4  
CLK4  
nCLK5  
CLK5  
CLK6  
Input  
Input  
Input  
Input  
Input  
Pullup/Pulldown  
Pulldown  
10  
11  
12  
13  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Non-inverting differential clock input.  
Pulldown  
Inverting differential clock input.  
VCC/2 default when left floating.  
14  
15  
16  
nCLK6  
CLK7  
Input  
Input  
Input  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
nCLK7  
Pullup/Pulldown  
Inverting differential clock input.  
VCC/2 default when left floating.  
17  
18  
nCLK8  
CLK8  
Input  
Pullup/Pulldown  
Input  
Input  
Pulldown  
Pulldown  
Non-inverting differential clock input.  
19, 20  
21, 22  
SEL3, SEL2,  
SEL1, SEL0  
Clock select input pins. LVCMOS/LVTTL interface levels.  
Inverting differential clock input.  
VCC/2 default when left floating.  
23  
24  
25  
26  
27  
nCLK9  
CLK9  
Input  
Input  
Input  
Input  
Input  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
nCLK10  
CLK10  
nCLK11  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
Pullup/Pulldown  
28  
29  
CLK11  
CLK0  
Input  
Input  
Pulldown  
Pulldown  
Non-inverting differential clock input.  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
30  
31  
32  
nCLK0  
CLK1  
Input  
Input  
Input  
Pullup/Pulldown  
Pulldown  
Non-inverting differential clock input.  
Inverting differential clock input.  
VCC/2 default when left floating.  
nCLK1  
Pullup/Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
2
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
RPULLDOWN Pulldown Resistor  
50  
50  
kΩ  
kΩ  
RVCC/2  
Pullup/Pulldown Resistor  
TABLE 3. CONTROL INPUT FUNCTION TABLE  
Control Inputs  
Outputs  
Q nQ  
SEL3  
SEL2  
SEL1  
SEL0  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
X
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
CLK8  
CLK9  
CLK10  
CLK11  
L
nCLK0  
nCLK1  
nCLK2  
nCLK3  
nCLK4  
nCLK5  
nCLK6  
nCLK7  
nCLK8  
nCLK9  
nCLK10  
nCLK11  
H
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
3
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Func-  
tional operation of product at these conditions or any con-  
ditions beyond those listed in the DC Characteristics  
or AC Characteristics is not implied. Exposure to abso-  
lute maximum rating conditions for extended periods may  
affect product reliability.  
Supply Voltage, V  
4.6V  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
For 32 Lead VFQFN  
JA  
34.8°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.465  
V
70  
mA  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum Units  
VCC  
IEE  
Positive Supply Voltage  
Power Supply Current  
2.375  
2.625  
V
65  
mA  
TABLE 4C. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
VCC = VIN = 3.465V,  
VCC = VIN = 2.625V  
CC = 3.465V, VIN = 0V,  
IIH  
IIL  
Input High Current SEL0:SEL3  
150  
µA  
µA  
V
Input Low Current SEL0:SEL3  
-150  
VCC = 2.625V, VIN = 0V  
TABLE 4D. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VCC = VIN = 3.465V or  
2.625V  
Minimum  
Typical  
Maximum Units  
CLK0:CLK11  
nCLK0:nCLK11  
150  
µA  
µA  
VCC = 3.465V or 2.625V,  
VIN = 0V  
CLK0:CLK11  
-10  
IIL  
Input Low Current  
VCC = 3.465V or 2.625V,  
VIN = 0V  
nCLK0:nCLK11  
-150  
µA  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.2  
1.5  
VCC  
V
V
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for CLKx, nCLKx is VCC + 0.3V.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
4
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ OR 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.125  
VCC - 1.895  
0.6  
Typical  
Maximum Units  
VOH  
Output High Voltage Voltage; NOTE 1  
VCC - 0.935  
VCC - 1.670  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
TABLE 5A. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
3.2  
GHz  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
155.52MHz,  
12kHz - 20MHz  
tjit  
0.13  
ps  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Input Skew  
685  
TBD  
35  
ps  
ps  
ps  
ps  
tsk(pp)  
tsk(i)  
tR / tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
135  
155.52MHz,  
Input Peak-to-Peak = 800mV  
MUX_ISOLATION Mux Isolation  
60  
dB  
All parameters measured up to 1.3GHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined according with JEDEC Standard 65.  
TABLE 5B. AC CHARACTERISTICS, VCC = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
3.2  
GHz  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
155.52MHz,  
12kHz - 20MHz  
tjit  
0.14  
ps  
tPD  
Propagation Delay; NOTE 1  
Part-to-Part Skew; NOTE 2, 3  
Input Skew  
690  
TBD  
55  
ps  
ps  
ps  
ps  
tsk(pp)  
tsk(i)  
tR / tF  
Output Rise/Fall Time  
20ꢀ to 80ꢀ  
125  
155.52MHz,  
Input Peak-to-Peak = 800mV  
MUX_ISOLATION Mux Isolation  
60  
dB  
All parameters measured up to 1.3GHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined according with JEDEC Standard 65.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
5
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
ADDITIVE PHASE JITTER  
band to the power in the fundamental. When the required offset  
is specified, the phase noise is called a dBc value, which simply  
means dBm at a specified offset from the fundamental. By  
investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the  
entire time record of the signal. It is mathematically possible to  
calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is called  
the dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications.Phase noise is defined as the ratio of the noise power  
present in a 1Hz band at a specified offset from the fundamental  
frequency to the power value of the fundamental. This ratio is  
expressed in decibels (dBm) or a ratio of the power in the 1Hz  
Additive Phase Jitter @ 155.52MHz  
(12kHz to 20MHz) = 0.13ps typical  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements  
have issues. The primary issue relates to the limitations of the  
equipment. Often the noise floor of the equipment is higher than  
the noise floor of the device. This is illustrated above. The device  
meets the noise floor of what is shown, but can actually be lower.  
The phase noise is dependant on the input source and  
measurement equipment.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
6
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
SCOPE  
SCOPE  
VCC  
VCC  
Qx  
Qx  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-0.5V 0.125V  
-1.3V 0.165V  
OUTPUT LOAD 3.3V AC TEST CIRCUIT  
OUTPUT LOAD 2.5V AC TEST CIRCUIT  
VCC  
nQx  
PART 1  
Qx  
nCLK0:11  
nQy  
PART 2  
Qy  
VPP  
VCMR  
Cross Points  
CLK0:11  
VEE  
tsk(pp)  
PART-TO-PART SKEW  
DIFFERENTIAL INPUT LEVEL  
nCLK0:11  
CLK0:11  
nQ  
nCLK0  
CLK0  
nLK1  
Q
tPD  
CLK1  
PROPAGATION DELAY  
nQ  
Q
tPD2  
80ꢀ  
tF  
80ꢀ  
tPD1  
VOD  
tsk(i)  
Clock  
