ICS853S024 [IDT]

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER; 低偏移, 1至24差分至3.3V , 2.5V LVPECL扇出缓冲器
ICS853S024
型号: ICS853S024
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER
低偏移, 1至24差分至3.3V , 2.5V LVPECL扇出缓冲器

文件: 总16页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V  
LVPECL FANOUT BUFFER  
ICS853S024  
General Description  
Features  
The ICS853S024 is a low skew, 1-to-24  
Twenty four LVPECL outputs.  
One differential clock input pair  
S
IC  
Differential-to-3.3V, 2.5V LVPECL Fanout Buffer and  
a member of theHiPerClockS™ family of High  
Performance Clock Solutions from IDT. The CLK,  
nCLK pair can accept most standard differential  
HiPerClockS™  
Differential input clock (CLK, nCLK) can accept the following  
signaling levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
Maximum output frequency: >1.5GHz  
input levels. The ICS853S024 is characterized to operate from  
either a 3.3V or a 2.5V power supply. Guaranteed output skew  
characteristics make the ICS853S024 ideal for those clock  
distribution applications demanding well defined performance and  
repeatability.  
Translates any single ended input signal to 3.3V/ 2.5V LVPECL  
levels with resistor bias on nCLK input  
Output skew: 25ps (typical)  
tR / tF: 180ps (typical)  
Additive phase jitter, RMS: 0.111ps (typical) @ 312.5MHz  
Full 3.3V or 2.5V supply voltage  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) packages.  
.
Block Diagram  
Pin Assignment  
24  
Pulldown  
Pullup  
Q0:Q23  
CLK  
24  
nCLK  
nQ0:nQ23  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VCC  
VEE  
1
2
3
4
5
nCLK  
CLK  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
nQ17  
Q17  
nQ16  
Q16  
nQ15  
Q15  
Q0  
nQ0  
Q1  
ICS853S024  
64-Lead TQFP, EPad  
10mm x 10mm x 1mm  
package body  
Y Package  
nQ1  
Q2  
6
7
nQ2  
Q3  
nQ3  
8
9
nQ14  
Q14  
10  
Q4 11  
Top View  
nQ13  
Q13  
12  
13  
14  
nQ4  
Q5  
nQ5  
VEE  
VCC  
nQ12  
Q12  
15  
16  
VCC  
VCC  
17 18 19 20 21  
23 24 25 26 27 28 29 30 31 32  
22  
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification.  
Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
LOW SKEW LVPECL FANOUT BUFFER  
1
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 16, 18, 31, 33,  
34, 50, 63, 64  
VCC  
Power  
Power supply pins.  
2, 15, 17, 32, 49  
3, 4  
VEE  
Power  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Negative supply pins.  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Q4, nQ4  
Q5, nQ5  
Q6, nQ6  
Q7, nQ7  
Q8, nQ8  
Q9, nQ9  
Q10, nQ10  
Q11, nQ11  
Q12, nQ12  
Q13, nQ13  
Q14, nQ14  
Q15, nQ15  
Q16, nQ16  
Q17, nQ17  
CLK  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
Differential clock outputs. LVPECL interface levels.  
5, 6  
7, 8  
9, 10  
11, 12  
13, 14  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
29, 30  
35, 36  
37, 38  
39, 40  
41, 42  
43, 44  
45, 46  
47  
Pulldown Non-inverting differential clock input.  
Pullup/  
48  
nCLK  
Input  
Inverting differential clock input. VCC/2 default when left floating.  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
50  
50  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
LOW SKEW LVPECL FANOUT BUFFER  
2
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
32.5°C/W (0 mps)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 3A. LVPECL Power Supply DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, TA = 0°C to 70°C  
Symbol Parameter  
VCC Core Supply Voltage  
IEE Power Supply Current  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum  
Units  
V
3.135  
3.465  
200  
mA  
NOTE 1: Output terminated with 50to VCC / 2. See Parameter Measurement Information Section.  
Table 3B. Differential DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, TA = 0°C to 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum  
Typical  
Maximum  
150  
Units  
µA  
µA  
µA  
µA  
V
CLK  
nCLK  
CLK  
150  
-5  
IIL  
Input Low Current  
nCLK  
-150  
0.15  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
VEE + 0.5  
VCC – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 3C. LVPECL DC Characteristics, VCC = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.9  
VCC – 1.7  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
LOW SKEW LVPECL FANOUT BUFFER  
3
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Table 3D. LVPECL DC Characteristics, VCC = 2.5V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.4  
Typical  
Maximum  