20ꢀ  
20ꢀ  
Outputs  
tsk(i) = |tPD1 - tPD2  
|
tR  
INPUT SKEW  
OUTPUT RISE/FALL TIME  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
7
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLKx  
nCLKx  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CLK/nCLK INPUT:  
LVPECL OUTPUT  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kresistor can be tied from CLK to  
ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
8
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
DIFFERENTIAL CLOCK INPUT INTERFACE  
driver types. The input interfaces suggested here are examples  
only. If the driver is from another vendor, use their termination  
recommendation. Please consult with the vendor of the driver  
component to confirm the driver termination requirements.  
The CLK /nCLK accepts LVPECL, LVDS, CML, SSTL and other  
differential signals. Both VSWING and VOH must meet the VPP and VCMR  
input requirements. Figures 2A to 2F show interface examples  
for the HiPerClockS CLK/nCLK input driven by the most common  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
R1  
50  
R2  
50  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
nCLK  
HiPerClockS  
CML Built-In Pull-Up  
FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
A BUILT-IN PULLUP CML DRIVER  
FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
AN IDT OPEN COLLECTOR CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
R3  
84  
R4  
84  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
LVPECL  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
R1  
84  
R2  
84  
FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
A 3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
A 3.3V LVDS DRIVER WITH AC COUPLE  
2.5V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
Zo = 50 Ohm  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
HiPerClockS  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
CML Built-In Pull-Up  
R1  
120  
R2  
120  
FIGURE 2E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
AN SSTL DRIVER  
FIGURE 2F. HIPERCLOCKS CLK/nCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVERER  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
9
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
THERMAL RELEASE PATH  
The expose metal pad provides heat transfer from the device to  
the P.C. board. The expose metal pad is ground pad connected  
to ground plane through thermal via. The exposed pad on the  
device to the exposed metal pad on the PCB is contacted through  
solder as shown in Figure 3 For further information, please refer  
to the Application Note on Surface Mount Assembly of Amkor’s  
Thermally /Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
EXPOSED PAD  
SOLDER  
SOLDER MASK  
SIGNAL  
TRACE  
SIGNAL  
TRACE  
GROUND PLANE  
Expose Metal Pad  
(GROUND PAD)  
THERMAL VIA  
FIGURE 3. P.C. BOARD FOR EXPOSED PAD THERMAL RELEASE PATH EXAMPLE  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are rec-  
ommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 4A and 4B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Z
o = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
84Ω  
84Ω  
((VOH + VOL) / (VCC – 2)) – 2  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
10  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 5A and Figure 5B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to V - 2V. For V = 2.5V, the V - 2V is very close to ground  
level. The R3 in Figure 5B can be eliminated and the termination  
is shown in Figure 5C.  
CC  
CC  
CC  
2.5V  
VCC=2.5V  
2.5V  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
R1  
250  
R3  
250  
+
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCC=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
11  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS83S012I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS83S012I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 70mA = 242.6mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30.94mW/Loaded Output pair  
MAX  
Total Power  
(3.465V, with all outputs switching) = 242.6mW + 30.94mW = 273.5mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no  
air flow and a multi-layer board, the appropriate value is 34.8°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.274W * 34.8°C/W = 94.5°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 32 LEAD VFQFN, FORCED CONVECTION  
JA  
θ vs. Air Flow (Linear Feet per Minute)  
JA  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
12  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CC  
For logic high, V = V  
= V  
– 0.935V  
CCO_MAX  
OUT  
OH_MAX  
)
= 0.935V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, V = V  
= V  
– 1.67V  
CCO_MAX  
OUT  
OL_MAX  
)
(V  
- V  
= 1.67V  
CCO_MAX  
OL_MAX  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
L
L
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO _MAX  
OH_MAX  
CCO  
[(2V - 0.935V)/50] * 0.935V = 19.92mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
L
L
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
CCO  
OL_MAX  
CCO_MAX  
OL_MAX  
[(2V - 1.67V)/50] * 1.67V = 11.02mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
13  
2
ICS853S012AKI REV. A JANUARY 4, 2007  
2
2
Pd_in_H = [(V – (V - 2V)] /R = [(V - 1V) - (V - 2V)] /R = (1V) /50= 20.0mW  
L
L
OH  
CC  
CC  
CC  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 32 LEAD VFQFN  
JA  
θ vs. Air Flow (Linear Feet per Minute)  
JA  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
34.8°C/W  
TRANSISTOR COUNT  
The transistor count for ICS853S012I is: 8,537  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
14  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
PACKAGE OUTLINE - K SUFFIX FOR 32 LEAD VFQFN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
VHHD-2  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
0.80  
0
1.00  
0.05  
A1  
A3  
b
--  
0.25 Ref.  
0.25  
0.18  
0.30  
8
ND  
NE  
D
8
5.00 BASIC  
2.25  
D2  
E
1.25  
1.25  
0.30  
3.25  
3.25  
0.50  
5.00 BASIC  
2.25  
E2  
e
0.50 BASIC  
0.40  
L
Reference Document: JEDEC Publication 95, MO-220  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
15  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS853S012AKI  
Marking  
TBD  
Package  
Shipping Packaging  
Tray  
Temperature  
32 Lead VFQFN  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS853S012AKIT  
ICS853S012AKILF  
ICS853S012AKILFT  
TBD  
32 Lead VFQFN  
1000 Tape & Reel  
Tray  
TBD  
32 Lead "Lead-Free" VFQFN  
32 Lead "Lead-Free" VFQFN  
TBD  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSLVPECL CLOCK/DATAMULTIPLEXER  
16  
ICS853S012AKI REV. A JANUARY 4, 2007  
ICS853S012I  
12:1, DIFFERENTIAL-TO-3.3V, 2.5V LVPECL CLOCK/DATA MULTIPLEXER  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS853S012AKILF

Low Skew Clock Driver, 853S Series, 1 True Output(s), 0 Inverted Output(s), 5 MM X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD-2, VFQFN-32
IDT

ICS853S012AKILFT

Low Skew Clock Driver, 853S Series, 1 True Output(s), 0 Inverted Output(s), 5 MM X 5 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD-2, VFQFN-32
IDT

ICS853S012AKIT

Low Skew Clock Driver, 853S Series, 1 True Output(s), 0 Inverted Output(s), 5 MM X 5 MM, 0.75 MM HEIGHT, MO-220VHHD-2, VFQFN-32
IDT

ICS853S012I

12:1, Different ial-to-3.3V, 2.5V LVPECL Clock/Data Mult iplexer
IDT

ICS853S012I_17

12:1, Different ial-to-3.3V, 2.5V LVPECL Clock/Data Mult iplexer
IDT

ICS853S024

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER
IDT

ICS853S202AYI

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, LQFP-48
IDT

ICS853S202AYILF

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

ICS853S202AYILFT

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

ICS853S314AFI

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, MO-150, SSOP-20
IDT

ICS853S314AFILF

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, ROHS COMPLIANT, MO-150, SSOP-20
IDT

ICS853S314AFILFT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, ROHS COMPLIANT, MO-150, SSOP-20
IDT