Units  
VOH  
Output High Voltage; NOTE 1  
VCC – 0.9  
VCC – 1.5  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
AC Electrical Characteristics  
Table 4. AC Characteristics, VCC = 3.3V 5% or 2.5V 5%, TA = 0°C to 70°C  
Parameter Symbol  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
1.9  
Units  
GHz  
ps  
Propagation Delay; NOTE 1  
600  
156.25 MHz,  
Integration Range: 12kHz – 20MHz  
0.149  
ps  
ps  
ps  
Additive Phase Jitter, RMS;  
NOTE 2  
312.5 MHz,  
Integration Range: 12kHz – 20MHz  
tjit(φ)  
0.111  
0.44  
1GHz,  
Integration Range: 12kHz – 20MHz  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 3, 4  
Part-to-Part Skew; NOTE 4, 5  
Output Rise/Fall Time  
Output Duty Cycle  
25  
TBD  
180  
50  
ps  
ps  
ps  
%
20% to 80%  
All parameters are measured at f 1GHz, unless otherwise noted.  
Special thermal considerations may be required. See Applications Section.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Measured on Aeroflex PN9000.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65. Measured at the output differential cross points.  
NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions at  
the same temperature. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
LOW SKEW LVPECL FANOUT BUFFER  
4
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
V
V
CC  
CC  
Qx  
Qx  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load AC Test Circuit  
2.5V LVPECL Output Load AC Test Circuit  
V
CC  
nQx  
Qx  
nCLK  
nQy  
VPP  
VCMR  
Cross Points  
CLK  
Qy  
tsk(o)  
V
EE  
Differential Input Level  
Output Skew  
Part 1  
nQx  
nCLK  
CLK  
Qx  
nQ0:nQ21  
Part 2  
nQy  
Q0:Q21  
Qy  
tPD  
tsk(pp)  
Part-to-Part Skew  
Propagation Delay  
LOW SKEW LVPECL FANOUT BUFFER  
5
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Parameter Measurement Information, continued  
nQ0:nQ21  
Q0:Q21  
80%  
80%  
tR  
tPW  
VSWING  
20%  
tPERIOD  
Clock  
20%  
Outputs  
tF  
tPW  
tPERIOD  
odc =  
x 100%  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
Application Information  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and  
VCC  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 1. Single-Ended Signal Driving Differential Input  
LOW SKEW LVPECL FANOUT BUFFER  
6
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 2A to 2F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 2A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 2A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 2B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 2C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 2D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 2E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 2F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
LOW SKEW LVPECL FANOUT BUFFER  
7
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK Inputs  
LVPECL Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Zo = 50  
125Ω  
125Ω  
FOUT  
FIN  
Z
Z
o = 50Ω  
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 3A. 3.3V LVPECL Output Termination  
Figure 3B. 3.3V LVPECL Output Termination  
LOW SKEW LVPECL FANOUT BUFFER  
8
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Termination for 2.5V LVPECL Outputs  
Figure 4A and Figure 4B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to  
ground level. The R3 in Figure 4B can be eliminated and the  
termination is shown in Figure 4C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
R1  
R3  
50Ω  
250  
250  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 4A. 2.5V LVPECL Driver Termination Example  
Figure 4B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 4C. 2.5V LVPECL Driver Termination Example  
LOW SKEW LVPECL FANOUT BUFFER  
9
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended to  
determine the minimum number needed. Maximum thermal and  
electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as many  
vias connected to ground as possible. It is also recommended that  
the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz  
copper via barrel plating. This is desirable to avoid any solder  
wicking inside the via during the soldering process which may  
result in voids in solder between the exposed pad/slug and the  
thermal land. Precautions should be taken to eliminate any solder  
voids between the exposed heat slug and the land pattern. Note:  
These recommendations are to be used as a guideline only. For  
further information, refer to the Application Note on the Surface  
Mount Assembly of Amkor’s Thermally/Electrically Enhance  
Leadfame Base Package, Amkor Technology.  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 5. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias. The  
vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are  
SOLDER  
SOLDER  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
GROUND PLANE  
PIN PAD  
THERMAL VIA  
Figure 5. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)  
LOW SKEW LVPECL FANOUT BUFFER  
10  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS853S024.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS853S024 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 200mA = 693mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 24 * 30mW = 720mW  
Total Power_MAX (3.465V, with all outputs switching) = 693W + 720mW = 1.413W  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming 0 air flow  
and a multi-layer board, the appropriate value is 32.5°C/W per Table 5 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 1.413 W * 32.5°C/W = 115.9°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 5. Thermal Resistance θJA for 64 Lead TQFP, EPad, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.5°C/W  
26.6°C/W  
25.1°C/W  
LOW SKEW LVPECL FANOUT BUFFER  
11  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V  
(VCC_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.7V  
(VCC_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX– VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCC_MAX– 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX– VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
LOW SKEW LVPECL FANOUT BUFFER  
12  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Reliability Information  
Table 6. θJA vs. Air Flow Table for a 64 Lead TQFP, E-Pad  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.5°C/W  
26.6°C/W  
25.1°C/W  
Transistor Count  
The transistor count for ICS853S024 is: 8336  
LOW SKEW LVPECL FANOUT BUFFER  
13  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Package Outline and Package Dimensions  
Package Outline - Y Suffix for 64 Lead TQFP, E-Pad  
-HD VERSION  
EXPOSED PAD DOWN  
Table 7. Package Dimensions for 64 Lead TQFP, E-Pad  
JEDEC Variation: ACD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
64  
A
1.20  
0.15  
1.05  
0.27  
0.20  
A1  
A2  
0.05  
0.95  
0.17  
0.09  
0.10  
1.00  
0.22  
b
c
D & E  
D1 & E1  
D2 & E2  
D3 & E3  
e
12.00 Basic  
10.00 Basic  
7.50 Ref.  
5.0  
4.5  
5.5  
0.50 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
θ
ccc  
0.08  
Reference Document: JEDEC Publication 95, MS-026  
LOW SKEW LVPECL FANOUT BUFFER  
14  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Ordering Information  
Table 7. Ordering Information  
Part/Order Number  
853S024AYLF  
853S024AYLFT  
Marking  
ICS853S024AYLF  
ICS853S024AYLF  
Package  
Lead-Free, 64 Lead TQFP, E-Pad  
Lead-Free, 64 Lead TQFP, E-Pad  
Shipping Packaging  
Tray  
500 Tape & Reel  
Temperature  
0°C to +70°C  
0°C to +70°C  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
LOW SKEW LVPECL FANOUT BUFFER  
15  
ICS853S024AY REV. A APRIL 30, 2008  
ICS853S024  
LOW SKEW, 1-TO-24 DIFFERENTIAL-TO-3.3V, 2.5V LVPECL FANOUT BUFFER  
PRELIMINARY  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

ICS853S202AYI

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, LQFP-48
IDT

ICS853S202AYILF

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

ICS853S202AYILFT

Low Skew Clock Driver, 853S Series, 2 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBC, LQFP-48
IDT

ICS853S314AFI

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, MO-150, SSOP-20
IDT

ICS853S314AFILF

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, ROHS COMPLIANT, MO-150, SSOP-20
IDT

ICS853S314AFILFT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, ROHS COMPLIANT, MO-150, SSOP-20
IDT

ICS853S314AFIT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 5.30 MM X 7.20 MM, 1.75 M HEIGHT, MO-150, SSOP-20
IDT

ICS853S314AGI

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS853S314AGILF

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS853S314AGILFT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS853S314AGIT

Low Skew Clock Driver, 853S Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 MM X 6.50 MM, 0.925 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS85401

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI